UPTEC STS 22025
Examensarbete 30 hp
Juni 2022

UNIVERSITET

Locating power lines in satellite
Images with semantic
segmentation

Erik Lundman

Civilingenjorsprogrammet i system i teknik och samhalle

Locating power lines in satellite images with semantic

' segmentation
UPPSALA

UNIVERSITET Erik Lundman

Abstract

The inspection of power lines is an important process to maintain a stable electrical
infrastructure. Simultaneously it is very time consuming task considering there are 164 000 km
of power lines in Sweden alone. A cheaper and more sustainable approach is an automatic
inspection with drones. But for a successful inspection with drones, exact power line
coordinates is needed, which is not always available.

In order to identify power lines in satellite images a machine learning approach was
implemented. In machine learning, semantic segmentation is the process of pixel-wise
classification of an image. Where you not only label the entire image, but every pixel
individually. This way not only the existence of a power line will be identified, but their position
inside the image. This thesis aims to investigate if semantic segmentation is an effective
approach to locate power lines in satellite images. And what methods can be used on the
segmented output data to extract linestring coordinates representing the power line. Linear
regression and a polygon centerline extraction method was implemented on the segmented
output data in order to define a line that represents the true location of the power line.

The semantic segmentation model could find power lines where they were clearly visible, but
struggled where they were not very visible. From good output data from the segmentation
model, the linear regression and the polygon centerline extraction methods could successfully
extract linestring coordinates that represented the true location of the power line. In the best
case around 67\% of power lines was correctly identified. But still, with good output data from
the model, complex shapes such as intersections might still get bad results. Even if the
approach need further work, and can not reliably identify all power lines in the current state, it
has proven that this could be a promising method to identify power lines in satellite images.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala/Visby

Handledare: Tobias Fridén Amnesgranskare: Anders Hast

Examinator: Elisabet Andrésdottir

Popularvetenskaplig Sammanfattning

Stabil och kontinuerlig elforsorjning ir en absolut nodvéandighet i dagens samhaille. Regel-
bunden inspektion av elledningar &dr en del av arbetet for att gora detta mojligt. Bara i
Sverige finns det 160 000 km luftburna elledningar, s& inspektionen dr bade en tidskridvande
och dyr process. Ett alternativ for mer effektiva, sidkra och autmatiserade inspektioner
ar anvindadet av dronare. Men med automatisering dyker nya utmaningar upp. For att
inspektera med dronare blir exakta koordinater pa elledningar extra viktiga. Detta for att
gora det mojligt att faktiskt flyga pa rétt stille langst med elledningen. Exakta koordinater
innebdr ocksd en mojlighet att flyga nirmare for att samla bittre data for inspektionen.
Men eftersom stora delar av Sveriges elnit byggdes upp under 1900-talet finns det inte
alltid tillgdngligt. En metod for att skilja mellan bra och déliga koordinater innan den
forsta flygningen ér ett utmanande problem. Men ett problem som maiste 16sas for att
optimera processen.

Satellitbilder har bdde okat i1 kvalité och tillginglighet genom aren. Via Google Maps
kan vem som helst fa tillgéng till satellitbilder dér elledningar kan vara synliga for blotta
ogat. Ddrmed uppstar frigan om satellitbilder har tillricklig kvalité och kan bistd med
tillracklig information for att bestimma elledningarnas sanna position. Kan vi anvinda
oss av Al och bildanalysmetoder for att automatiskt identifiera och extrahera koordinater
pa elledningar.

I detta projekt implementeras en maskininldrningsmetod for att identifiera elledningar 1
satellitbilder. "Semantic segmentation" dr en process inom maskininldrning med mélet
att klassifiera varje individuell pixel i en bild. Till skillnad frén standard klassifiering dér
en hela bilden fér en klass, kan semantic segmentation ocksa ge information om form och
position av objekten som klassifieras. Vilket kommer vara absolut nddvindigt dé vi inte
vill veta om det finns en elledning utan var den finns i en satellitbild. DeepLab ir en
maskininldrningsmodell speciellt utvecklad for semantic segmentation. Tillsammans med
satellitbilder tagna frdn Google Maps implementeras DeepLab-modellen for att indenti-
fiera elledningar. Ungefir 5800 satellitbilder, som innehdller elledningar, samlades for att
trana maskininldarningsmodellen att hitta elledningar.

D4 modellen endast kommer att ge fargkodade bilder som utdata behdvs ytterligare en
metod for att konvertera detta till koordinater (en linje) som representerar elledningen.
Tvé olika metoder undersoktes for att hitta den linjen som bist representerade elledningen
utifrdn de segmenterade bilderna skapade av DeepLab-modellen.

Resultaten fran DeepLab modellen visade goda resultat dér elledningen var tydligt synlig.
Dock dir elledningar var svéra att se var resultaten relativt diliga. I flera fall identifierades
dven viaggrenar, spar i dkrar eller andra linjéra strukturer inkorrekt som en elledning. Ibista
fall var ungefdr 67% av de framstéllda linjerna is stort sett korrekt placerade langst med
elledningen. Resultaten indikerar ddrmed att mer idn hélften av maskerna frin DeepLab
modellen ger tillricklig information for att identifiera elledningens sanna position. Ménga
forbattringar kravs for att denna metod ska minska antalet felklassifieringar och ge tillrack-
ligt bra resultat for att identifiera ett helt elndtverk. Men med mer arbete och forbittringar
kan detta tillvigagngssitt vara lovande for att f4 en bittre uppfattning om elledningarnas
sanna position.

Acknowledgements

This master thesis has been conducted for Uppsala University in collaboration with Air-
pelago, a company providing efficient power line inspections with drones.

I would like to give special thanks to my supervisor Tobias Fridén and the co-workers at
Airpelago for all the help and guidance during the project, while giving me the freedom
and trust to follow my own ideas.

I also want to thank my subject reader Anders Hast for all the encouragement and valuable
feedback during the project.

