

Civilingenjörsprogrammet i system i teknik och samhälle

Uppsala universitets logotyp

UPTEC STS 22028

Examensarbete 30 hp
Juli 2022

Labelling Customer Actions in
an Autonomous Store Using
Human Action Recognition
Oskar Areskog

Fel! Hittar inte referenskälla.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala

Handledare: Abrie Cronje Ämnesgranskare: David J.T. Sumpter

Examinator: Elísabet Andrésdottir

Uppsala universitets logotyp

Labelling Customer Actions in an Autonomous Store Using
Human Action Recognition

Oskar Areskog

Abstract
Automation is fundamentally changing many industries and retail is no exception. Moon-

shop is a South African venture trying to solve the problem of autonomous grocery stores

using cameras and computer vision. This project is the continuation of a hackathon held

to explore different methods for Human Action Recognition in Moonshop’s stores.

Throughout the project a pipeline for data processing has been developed and two types

of Graph-Convolutional Networks, CTR-GCN and ST-GCN, have been implemented

and evaluated on the data produced by this pipeline. The resulting scores aren’t good

enough to call it a success. However, this is not necessarily a fault of the models. Rather,

there wasn’t enough data to train on and the existing data was of varying to low quality.

This makes it complicated to justly judge the models’ performances. In the future, more

resources should be spent on generating more and better data in order to really evaluate

the feasibility of using Human Action Recognition and Graph-Convolutional Networks

at Moonshop.
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet. Utgivningsort Uppsala. Handledare: Abrie Cronje, Ämnesgranskare: David J.T. Sumpter, Examinator: Elísabet Andrésdottir

Populärvetenskaplig sammanfattning
Automatisering har varit framtidens melodi ett tag nu i och med att fler och fler företag
och industrier väljer att byta ut mänskliga resurser mot maskiner. Mat- och varuhan-
delsindustrin är inte ett undantag. Allt fler affärer byter ut bemannade kassor mot
självscanningslösningar för att öka antalet kunder varje anställd kan hantera. Varför
stanna vid självscanning? I takt med att AI utvecklas börjar en framtid skådas där den
mänskliga faktorn vid en transaktion helt är obsolet.

Moonshop är ett sydafrikanskt företag som jobbar med att lösa autonom shopping på
ett billigare sätt en de storskaliga lösningar som finns på marknaden idag. Målet är att
bygga ett system för autonom shopping som endast använder ett fåtal filmkameror och
på så sätt möjliggöra för implementering där vinstmarginalerna är lägre.

Det här projektet har tagit avstamp i ett hackathon Moonshop höll och har försökt
utvärdera hur möjligt det är att kategorisera kunders handlingar i en butik med hjälp av
ett par AI-modeller. Den största delen av projektet ägnades åt att bygga en pipeline för
att genera de dataset som används vid träning av modellerna. Övrig tid har gått åt till att
implementera, träna och utvärdera olika variationer av två modeller.

Modellerna som undersökts faller inom det fältet människo-handlingsigenkänning (hu-
man action recognition, egen översättning), eller HAR, och det mindre fältet graf-
konvolutionerande nätverk (graph convolutional networks, egen översättning), eller
GCN. HAR innefattar alla typer av maskininlärning och AI som försöker identifiera
mänskliga handlingar och GCN är de modeller som gör det med grafen av ett mänskligt
skelett som indata. GCN är en specialisering av den mer använda modelltypen konvo-
lutionerande neurala nätverk (convolutional neural networks, egen översättning), eller
CNN, och är alltså en typ av neurala nätverk.

Spatial Temporal Graph Convolutional Network, eller ST-GCN, är en modellarkitektur
som introducerades 2018 och visade lovande resultat jämfört med dåvarande, konkur-
rerande modeller. Genom att behandla en sekvens av grafer som representerar ett
mänskligt skelett i rörelse som en bild och skicka den genom en arkitektur liknande
de i CNN-modeller gick det att med hög precision identifiera mänskliga handlingar.
Channel-wise Topology Refinement Graph Convolutional Network, eller CTR-GCN,
som introducerades 2021 bygger på och vidareutvecklar arkitekturen som presenterades
med ST-GCN. Utvecklarna insåg att ST-GCN missar potentiellt relevant data genom att
endast jämföra avstånd mellan noder som är bredvid varandra enligt skelettet. Genom att
bygga in funktionalitet för att jämföra alla noder med varandra oavsett skelettförhållande
lyckas de få ännu högre precision än ST-GCN. Ett exempel händerna som inte är bredvid
varandra enligt skelettet men vars avstånd kan säga mycket om vilken handling som
utförs.