Contents

1

Introduction

I.1 Purpose e
1.2 Deliminations e
Background

2.1 Coordinate systems and zoom level
2.2 Convolutional Neural Networks
2.3 Semantic segmentation e
24 DeepLabv3+
2.5 Overfitting L e e
2.6 Dataaugmentation e
2.7 Performance metricso e e e
2.8 Linear re@ression u i e u e e e e e e e e
29 Centerline
2.10 Visvalingam-Whyatt algorithm
Method

3.1 Dataselection
3.2 Datasetstructuret e e e e
3.3 Preprocessing oo e e e e e e
34 Augmentation e e
3.5 DeepLabv3+
3.6 Coordinate extraction
Results

4.1 Modeloutputdata
4.2 Model performance
4.3 Coordinate extraction e e e
Discussion

5.1 Modeloutputdata
5.2 Model performance
5.3 Coordinate extraction i e e
Conclusions

Future work

15
15
17
19

21
21
21
22

23

23

1 Introduction

The process of inspecting power lines is important to maintain a stable electrical infras-
tructure. But at the same time it can be a daunting task, since Sweden alone have 164
000 km of power lines above ground [1]. One option for more efficient, safe and auto-
mated inspections can be provided by drones. A cheaper and more sustainable option
than inspection by helicopter. But in the process of automation new challenges arises.
With automatic inspection with drones, the exact location and coordinates of the power
lines becomes more important. Better coordinates can make sure the drones actually fly
along the power lines and will give the opportunity to fly closer to get better data for the
inspection. Currently exact coordinates is not always available, since most power lines in
Sweden were built during the 1900s. If the power line is not correctly captured by the
drones a proper inspection can not be made. A method to differentiate between the good
and bad coordinates before the first flight is a challenging problem. But a necessary issue
to resolve in order to optimize the process.

Satellite images have improved in quality during the years, and even thin objects such as
power lines can be visible to the human eye. Therefore the question arise if satellite images
can give us the information we need about the true location of the power lines. And if the
use of machine learning and image analysis can give us the tools needed to automatically
detect and extract the coordinates of power lines found in satellite images.

In machine learning, semantic segmentation is the process of assigning a label to every
pixel in an image [2]. In other words, semantic segmentation is a classification method
on individual pixels. In contrast to standard classification that assigns a label to the entire
image, semantic segmentation will also indicate where in the image the classified object
resides. When only two classes are available, a power line or not a power line, semantic
segmentation becomes a binary classification problem on individual pixels. DeepLab [3]
is a deep Convolutional Neural Network designed for the task of image segmentation.
Together with selected satellite imagery from Google Maps the DeepLab model will be
implemented in order to identify power lines.

Since output data from the segmentation model is only color labeled images. Two different
methods will be tested to extract power line coordinates from the DeepLab output data.
Linear regression and polygon-centerline extraction are the two methods investigated.
Where a centerline is defined as the line that "flows" through the center of a polygon.
Therefore a pipeline has been established in order to investigate if power line coordinates
can be extracted from Google Maps satellite imagery with semantic segmentation.

1.1 Purpose

The purpose of this study is to investigate if semantic segmentation can be used to identify
and extract power line coordinates from satellite images. In order to identify if the existing
coordinates are correct or not. This will be accomplished by investigating following
questions:

* How consistently can semantic segmentation identify power lines in satellite images?

* Is semantic output data sufficient to extract exact coordinates?

* Which is the best method to extract coordinates from segmented output data?

1.2 Deliminations

Since an existing machine learning model specifically developed for semantic segmentation
is implemented in this project. Model improvements, that might increase performance
on this specific data set, is not a priority. Evaluation of different machine learning
models, fine tuning of model parameters or other experiments that might improve the
model performance are therefore not investigated further. Focus is concentrated on data
collection and the processing of output data, in order to evaluate the entire pipeline in the
limited time available.

2 Background

This section will explain the theory, concepts and tools used during this project. Section
2.1 cover the usage and handling of coordinates. Sections 2.2 - 2.7 cover different machine
learning concepts and performance measures. Sections 2.8 - 2.10 presents the tools used
for coordinate extraction from the model output data.

2.1 Coordinate systems and zoom level

Latitude and longitude is a coordinate system used to reference different points in the world.
Decimal degrees are a way of expressing latitude and longitude as decimal fractions of a
degree. Like latitude and longitude decimal degrees is bound to +-90 and +-180 degrees
each. As opposed to another popular alternative, degrees, minutes and seconds, decimal
degrees are simply fractions of a number which make them easier to use in mathematical
1nstances.

Google Maps have different zoom levels available. From zoom level 0 (lowest zoom with
entire world map visible) to 21+ (which can depict single buildings or streets). 21+ simply
depicts that some areas might have higher zoom levels available than others [4].

In order to translate a location in the world to a location on a map, latitude and longitude
is first translated to world coordinates. In Google Maps world coordinates is a Mercator
projection. The Mercator projection can be described as the world, projected onto a
cylinder and therefore creating a flat map from a sphere. This results in a map where areas
far away from the equator becomes disproportionately large [5].

World coordinates in Google Maps are defined in the coordinate space [0, 256], [0, 256]
since a basic map tile in zoom level 0 is 256 x 256 pixels. The coordinates has the origin
in the northwest corner of a standard western world map, x increasing to the east and y
increasing to the south [6].

The world coordinates [7] for x and y is calculated with

long

=2 .
X 56>|<(05+360

), &)

1+sin(llex

log latxm

1—sin(
y =256 (0.5 - 4+ﬂ“‘°).)

The world coordinates is then translated to pixel coordinates. Pixel coordinates is a
reference to a specific pixel at a specific zoom level on a map.

In order to calculate pixel coordinates the equation used is

pixelCoordinate = worldCoordinate » 2°°°"Level 3)

Therefore every pixel of a map, in any zoom level, can be translated to decimal degrees
and vice versa [6].