Den råa data som fanns att tillgå existerade i form av JSON-data på en molndatabas
och tre tillhörande videos på en annan. Varje JSON-video par representerar en kunds
session i butik. Videorna visar kunden från olika vinklar i butiken och JSON-datan, som
är handkategoriserad, innehåller information om vilka handlingar kunden utfört och vid
vilka tillfällen. En handling är i det här fallet att antingen ta en vara från hyllan eller
lägga tillbaks en. Pipelinen ingesterade denna data och matade ut ett samlat dataset med
skelett-grafer på både handlingar och icke-handlingar. För att säkerställa att datan är
fullständig görs en del kontroller under vägen. Det kontrolleras att videorna är synkade,
att det inte är mer än en människa i bild under videons gång och att skeletten som hämtas
håller någon form av kvalitet. På de segment där inga grafer lyckats utläsas placeras
en graf med hjälp av extrapolering. Skeletten läses ur varje bild i filmen med hjälp av
Googles pose-estimator MediaPipe Pose.

Modellerna tränades i olika variationer för att undersöka om hyperparametrarna har
någon betydande påverkan. De hyperparametrar som experimenterades med är batch-
storlek på indata och antalet grundkanaler i modellernas olika lager. Även effekten av
att lägga graferna från alla tre videovinklar på varandra undersöktes. Det något un-
derväldigande resultatet visar att ingen av modellerna presterar på en nivå där de kan
implementeras problemfritt och effekten av att använda alla videovinklar på en gång är
inte konsekvent nog att dra någon slutsats av. Det konstateras dock att detta inte behöver
bero på modellerna utan att det lika väl kan vara en effekt av datasettet.

Datasettet lider många brister som inte har kunnat åtgärdas inom ramarna för det här
projektet och det påverkar givetvis resultatet. Till att börja med var en stor del av
den råa datan av för dålig kvalitet för att kunna användas ordentligt. Det ledde till att
många datapunkter var tvungna att slängas och att många av de som användes är av
bristande kvalitet. Ett annat problem var att det inte fanns någon tillräckligt bra pose-
estimator för de rådande förutsättningarna att tillgå. Begränsningen till bara en person i
bild åt gången reducerade antalet potentiella datapunkter ytterligare och de skelett som
utlästes från bilderna var ofta kraftigt förvrängda. Till slut och delvis på grund av de
ovanstående problemen blev datasettet för litet. Endast 1570 sekvenser av handlingar
och icke-handlingar lyckades utläsas och det är för få för att säkert kunna träna en modell.

Med det sagt bör inte resultatet främst skyllas på dålig data. En mer uttömmande
undersökning av den data som fanns att tillgå i början av projektet hade kunnat upptäcka
problemen i förväg. Projektets mål hade då kunnat formuleras på ett sätt som varit mer
realistiskt att uppnå. Detta är en viktig lärdom att ta med till framtida projekt. Frågan är
om målet Moonshop önskar att uppnå ens är möjligt. Att försöka identifiera så komplexa
handlingar med den begränsade data några videoströmmar kan ge är ett enormt svårt
projekt. Det är möjligt att det aldrig kommer kunna lösas perfekt. Frågan blir då en
fråga om affärer: går det att göra den tillräckligt bra för att handlaren ska kunna spara
mer på implementation än vad hen förlorar på svinnet av dess ofullkomligheter?

Acknowledgements
This project and report is dedicated to Pieter Boon, a truly marvellous and generous man
who were taken from us way too soon. Thank you for showing me Cape Town, Pieter!

I would like to thank everyone at Cape AI and Moonshop for the warm welcome, support
and amazing memories you’ve all given me. Specifically I’d like to thank Byron, Abrie
and Geoffrey for guiding me through this project.

I would also like to thank David J.T. Sumpter for always providing a sense of security
and clear guidance during our meetings.

Contents
1 Introduction 1

1.1 Limitations . 2
1.2 Essay Layout . 2

2 Methods 3
2.1 Data Preparation . 3

2.1.1 Raw Data, Pre-processing and Gathering 3
2.1.2 Cleaning . 4
2.1.3 Extracting . 5
2.1.4 Storing . 8
2.1.5 Formatting . 9

2.2 Model Training . 10
2.2.1 Models . 10
2.2.2 Training . 13
2.2.3 Evaluation . 15

3 Results 16
3.1 Data Preparation . 16
3.2 Training . 18
3.3 Testing . 21

4 Conclusions 21

References 24

Appendix A 25

Appendix B 26

Uppsala University 2022

1 Introduction
Automation has been the story of the future for quite some time now as more and
more industries and businesses change human resources for machines. Some people
welcome this development with optimistic, open arms while others, often afraid to loose
their work, watch it with growing unease and nostalgia for the days before. However,
regardless of one’s attitude towards this change the fact seem to remain that it’s here to
stay and will be hard to slow down or reverse. (Heller and Savargaonkar 2021)

Retail and grocery stores are not different to any of the other industries in this sense.
Anecdotally it’s been noticed that more and more stores adapt self-checkout systems in
order to increase the amount of customers each personnel can manage. But why stop
there? With better computers and development in machine learning, a future where the
human element of shopping is completely eliminated becomes more and more feasible.
(PYMNTS 2021)

Moonshop is a venture from the South African consultancy firm Cape AI that aims
to solve the challenge of autonomous shopping in a cost-effective way. The goal is to
develop a completely autonomous shopping system reliant only on cameras and machine
learning. The possibilities such a system creates are many: for example, in a diverse
country like South Africa it could mean being able to open many small stores close to
poorer communities while in a country like Sweden, where labour is more expensive, it
could mean providing a dying countryside with affordable and accessible grocery store
options without exposing the vendor to too much financial risk.

In 2021, Moonshop held a hackathon in order to crowd source options for their Human
Action Recognition systems. The contestants got a curated dataset of skeletal keypoints
- keypoints with coordinates representing a human skeleton, see section 2.1.3 for further
explanation - representing humans reaching into a shelf with groceries. The goal was to
implement an AI model that labels whether the skeleton actually reaches for the shelf or
not. (Zindi 2021) One of the winning submissions applied a model introduced in 2021
called Channel-wise Topology Refinement Graph Convolutional Network, or CTR-GCN
(Chen et al. 2021). This model showed a lot of promise and did fit into Moonshop’s
already existing and preferred architecture.

This project builds upon the results of that hackathon. The aim is to further explore
whether the CTR-GCN model is suitable for Moonshop using more realistic, less curated
data; thus making it a more realistic scenario. In order to do this, a pipeline for data
processing had to be developed. CTR-GCN and a more basic model named ST-GCN
was then trained with and evaluated on the datasets generated from this pipeline. More
than just training models, a hypothesis that it would improve performance to train the
models on data compounded from several video feeds of the same action was also tested.

1

Uppsala University 2022

To specify, the goals of this project are:

• Develop a pipeline for data processing

• Train and evaluate CTR-GCN and ST-GCN models

• Determine if compounded datasets from several video feeds produce better models
than datasets from single video feeds.

1.1 Limitations
Some limitations were applied in order to make the project doable. The biggest one
were the choice to not distinguish between different types of actions (take or put) in the
dataset. There are some motivations behind this decision.

Firstly, differentiating between them would increase the complexity a lot. It’s not obvious
even to a human eye whether a skeleton takes something from a shelf or puts something
back without more information. There are AI models for extracting this information -
eg. an object-in-hand estimator determining whether the hand holds something before
and after the action - but finding and implementing these would’ve taken too much time.
This was the intention at the beginning of the project but became unfeasible towards the
end.

Secondly, the dataset wasn’t big enough to divide into more classes. As will be evident
in section 3, the biggest dataset extracted only held 1570 samples evenly distributed
between actions and non-actions. Splitting the actions-half in two would further reduce
the amount of data each model has to learn from.

Another limitation is how many variations will be explored. Due to time restraint this
is a lower number than one could wish for. Because of this, the focus will be on the
CTR-GCN model (introduced in section 2.2.1) with the big dataset (introduced in section
2.2.2) and only limited tests will be arranged for the other model and dataset.