2.2 Convolutional Neural Networks

Deep Learning is a specific kind of machine learning which refers to the structure of
a network with multiple layers [8]. Artificial Neural networks(ANN) and other Deep-
learning architectures have shown impressive results when solving complex problems
and discovering complicated patterns in various kinds of data. Convolutional Neural
Networks(CNN) is a special kind of ANN that uses convolution in at least one of the layers
and have been very successful when processing for example image data [8].

The success of CNN:s in image analysis comes from the convolutional layers use of the
grid-like structure of image data. The convolutional layer will better preserve information
concerning pixels and the relation to their neighbours [9]. Traditional layers i neural
networks uses matrix multiplication where every input unit interacts with every output
unit. Which becomes very computational heavy with large input data. CNN:s on the other
hand make use of what is called sparse interactions. Sparse interactions is accomplished
by making the kernel smaller than the input data and therefore each output will only depend
on a portion of the input [8]. Figure 1 demonstrates sparse connectivity between input and
output.

To better represent how the convolution and sparse connectivity operates on grid-like data,
such as images, Figure 2 demonstrates the convolution operation but in two dimensions
with a kernel size 3 x 3 [9].

2.3 Semantic segmentation

Semantic segmentation is a method in computer vision that aims to classify each pixel
in an image to a certain class. Which is useful when you want to classify objects in an
image but also want to know their shape and position [2]. The data set used for semantic
segmentation consist of the original images and the ground truth. An example of semantic
segmentation with two labels is shown in Figure 3. The ground truth is a mask labeled
with different colors representing the objects to be classified. Each image have their
corresponding mask. In a perfect world expected output from the model should represent
the ground truth.

Figure 1: Sparse connectivity. One output unit, s3 is highlighted, together with all the
input units x that affect s3. Top image represents the convolutional operation with a kernel
size 3, then only three inputs directly affect s3. Bottom image demonstrates traditional
matrix multiplication where all inputs affect s3.

Input variables Hidden units Input variables Hidden units

1
X114 24 3 AX]SXL{,WI(!’ X1,1|X1,200.3

X2, 11¥22 1% X2,1[X2,2 %231 X 34 Xa-5-Xa

L N | =
X3, 11¥3 73 31%3.3 X3,1|X3,20¥335%5 37735 13,

Xa,1 X42 X4.3 X4.4 X4.5 Xa.6 Xa4,1 X4.2 X4.3 X4.4 X4,5 X4.6

X5,1 X5,2 X53 X5.4 X5.5 X5,6 X5,1 X5,2 X53 X5.4 X5,5 X5,6

Figure 2: Demonstrated in the left image, input variables (pixels in image) is mapped to
a layer of hidden units (output) using a 3 x 3 kernel, here the red square. Therefore each
hidden unit is only dependant on a small portion of the input data. Demonstrated in the
right image, the kernel moves one step to the right and it will then map to the hidden unit
to the right.

Original Image Ground Truth

b)

Figure 3: Example of semantic segmentation with two labels. Black for background and
purple for horse. a) The original image. b) The corresponding ground truth.

2.4 DeeplLabv3+

DeepLabv3+ by Chen et al. is a deep CNN specifically designed to perform segmentation
tasks [3]. It is built on the previous versions of DeepLab by Chen et al, and have all shown

promising result [10, 11, 12]. The DeepLabv3+ model has proposed several techniques
to improve the task of segmentation and reduce computational cost. Two of the concepts
used are called "atrous convolution" and "atrous spatial pyramidal pooling".

Atrous convolution is a modification on normal convolution where the size of the kernel is
increased by inserting gaps, as illustrated in Figure 4. This effectively broadens the field
of view to get a larger context without increasing the amount of parameters. By increasing
what is called dilation rate, the size of the atrous convolution can be set.

Conv Conv Conv
kernel: 3x3 kernel: 3x3 kernel: 3x3

rate: 1 rate: 6 rate: 24
rate = 24
< —p

rate = 6
£ : Ej
i E:E:i
Feature map Feature map Feature map

Figure 4: Atrous convolution with kernel size 3 x 3 and different rates. Dilation rate = 1
represents a normal convolution. With higher rate the field of view gets bigger.

Atrous spatial pyramid pooling is basically the concept of merging information from
different scales. Atrous convolution of different rates is used together to get multi-scale
information, visualised in Figure 5. Which can help to classify objects of different sizes.

B rate = 18
FtE=g rate = 12 —
-
FEE
Dmog
0.0
— —

——

Input Feature Map

Figure 5: Atrous spatial pyramid pooling. When classifying the orange pixel in the middle,
information from multiple parallel filters of different rates are used together.

Atrous Spatial Pyramid Pooling

The loss function used in this implementation of the DeepLab-model was the categorical
cross-entropy loss function. It is defined as

= > yixlog, @)
where y; is the predicted value of y;.

More extensive and detailed information about the DeepLab model and its features are
available for further read [3, 10, 11, 12].

2.5 Overfitting

For a successful implementation of a machine learning model, like a CNN, the model must
be able to handle new unseen data. Not only the data that was used for training. Overfitting
occurs when the model get very low errors during training but high error during testing
[8]. The model recognizes features tied to the training data and struggles to generalize
features in order to perform well on new data. Generally if a model is to complex or the
data set is to small, the model can tend to overfit on that data.

2.6 Data augmentation

Generally the more samples in a data set, the better a model will perform. More images will
make it easier for the model to generalize features and reduces the chance of overfitting.
The task of generating thousands of unique images with corresponding labels is very time
consuming and sometimes several thousand images might not even be available. Data
augmentation is a method to generate more samples from existing data. Such as rotating,
flipping, color alterations etc. This is a way to artificially increase the size of the data set.
The new images will still be correlated to the original images, and more unique original
images is still superior. But it is a method proved to improve performance and decrease
the chance of overfitting [13].

2.7 Performance metrics

In a binary classification problem with either a positive label (a power line) or a negative
label (not a power line). The results of the model can be represented in a 2 x 2 confusion
matrix, as seen in Figure 6. The confusion matrix has four different values. True
positives (TP) are all the positive labels correctly classified as positive. False positives
(FP) are the negative labels incorrectly classified as positive. True negatives (TN) are all
negative labels correctly classified as negative and false negatives (FN) are positive labels
incorrectly classified as negative [14].