1.2 Essay Layout
Section 2.1 details the data processing pipeline and the datasets created from it. Section
2.2 goes into details about the models being tested, how they are trained and then
evaluated. Section 3 will then show some examples of the data together with evaluation
scores for all trained models and test scores for some chosen models. Section 4 will
reason around some of the difficulties and problems and draw conclusions based on
the results. Finally, Appendix A is a short dictionary explaining some of the terms
introduced in the report and Appendix B is a collection of the graphs related to section
3.3 and 3.2.

2

Uppsala University 2022

All code referenced to in this paper can be accessed (with the right credentials) on
GitHub. 1

2 Methods
This section will detail the different methods and techniques applied in the project.
Subsection 2.1 will detail the methods used in the data preparation stage; the stage that
preoccupied most of the time of the project. Each step from data gathering to final
formatting will be covered. Subsection 2.2 will introduce the model architectures used
and detail the training and evaluation methods applied.

All development was done on MacOS. The code is written in Python 3.X using either
Microsoft Visual Studio Code or Google Colab.

2.1 Data Preparation
This section will detail the different methods and steps used it the data preparation
step. Section 2.1.1 describes the shape of the raw data, how to access it and some
pre-processing done before gathering it. Section 2.1.2 introduces some problems with
the raw data and the methods applied to address them. Section 2.1.3 will go into details
of the data relevant to extract and how it its extracted while section 2.1.4 introduces the
way in which the refined data is stored. Finally section 2.1.5 will describe how the final
presentation of the data before using it should be formatted and how it is stored.

2.1.1 Raw Data, Pre-processing and Gathering

Moonshop had three operating stores before the project start so there was a database
of historic, labelled data to collect. However, the data is split and stored in a way that
makes it incompatible for the intended use case; training Graph-Convolutional Neural
Networks. Therefore, this data is considered raw.

The raw data stored by Moonshop details customer’s visits in the stores. Each customer’s
visit is called a basket. Thus, the data is stored as unique baskets. When a customer
enters a store, a new basket with a unique basket-id is created. Data about the basket is
gathered until the customer leaves the store. Each basket is stored as two separate parts
on two separate databases: videos are stored on Amazon Web Services, or AWS, and a
dictionary of data is stored on Google’s Firebase. These are linked via the basket-id. In
both cases an id unique to the store (the physical location) and one unique to the vendor
(the owner of the store) is stored with the data as well. See figure 1 reference.

1https://github.com/arescout/MastersProject

3

Uppsala University 2022

Figure 1: Structural relation of the data

Each basket has three videos connected to it. These videos show the same sequence from
different angles. What angles are showed depends on which store the footage is taken in
but in all cases the cameras were positioned in a corner of the store’s room, looking down
on the customer. The dictionary related to the basket holds a lot of information relevant
for different parts of operations. Relevant for this project is start and stop timestamps as
well as timestamps for each action present in the basket. An action is a customer either
taking something from a shelf or putting something back on the shelf. As mentioned
in sec 1.1, this project will not distinguish between the different types of actions. The
actions are manually labelled during the running of the store.

The data is gathered by first deciding which baskets to download, or pre-processing the
baskets. This is done by accessing the database of dictionaries and fetching all with
more than zero actions. Here, it’s possible to decide which stores one wishes to look at
and could, for example, leave one out if the data from that store is deemed too unreliable
to use. After they’re fetched, the start time of each basket is compared to the stop time
of every other basket in the same store. This is done in order to remove any overlapping
baskets. The reasons for removing overlapping baskets will be discussed in section 2.1.2.
The selection of baskets resulting from the process described is then saved for future
access. This is done by saving all the basket-ids locally to a text-file.

Downloading baskets are done separately from the pre-processing. The download script
takes any text-file with basket-ids as input, connects to AWS and Firebase and downloads
the dictionary and all three videos. These are then stored locally to different folders and
identified by being named the basket-id (and camera number if it’s a video, the numbers
being 1, 2 or 3).

2.1.2 Cleaning

The raw data has two main issues that needs to be sorted out before extracting the relevant
features from it. The first issue stems from faults in the dataset while the second stems

4

Uppsala University 2022

from a limitation in the applied techniques.

First, it is not guaranteed that all three videos are in sync with each other. This is because
the videos from the stores can be distorted due to connectivity issues during operations.
The distortion affects both video synchronization and footage quality. This issue is
solved by comparing the number of frames extracted from each video (see section 2.1.3
for a description of the extraction), i.e. the length of each, and making sure that they are
all within one second of each other. While this comparison being true is not a guarantee
of the videos being synced it is assumed that if they are about the same length they
should show the same thing. Other techniques for assuring sync were explored - e.g. a
text-reader model was implemented to read and compare the timestamp visible in each
video - but the distortion was simply too bad to get any reliable way of comparing videos
out of these. In many of the cases the distortion made the timestamp unreadable and the
problems with synchronization affected the timestamps as well in an unpredictable way,
rendering them unusable even if they were reliably readable.

Second, the pose estimator - the model used for extracting keypoints - used in section
2.1.3 only works with one person in frame. This is the reason for checking for any
overlapping baskets as described in section 2.1.1. This issue is addressed in two ways.
The first is obscuring any non-essential fields of the frames. In some instances there are
people walking by outside of the store that are picked up by the camera. When processing
each frame, a uni-coloured block is therefore painted over these fields, eliminating this
risk. The second way is by processing each extracted action frame and non-action frame
(see section 2.1.3 for a description of action frame) through a person detection model.
This is done after the frames are obscured. The one used is called Yolov5s2 and returns a
list of labelled, cropped bounding boxes with a confidence score related to each bounding
box. Trial and error resulted in a detection confidence threshold of 0.50. If the model
labels a frame as having more than one person the basket is discarded. The same happens
if no frame in that basket is labelled as having any people at all. This can happen as an
effect of the distortion described earlier in this section.

2.1.3 Extracting

As will be described in section 2.2, Graph-Convolutional Neural Networks takes se-
quences of skeletal joint keypoints as inputs. Thus, the aim of the extraction part is to
go from a movie-file to any sort of sequential datatype (i.e. array, ndarray etc.)
populated with sets of keypoints. This is done in four steps: reading, splitting, extracting
and interpolating. Figure 2 gives an overview of the process.

Firstly, the raw data has to be read. The dictionary is read using the built-in json3

2https://pytorch.org/hub/ultralytics_yolov5/; visited 2022-06-07
3https://docs.python.org/3/library/json.html; visited 2022-06-07

5

Uppsala University 2022

Figure 2: The data processing pipeline

library and stored in RAM. Each movie-file is then read and turned into ndarrayswith
frames of RGB-values using the openCV4 library. Each ndarray of frames is then
stored in one single array. When reading the video-files an upper limit of frames read
is implemented in order to avoid RAM-crashes. This is a risk due to inconsistencies in
the raw data, with some videos being very long. A rather arbitrary limit of 2000 frames,
or 133,33 seconds, was chosen. This is longer than most basket sessions and should thus
capture all real samples. If the limit is reached, the basket is discarded in its entirety.

Secondly, the read data has to be split into sections centered around the interesting parts -
the actions present in the basket dictionary. For 𝑥 actions present, each action’s labelled
frame is calculated based on the labelled timestamp. Before and after each labelled
action frame, a padding of 𝑝 seconds (𝑝 = 2 in my implementation, decided on after
some trial-and-error of trying to get as much of the action as possible while minimizing
frames before and after) is extracted and stored as new arrays. The number of frames
extracted per second of padding depends on the frames per seconds, or FPS, of the
footage (𝐹𝑃𝑆 = 15 in the case of all cameras and videos present in this dataset). That
means that for each basket, a set of 𝑥 arrays with 2𝑝 ∗𝐹𝑃𝑆 action frames is extracted.

However, training a model on single labelled data isn’t very effective; non-action frames
have to be extracted as well. For each action mentioned above an equally long set of
frames without any action is extracted. The frames taken are the 2𝑝 ∗ 𝐹𝑃𝑆 frames just
before the first correlating action frame. A check is done to make sure that these frames
aren’t part of any other set of action frames. If that’s the case, they are simply dropped
and not replaced. Thus, for each basket a set of [𝑥, 2𝑥) arrays with 2𝑝 ∗ 𝐹𝑃𝑆 frames

4https://opencv.org/; visited 2022-06-07

6

Uppsala University 2022

Figure 3: The skeleton generated by MediaPipe Pose (MediaPipe 2022)

per camera angle is extracted and stored in RAM.