Positive Negative
(]
2 TP FP
‘B
O
[a W
g
= FN TN
©
oo
(]
=z

Figure 6: Confusion matrix from binary classification problem.

From the confusion matrix some performance metrics can be calculated. The accuracy

TP+TN

= ; o)
TP+TN+FP+FN

is the fraction of both positive and negative labels correctly classified. Further we have
precision

TP
P=— (6)
TP+ FP
and recall
TP
R=—" (7
TP+ FN

where precision is the fraction of positive labels that are classified correctly. And recall is
the fraction of positive labels that is found. In binary classification recall is also referred
to as sensitivity.

An inbalanced data set means that the distribution of positive and negative labels are
not evenly distributed. And in those cases appropriate performance measurements will
be important. For example, in an extreme case, where the positive labels only accounts
for 1% of the total data points. A bad prediction with only negative labels will get
99% accuracy. While precision and recall will give 0%. Therefore accuracy might be a
misleading measurement on inbalanced data sets.

2.8 Linear regression

Linear regression is a machine learning algorithm that aims to best fit all input data to a
linear function [8]. An example of linear regression is demonstrated in Figure 7. If § is
the predicted value of y and x is a vector of input data. Together with a vector of weights
w the linear output function can be defined as

§=wlx+b, (8)
where b is a bias term that allows the predicted lite to not pass through the origin.

In order to predict outputs y from inputs x the weights are improved. The weights are
improved by minimizing the mean squared error (MSE) given by

I PO
MSE = — Z(y Y)is ©)

where m is the number of inputs. MSE aims to minimize the total distance from all data
points to the line. The weights are improved in a way that reduces the MSE in order to
find the optimal line.

2.9 Centerline

The centerline of a polygon can be described as the line that flows through the center
of a polygon, as illustrated in Figure 8. The process of extracting the centerline can be
rather complex, but one method used, extracts the centerline with the help of Voronoi
diagrams [15], [16]. An example of a Voronoi diagram can be seen in Figure 9c. The
Voronoi Diagram is the polygon structure created when radially expanding circles from
several points as demonstrated in Figure 9a-c. When the points chosen are on the edges of
a polygon the intersections from the Voronoi diagram inside the polygon will somewhat
represent the centerline.

-3 ! 1 Il | 1

-1.0 =05 00 05 1.0

X

Figure 7: Linear regression with ten data points. The line is drawn to minimize the total
distance from all points to the line.

Figure 8: Red line represents the centerline of the polygon.

a) b) c)

Figure 9: Creation of Voronoi diagram. a) - b) Radial expansion of circles from selected
points. ¢) A Voronoi diagram

2.10 Visvalingam-Whyatt algorithm

In order to reduce the complexity of a line but keep the general shape M. Visvalingam
and J. D. Whyatt proposed an algorithm in an article "Line generalisation by repeated
elimination of points" [17]. Where the effective area of points of a line is calculated,
which is the area of the triangle of its neighbouring points, as shown in Figure 10. The
point with the smallest effective area is removed and the process is repeated until a certain
threshold is reached.

a) Qriginal Line b)

o\

Figure 10: The Visvalingam-Whyatt algorithm. a) The effective areas of different points
on a line, calculated by the triangle of their neighbouring points. b) The repeated removal
of points with the smallest effective area.

effective area of
the labelled point

3 Method

To understand how to approach this problem the process can be divided into three parts.
First and foremost the process of collecting and preparing images and data for the machine
learning model. Secondly the structure and handling of the model itself. And finally the
post process of the data i.e. how the output of the machine learning model can be used to
predict and estimate the coordinates of power lines. Python with the library Tensorflow
have been the platform used for implementing the DeepLab model [18]. And Python
together with the library OpenCV have been the base framework when handling images
[19].

3.1 Data selection

To build a data set large enough to properly train a neural network the most important
aspect was to generate images as easy and effective as possible. In order to get easy and
free access to a large amount of satellite images, Google Maps was chosen as the source of
all the images. Maps Static API is an API in Google maps where satellite images can be
downloaded with an HTTP request. Images with desired center coordinates, resolution,
zoom level (0-21+) etc. This approach enabled an easily generated data set of images. The
quality of the images was high enough to detect power lines with the naked eye and was
deemed sufficient for the task. Image quality on high zoom levels can differ depending
on location. Zoom level was decided simply by comparing images from different zoom
levels and see where power lines where most visible. Zoom level 18 was chosen since
power lines was often visible and image quality was the best.

With given coordinates of power line structures, images was downloaded evenly distributed
along the power line. The coordinates used to create the data set was very precise line
string coordinates of existing power line networks. Precise coordinates was preferable in
order to get more control in the data selection process. The best resolution available, with
Maps Static API, was images with 1280 x 1280 pixels. Therefore images was downloaded
along the power line divided in such a way that the best resolution would give a small
overlap to cover every part of the power line, demonstrated in Figure 11.

Figure 11: How images was collected with a small overlap to cover all parts of the power
line. Every rectangle is a image with resolution 1280 x 1280.

A control image was made in order to inspect that the power line was evenly divided and
properly covered. Figure 12 shows part of a control image, a zoomed out satellite image
over the power line network. Red line indicates the power line and blue markers indicate
the center coordinates of each image. The image was used to inspect that the power line
was evenly divided and properly covered before downloading images.

Figure 12: Visualisation of the center coordinates of each downloaded image distributed
along the power line. Red line marks the power line and blue dots marks the center
coordinates of each image.

3.2 Data set structure

To all satellite images a corresponding binary mask was created, the ground truth. The
ground truth was created as black and white masks. Basically semantic segmentation with
only two different classes. Black for background and white for power lines.

In order to create masks for all the images, an effective and automated approach was
important. When creating the ground truth data set we could again take advantage of the
precise power line coordinates. Each image was named after the coordinates of the center

10

pixel. The center coordinates together with the width and zoom of the image gave full
information to determine the coordinates for all pixels in the image. Every image and the
power line coordinates was converted to pixel coordinates. Each image was defined as a
square in the pixel coordinate plane, every power line that intersected the image square
could then be automatically drawn.

For each image, one mask and one control image was made. The mask was a black image
(same size as original image) with a white line drawn along the power line coordinates.
The control image was a copy of the original image but with a red line drawn, identical to
the mask, along the power line. This was used as a control to see if the coordinates was
good enough. The width of the line drawn was set experimentally to where it properly
covered the power line. In order to asses the quality of the masks and remove the bad ones,
all the control images was manually inspected to see if the power line was successfully
covered. An example of the data set structure can be seen in Figure 13.

a) b) c)

Figure 13: Structure of data set. a) Original image downloaded. b) Control image that
marks the power line from given coordinates. c¢) The corresponding mask that is the
ground truth.

Since the coordinates was converted from decimal degrees to world coordinates using the
Mercator projection, in equation 1 and 2. And then world coordinates to pixel coordinates
according to equation 3. There were some some rounding errors and small inaccuracies
present. Additionally Google Maps different map sections are not always merged correctly,
which could lead to disappearing and misaligned power lines, as demonstrated in Figure
14. Therefore even with exact coordinates, some power lines was not covered properly
with this method. But with the approach explained above approximately 67% percent of
the masks were produced automatically. The rest of the images where annotated manually
to further increase the size of the data set.

3.3 Preprocessing

The first step was to crop all the images and masks from 1280 x 1280 to 1200 x 1200 pixels
to remove unwanted text along the edges. Then each original image, and corresponding
mask, was divided equally into several smaller images following the power line, as illus-
trated in Figure 15. Since the power line coordinates in the image was known this could be
done automatically. This was done for several reasons. With smaller images some of the
irrelevant background could be removed to focus more on the region of interest. Therefore
remove areas where no power lines was present. Simultaneously large images will in

11

Figure 14: Example of an inaccurate representation of a power line in Google Maps.

general require more computer memory and be more time consuming when training the
model. And at the same time it would help to increase the number of images in the data
set. The smaller images produced had the resolution 400 x 400 pixels. It is hard to know
what image size would give best results. According to [20] increasing image size from
128 x 128 to 256 x 256 gave better performance for a segmentation task. But the exact
same model was not used and there might be an upper limit as well. At the same time it
would be unnecessary to classify areas we know are just background, since it will only
increase model training time. Trial and error is the only way to really know, but the time
available is limited.

a) b)

Figure 15: Visualisation of how a satellite image and corresponding mask was divided
into smaller images. a) Original image. b) Corresponding mask.

Directly downloading images with 400 x 400 resolution with Google Maps API would
give approximately the same data set but without the extra dividing step as described in
Figure 15. There are majorly two reasons why this approach was chosen. The number of
HTTP request done with Maps Static API decreases by a factor of three in this case. And
only a certain amount of HTTP requests are available for free. Secondly all the manual
inspecting and manual labeling could be done on the larger images before dividing them
into smaller ones. Therefore all the manual work could be divided by three. Additionally
this approach gives the flexibility to easily change the image size of the data set if needed.
In this project 136 masks was done manually. Without this approach approximately 408
masks had to be done manually.

12

In total 427 satellite images was downloaded with Maps Static API from different areas.
20 was removed because of bad quality. 271 images had automatically created masks.
After dividing into smaller images the total data set was 1674 images with resolution 400
x 400. Images was divided approximately into 88% training and 12% validation. Test
data was also collected separately from a completely different area.

3.4 Augmentation

In order to increase the size of the data set, some augmentation was done on the training
data. The augmentations used was a random brightness variation, horizontal flip and
random 90 degree rotation. With all three augmentations, 4413 additional images was
added to a total of 5884 images in the training data set.

3.5 DeeplLabv3+

A reduced version of DeepLabv3+ was implemented on the created data set. The model
was reduced in order to not exceed memory capacity on the laptop used. The computer
memory was an issue when processing thousands of images with a complex model. With
reduced dimensionality and reduced batch size the Deeplabv3+ model could properly
run on a laptop with this data set. The final model trained with 50 epochs and took
approximately 72 hours. Accuracy and loss for training and validation was plotted during
the training of the model.

The imbalance of the data is relatively large. Which means the distribution of white and
black pixels are not even, since the majority of the data is actually background (black
pixels). Therefore it is important with appropriate performance measurements. True
positivies, true negatives, false positives and false negatives was extracted from the output
data. Then precision and recall could be calculated to get a performance measurement
better representing an imbalanced data set.

3.6 Coordinate extraction

In the post processing the output data of the deep learning model was analyzed in order
to extract linestring coordinates. The expected output data from the model is black and
white masks, where the white pixels are identified as power lines. In order to process this
information it is convenient to refer the white pixels to clusters or polygons. The goal in
this process is to find one or multiple lines that represent the shape of the cluster/polygon
to extract linestring coordinates. In order to convert output images back into coordinates
some alternatives was investigated.

Some pre-processing of the output data was done. Small clusters was removed in order to
reduce noise and get cleaner images. Since the output could significantly vary in shape
and appearance multiple methods might be needed. Since power lines in general represent
lines, linear regression was applied to find a general direction of white clusters in the data.
Since the linear regression gives us a line, this would be an easy and attractive method if
the results was good.

On the other hand if there was an intersection or curve present another approach was
needed. If the contours of the white clusters was identified, they can be seen as polygons.

13

With polygons we could extract the centerline and find the general direction of the polygon
regardless of the shape. But the centerline extracted with the use of Voronoi diagrams will
be very complex with possibly hundreds of coordinates defining the line. Therefore a line
simplification algorithm, the Visvalingam-Whyatt algorithm, was introduced to simplify
the centerline while the general shape was preserved. With the goal of finding the general
"flow" of the polygon with the most simple line possible. The regression and centerline
method was both tested on the validation data set. For extracting and simplifying the
centerline the libraries Centerline [21] and Simplification [22] was used.