Thirdly, the skeletal joint keypoints have to be extracted. For this, the Google developed
MediaPipe Pose5 library is used. It contains a pose estimator that takes frames as
input and outputs an ndarray of 33 keypoints with a x-coordinate, an y-coordinate and
a confidence score for each. See figure 3 for an example of the skeleton extracted. Each
set of action and non-action frames is processed through the estimator and returned an
ndarraywith the shape (number of frames,33,3). After this, a check is done
to make sure that the result actually contains any keypoint coordinates and not just a list
of zeros, which if the result of not reaching the confidence threshold. If this is the case,
that action or non-action is dropped.

Finally, it has to be made sure that each sequence contains a continuous set of keypoints.
This is not obvious since the pose estimator will return a set of zeros whenever the
confidence score fails to reach the confidence threshold (set to 0.70 after trial-and-
error). In order to fill any potential gaps, the interpolator6 method in the scipy7

library is used. This will interpolate any missing points in a linear fashion based on the
points before and after. If no keypoints are available in the entire sequence it is dropped
since this would result in very unreliable interpolations. Obviously this isn’t a perfect
method since a skeleton’s movements seldom are linear but it’s a fairly quick fix to a
complicated problem. More research could be done into the field of skeleton keypoints
interpolation but that could probably be a project on its own. The last thing that happens
is that the ndarrays of keypoints from each camera view are compounded into one
single ndarray, this one having the shape (9, number of frames, 33) with

5https://google.github.io/mediapipe/solutions/pose; visited 2022-06-07
6https://docs.scipy.org/doc/scipy/tutorial/interpolate.html; visited 2022-06-07
7https://docs.scipy.org/doc/scipy/index.html; visited 2022-06-07

7

Uppsala University 2022

9 being the three sets of keypoints per joint.

2.1.4 Storing

At this point, all information needed to train a Graph-Convolutional Neural Network is
extracted and stored in RAM. However, it is not efficient to perform this process every
time a model is to be trained (seeing how it took about 20 hours on a 2020 Macbook
Pro) and it could useful to keep information other than the data ingested into the models,
like dataset-id and basket-id, for future reference. Because of this, a custom class -
SkeletonKeypoints - was created to organize and store all required information.
This section will explain the use of the different variables and methods defined in the
class.

One instance of SkeletonKeypoints is created for each action or non-action ex-
tracted by the methods explained in 2.1.3. SkeletonKeypoints holds the following
variables:

• keypoints: The ndarray of compounded keypoints on dimension (9,
number of frames,33).

• n_o_keypoints: The amount of joints per frame.

• n_o_frames: The number of frames in the sequence.

• n_o_cams: The number of camera angles in the dataset.

• split_keypoints: An array with ndarrays with separated keypoints.

• timestamp: When creating a new dataset, a timestamp is generated. This
timestamp acts as a unique identifier for that dataset. It is stored here in order to
reference the files and directories created for that dataset.

• label: The binary label of the instance with 0 = no action, 1 = action.

• labels: A list with named labels in the place corresponding to that label’s
number (i.e. ["non_action","action"].

• data_dir: The relative location to the directory where data generated by the
process is stored.

• frames_path: The relative location to the directory where frames saved by the
process is stored. Each instance has one video per camera view related to it in this
folder.

• action_numb: What number in the sequence of actions in that video this action
has. E.g. if the basket holds four actions and this is the third one extracted,
action_numb would be 3.

8

Uppsala University 2022

• tensor_pair: Anarray containing twotensors: one created withkeypoints
and one containing label.

• basket_id: The basket-id of the video this instance is extracted from

• video_paths: An array containing the relative paths to the created videos
mentioned at frames_path.

Following these variables are a set of methods to perform different tasks. This report
won’t go into them in detail but some notable functionalities to mention are: a method
for receiving a frame from all camera angles and their associated keypoints, one method
to get and annotate a frame with its keypoints, annotate and save the entire instance
to disk, make tensor_pairs from the split keypoints and combine two datasets of
SkeletonKeypoints with different timestamps with each other.

When all baskets in a dataset are fully processed the result is an array populated with
instances of SkeletonKeypoint. In order to access this list in the future it is stored
to disk as a binary using the built-in library pickle8.

2.1.5 Formatting

In order to use the data extracted in section 2.1.3 it has to be formatted in the specific
way the models expect. As will be described in section 2.2.1, the models for this
project are implemented using PythorchLightning9 which expects tensors10 or
DataLoaders11 as input. DataLoader is a datatype defined in the torch12 library
facilitating storing and handling sets of tensors in an accessible way. It stores the
data in batches ready to insert into a model. The batch size is defined upon creation.