More measurements was done in order to determine if the predicted centerline, and
regression line, properly covered the actual power line. After a line was predicted it was
analyzed to see if the centerline was contained inside the white cluster of the ground truth.
All predicted lines produced was compared to the ground truth data in the validation
data set. The total length of the line was measured, together with the length of the line
contained inside the white mask. This way we could calculate what percentage of the line
that actually was on the power line.

14

4 Results

Section 4.1 will present samples of segmented output images from the DeepLab model.
Section 4.2 covers model performance and section 4.3 show results from the two proposed
coordinate extraction methods.

4.1 Model output data

Following images shows input images to the left, output images to the right and an overlap
image in the middle.

Figure 16 shows some good examples of output data from the model from the test data set.
And Figure 17 is representing some good results from the validation data set. The images
from the test data set in Figure 16 was taken from a completely different location than
the training and validation data to ensure minimal bias. The white pixels are classified as
power line, and black pixels as background.

a) c)

Figure 16: A subset of good results from the test data set. Images in column a is input
images to the model. Images in column c is the output images. Column b is an overlap
between input and output images.

) b) 0)

Figure 17: A subset of good results from the validation data set. Images in column a is
input images to the model. Images in column c is the output images. Column b is an
overlap between input and output images.

Figure 18 shows some bad results from the model, from both test and validation data set.

16

Figure 18: A subset of bad results from both validation and test data set. Images in column
a is input images to the model. Images in column c is the output images. Column b is an
overlap between input and output images.

4.2 Model performance

Figure 19 shows the training accuracy of the simplified DeepLab model developing over
50 epochs. Figure 20 shows the validation accuracy of the same model over 50 epochs.

Training Accuracy

BCCUracy

o 10 20 30 4an 50
epoch

Figure 19: Training accuracy of the DeepLab model during 50 epochs.

17

Validation Accuracy

0.88

¥

0.84 1

| 082

val accurac

0.78 1

20 30 40 50
epoch

(=]
=
=

Figure 20: Validation accuracy of the DeepLab model during 50 epochs.

Figure 21 shows the training loss from the model over 50 epochs of training. Figure 22
shows the validation loss during training of the same model. The loss was calculated using
the categorical cross entropy loss function, from equation 4.

Training Loss

loss

20 30 40 50
epoch

(=]
=
=

Figure 21: Training loss of the DeepLab model during 50 epochs.

Validation Loss

0 10 20 30 40 50
epoch

Figure 22: Validation loss of the DeepLab model during 50 epochs.

Table 1 represents a confusion matrix on the validation data. Each value is divided by the
total amount of data points in their corresponding true class. Table 2 shows the calculated
precision and recall on the validation data set.

Predicted class

Positive Negative
Positive 0.31 0.69
True class
Negative 0.03 0.97

Table 1: Confusion matrix on validation data. 31% of white pixels where correctly
classified as white and 69% was classified as black. 97% of black pixels where classified
correctly as black and 3% was classified as white.

Precision Recall
67% 31%

Table 2: Precision and recall on validation data set. The recall also corresponds to top left
value of the confusion matrix.

4.3 Coordinate extraction

Figure 23 shows some of the results using linear regression to extract linestring coordinates
from the output data. And Figure 24 is the same images but the results using centerline
together with the line simplification algorithm. White clusters is the output from the
validation data. And the red line represents the predicted line.

Results of power line coverage of both coordinate extraction methods are represented in
Figure 25. Power line coverage is how many percent of the predicted line that is on top of
the actual power line. Each column represents a 10% interval, starting from 1-10% and

19

N\,

Figure 23: Examples of linear regression on output images to identify coordinates of

"
N

Figure 24: Results from the centerline and line simplification method on output images.
Top row shows the calculated centerline. Bottow row shows the simplified centerline to
capture the general shape of the centerline.

ending at 90-100%. The number of predicted lines in each interval is shown at the top of
each column. The mean coverage using linear regression was 0.56. The mean coverage
using centerline was 0.67.

Regression Centerline

92 105

1] 57

41

Mumber of images
Mumber of images

20

0.0 0z 0.4 0.6 08 10 00 0z 04 06 08 10
Power line coverage Power line coverage

a) b)

Figure 25: The number of predicted lines with different power line coverage. a) Line
coverage of each image using linear regression. b) Line coverage of each image using
centerline.

20

5 Discussion

5.1 Model output data

When there are a power line clearly visible the model tend to classify that pretty accurately.
On the other hand, there is generally a clear trend, what images get bad results. When the
power line is either hidden (by trees or shadows) or not visible in contrast to the ground,
the model performs very bad. Even if it is distinguishable by the shadows or the power
line poles. Other linear structures such as road boarders might also be falsely classified
as a power line. Therefore clear linear features seems to be important for the model when
identifying power lines. This should maybe not be a surprise, the non visible power lines
is obviously harder to identify. But at the same time there are a lot of them covered by
trees. Which clearly will be a problem.

There might be a problem with low representation of those images in the data set. And an
increased data set with more non visible power lines could likely improve those results. Or
another approach could be to sample images with bad results too increase the training on
those images. Bad image quality might also be a reason. Since image quality in Google
Maps may differ depending on location and might directly affect the visibility of power
lines. If it is possible to find information about image quality, that information could be
used to weight predictions from high quality images higher. Or simply not use bad quality
pictures at all if possible, but that might result in not enough data instead.

The appearance of power lines from above can differ a lot. There might even be conflicting
characteristics that make it hard for the model to put them all under the same label. One
suggested solution would be to add one more label to the data set. That is the non-visible
power lines. So the model could label visible and non-visible power lines differently. Then
it might be easier for the model to find features specifically for non-visible power lines
and classify them correctly. Getting satellite images from a different season to increase
the visibility in the forest and in contrasts to the ground might also be worth looking into.