In this case, a dataset consisting of SkeletonKeypoints instances is loaded from
disc using pickle. A new array is then created and populated with all the instances
of tensor_pairs present in the array. This new array is then shuffled using
Python’s built in random13 library and split into training, validation and test arrays
based on pre-defined fractions. The seed is globally set to 1234 throughout the project.
The actual splits in this project are presented in table 1. They were calculated as testing
being 10% of the entire set and validation being 20% of the remaining set. This way,
enough data is separated to test upon while ensuring that the validation set, used in
the training, is bigger. When the train, validate and test arrays are created they
are turned into DataLoaders with a given batch size and saved to disc using the

8https://docs.python.org/3/library/pickle.html; visited 2022-06-07
9https://www.pytorchlightning.ai/; visited 2022-06-07
10https://pytorch.org/docs/stable/tensors.html; visited 2022-06-07
11https://pytorch.org/tutorials/beginner/basics/data_tutorial.html; visited 2022-06-07
12https://pytorch.org/; visited 2022-06-07
13https://docs.python.org/3/library/random.html; visited 2022-06-07

9

Uppsala University 2022

Set Fraction
Training 72 %

Validation 18 %
Testing 10 %

Table 1: Fractions for the different splits in the dataset

torch.save method. Each DataLoader now contains batches of batch size many
tensor-pairs with the shapestensor.size(9,number of frames, 33) and
tensor.size(1).

2.2 Model Training
This section will describe the models used to detect customer actions. Section 2.2.1 will
detail the models and their architecture, section 2.2.2 will describe their implementations
and section 2.2.3 will introduce the methods used when evaluating them.

2.2.1 Models

As mentioned in the introduction there had been some exploration of this topic before
this project started. That did not mean that the models tested necessarily were the
optimal choices. In order to make sure that the models used held weight an initial
research into Human Action Recognition, or HAR, was done. HAR is a field within
Artificial Intelligence that focuses on accurately label human actions using a plethora
of different types of methods and models (Al-Faris et al. 2020, p. 1). However, the
outcome of this research resulted in two fitting models of which one happened to be
the model implemented in the hackathon. The two models are both versions of Graph-
Convolutional Neural Networks, or GCN.

A GCN is a version of a Convolutional Neural Network, or a CNN. A CNN is a type
of neural network most commonly used for classification or computer vision tasks. A
CNN mainly utilizes convolutional layers, pooling layers and fully connected layers to
extract features in images. Each layer of convolutional and pooling layers increases the
complexity of the features recognized. The input to a CNN, when using it for image
recognition, is usually a matrix of pixels in 2 or 3 dimensions containing the RGB-values
of the image. (Education 2020)

Just like a CNN, a GCN uses layers of convolutions, poolings and fully connected
to extract features. The difference lies in the input. Instead of extracting features
from a matrix of pixels, a GCN will extract them from a matrix of node coordi-
nates and an adjacency matrix. (Casalegno 2021) Seeing how Moonshop prefer to

10

Uppsala University 2022

use skeletal keypoints rather than the actual image, the GCN approach is more fit-
ting the a CNN approach. The adjacency matrix is the same for all input images
from the same type of graph and is therefore part of the model. The input im-
ages are instances of ndarrays with the dimensions (number of features,
number of frames, number of nodes). Number of frames depends
on the length of the image sequence used, number of nodes depends on what type
of graph is used and number of features depends on the dimensionality of the
graph.

ST-GCN

The Spatial Temporal Graph Convolutional Network, or the ST-GCN, was introduced in
2018 by researchers at The Chinese University of Hong Kong. It is, according to their
paper, the first attempt to apply a GCN on a graph of skeletal keypoints over both space
(spatial) and time (temporal). Its aim is to extract features from both joints’ positions
relative to each other in space as well as relative to their own in time to classify human
actions. (Yan et al. 2018, p. 1)

ST-GCN defines an undirected skeletal temporal graph 𝐺 = (𝐸,𝑉). Here, the node set
𝑉 = {𝑣𝑡𝑖 |𝑡 = 1, ..., 𝑇, 𝑖 = 1, ..., 𝑁}, where 𝑇 is the number of frames and 𝑁 is the number
of joints, holds all skeletal nodes extracted from a video sequence. 𝐸 = {𝐸