5.2 Model performance

The training and validation accuracy was both relatively high when training the model.
Important to understand what accuracy in this instant actually means. Since accuracy
measure the classification accuracy for both black and white labels the results can be
misleading. Since the data is imbalanced and the majority of labeled pixels are the
background pixels, the accuracy favors the prediction for black labels. That is probably
the reason for the high validation accuracy, already in the first epoch, in Figure 20. Since
the prediction of all black pixels will still yield a relatively high accuracy. The precision
of the model, calculated to 67%, seems to be a much better representation of the models
actual performance. Since the precision measures how many of the pixels labeled white
that was labeled correct. And the white labels actually carries the information that is
needed.

While training and validation accuracy is relatively high and increases during the training
process, seen in Figure 19 and 20. The validation loss function from Figure 22 is also
increasing during the training process, while preferably it should decrease similar to the
training loss in Figure 21. This can indicate some issues with the model. It can be a

21

sign of overfitting to the training data. Where the model have a hard time generalizing
features and only performs well on the training data. And from the output images this
is at least partly true. As discussed above, the model struggles to generalize the features
of non-visible power lines. But again the measure of accuracy can be misleading and
might exaggerate the indication of overfitting. The DeeplabV3+ model was used with
21 different classes, so even if the model was slightly simplified for this project, it might
still be to complex for its original purpose. More experiments on model parameters and
especially an addition of data samples should be implemented to get further insight in this
issue.

The confusion matrix give interesting insight of the model. We can see that only 31% of
white pixels was classified correctly. And only 3% of black pixels where falsely labeled
white. This can be seen as that the model is very careful, it conservatively classifies power
lines, but when it does the majority is correct. But importantly to remember that this is
a measure over all images, so one single image can still have all classified white labels
wrong. But worth noting that all white pixels does not need to be found to get a very good
prediction. For example if only 1% if white pixels are found in a specific image. If that
1% represents a one pixel wide line through the middle of the power line. We still have
a very good prediction of the power line. But in general the confusion matrix shows that
the model tends to preferably label pixels as background.

5.3 Coordinate extraction

With a straight line cluster present in the result, linear regression is an easy and effective
solution to extract linestring coordinates from the output data. But as shown in the result,
it is not consistent in all situations. The centerline method can handle more complex
shapes and define the general shape of individual clusters, but not the relation between
them. Centerline might therefore ignore useful information available, but handle complex
shapes. While linear regression can determine the relations between all available clusters
but generalize to much.

With the measure of "line coverage" we can get further insight on both the quality of the
segmented output data, and the coordinate extraction method. In both methods we can
see, from Figure 25, that most predictions are either completely on top of the power line,
or completely outside. Output data containing only black pixels, or too few white labels to
find a line at all, is included as 0% coverage. And the centerline method seem to generally
better cover the power line, but not much of a difference. The results here are closely
related to the output images from the model. With very good results from the model you
get 100% line coverage, and with very bad results you get 0%.

The coordinate extraction process heavily depends on the quality of output data from the
model. Noisy and inaccurate data will heavily punish the extraction method. So for now
the model seems to be the biggest bottle neck for the process. To increase the performance
of the pipeline more focus is needed on the segmentation process. At the same time,
complex shapes such as intersections and T-sections might get weird results using this
extraction method, even with good input data.

Worth noting is that there might be a small bias towards 100% coverage in the line coverage
measure from the extraction methods. The regression and centerline methods only predicts

22

a line that is proportional to the size of the clusters or polygons. With very small clusters
a very short line can be produced that does not give good information of the direction of
the power line, but the coverage might still be 100%. It is an edge case worth noting but
should not affect the results in a meaningful way.

A combination of centerline and regression might be an idea to look further into. But for
it to work somewhat consistently there need to be a way to determine when to use what
method. Something that is not too trivial. There might also be an idea to evaluate and
handle different sizes of clusters differently. Another idea is to use the available power line
coordinates, that was used to retrieve the images. Even though they might not be exact
coordinates, they may at least help to narrow down the search area or give an idea of the
direction of the power line. This will help to remove false positives (wrong white pixels)
and get a higher prediction accuracy.

6 Conclusions

The use of semantic segmentation to identify power lines in satellite images seems to be a
promising approach to identify power lines. The model can, with visible power lines, give
a good estimation of their coordinates. Some work need to be done to further develop the
model based on DeeplabV3+.The data set used is much smaller than the general standard.
Increasing the data set should result in better performance and help the model to better
generalize the characteristics of a power line. And also help to increase the accuracy on
images where power lines are not clearly visible. Even if current method is not proficient
enough to accurately identify an entire power line network. It shows that parts of a power
line can be accurately identified.

The two methods proposed to extract linestring coordinates can get good results given
good output data from the model. And even if the recall is relatively low, meaning not the
entire power line is found, the prediction can still be very good. The centerline method
shows slightly better result but might not use all available information in the best way. A
combination of both methods could be a reliable method looking further into. More work
in this area is needed in order to handle complex shapes such as intersections and multiple
power lines in the same image. But the results show that this workflow is possible. Given
a satellite image, with power lines present, you can find and extract coordinates to identify
the true location of the power line.

7 Future work

In future work it would be very interesting to further investigate how to combine results
from multiple images to properly identify an entire power line network. And see if
missing data can be properly guessed with the use of neighbouring images. It would be
very interesting to find out what percentage of images that need a good result to get a good
estimation of the entire power line structure investigated.

The assistance of known power line coordinates, in the coordinate extraction methods,
could be used to further improve results even though the existing coordinates are not
exact. This could help in the process of removing noise and false positives to get a better

23

prediction. For example predicted lines that are in the completely wrong direction can be
ruled out.

The expansion to a larger data set is one of the most important aspects in order to further
improve on this method. Both more unique images and more augmentations could be
added. With a better computer, the non simplified version of DeepLab could run properly.
The full capacity of DeepLab together with an expanded data set would be the first obvious
step to seek further improvement.

24

References

[1]

(2]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Energiforetagen, “Elnitets lingd,” 2022. https://www.energiforetagen.
se/energifakta/elsystemet/elnatet--distribution-av-el/
elnatets-langd/ (2022-05-12).

L. Shapiro and G. Stockman, Computer Vision. Prentice Hall, 2001.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder
with atrous separable convolution for semantic image segmentation,” CoRR,
vol. abs/1802.02611, 2018. http://arxiv.org/abs/1802.02611 (2022-03-11).

Google, “Maps static api,” 2022. https://developers.google.com/maps/
documentation/maps-static/start (2022-06-05).

Brittanica, “Mercator projection,” 2018. https://www.britannica.com/
science/Mercator-projection (2022-05-29).

Google, “Map and tile coordinates,” 2022. https://developers.google.com/
maps/documentation/javascript/coordinates (2022-06-05).

Google, “Showing pixel and tile coordinates,” 2022. https:
//developers.google.com/maps/documentation/javascript/examples/
map-coordinates (2022-06-05).

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org (2022-05-07).

A. Lindholm, N. Wahlstrom, F. Lindsten, and T. B. Schon, Machine Learning - A
first course for engineers and scientists. Cambride University Press, 2021. http:
//smlbook.org/book/sml-book-draft-latest.pdf (2022-05-22).

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic
image segmentation with deep convolutional nets and fully connected crfs,” 2014.
https://doi.org/10.48550/arxiv.1412.7062 (2022-03-11).

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” CoRR, vol. abs/1606.00915,2016. http://arxiv.org/abs/
1606.00915 (2022-03-11).

L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous convolution
for semantic image segmentation,” CoRR, vol. abs/1706.05587, 2017. http://
arxiv.org/abs/1706.05587 (2022-03-11).

F. Chollet, Deep Learning with Python. Manning Publications Co., 2018.

L. A.Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data—recommendations
for the use of performance metrics,” in 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction, pp. 245-251, 2013. 10.1109/
ACITI.2013.47 (2022-05-01).

25

https://www.energiforetagen.se/energifakta/elsystemet/elnatet--distribution-av-el/elnatets-langd/
https://www.energiforetagen.se/energifakta/elsystemet/elnatet--distribution-av-el/elnatets-langd/
https://www.energiforetagen.se/energifakta/elsystemet/elnatet--distribution-av-el/elnatets-langd/
http://arxiv.org/abs/1802.02611
https://developers.google.com/maps/documentation/maps-static/start
https://developers.google.com/maps/documentation/maps-static/start
https://www.britannica.com/science/Mercator-projection
https://www.britannica.com/science/Mercator-projection
https://developers.google.com/maps/documentation/javascript/coordinates
https://developers.google.com/maps/documentation/javascript/coordinates
https://developers.google.com/maps/documentation/javascript/examples/map-coordinates
https://developers.google.com/maps/documentation/javascript/examples/map-coordinates
https://developers.google.com/maps/documentation/javascript/examples/map-coordinates
http://www.deeplearningbook.org
http://smlbook.org/book/sml-book-draft-latest.pdf
http://smlbook.org/book/sml-book-draft-latest.pdf
https://doi.org/10.48550/arxiv.1412.7062
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
10.1109/ACII.2013.47
10.1109/ACII.2013.47

[15] X. Bai, Z. Zhu, P. Zou, J. Chen, J. Yu, and Y.-W. Chang, “Voronoi diagram based
heterogeneous circuit layout centerline extraction for mask verification,” in 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 172—
177,2022. 10.1109/ASP-DAC52403.2022.9712516 (2022-05-16).

[16] C. Chen, X. Mei, D. Hou, Z. Fan, and W. Huang, “A voronoi-diagram-based method
for centerline extraction in 3d industrial line-laser reconstruction using a graph-
centrality-based pruning algorithm,” Optik, vol. 261, p. 169179, 2022. https:
//doi.org/10.1016/j.1jleo.2022.169179 (2022-05-16).

[17] M. Visvalingam and J. D. Whyatt, “Line generalisation by repeated elimina-
tion of points,” The cartographic journal, vol. 30, pp. 46-51, 1993. https:
//hull-repository.worktribe.com/output/376330 (2022-05-10).

[18] M. A.etal., “TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015. tensorflow.org (2022-03-27).

[19] G. Bradski, “The OpenCV Library,” 2000. https://opencv.org/ (2022-02-01).

[20] O. Rukundo, “Effects of image size on deep learning,” CoRR, vol. abs/2101.11508,
2021. https://arxiv.org/abs/2101.11508 (2022-05-15).

[21] F. Todié, “Centerline,” 2014. https://centerline.readthedocs.io/en/
latest/index.html (2022-04-11).

[22] S. Hiigel, “Simplification,” 2021. https://github.com/urschrei/
simplification (2022-04-20).

26

10.1109/ASP-DAC52403.2022.9712516
https://doi.org/10.1016/j.ijleo.2022.169179
https://doi.org/10.1016/j.ijleo.2022.169179
https://hull-repository.worktribe.com/output/376330
https://hull-repository.worktribe.com/output/376330
tensorflow.org
https://opencv.org/
https://arxiv.org/abs/2101.11508
https://centerline.readthedocs.io/en/latest/index.html
https://centerline.readthedocs.io/en/latest/index.html
https://github.com/urschrei/simplification
https://github.com/urschrei/simplification

	Introduction
	Purpose
	Deliminations

	Background
	Coordinate systems and zoom level
	Convolutional Neural Networks
	Semantic segmentation
	DeepLabv3+
	Overfitting
	Data augmentation
	Performance metrics
	Linear regression
	Centerline
	Visvalingam-Whyatt algorithm

	Method
	Data selection
	Data set structure
	Preprocessing
	Augmentation
	DeepLabv3+
	Coordinate extraction

	Results
	Model output data
	Model performance
	Coordinate extraction

	Discussion
	Model output data
	Model performance
	Coordinate extraction

	Conclusions
	Future work

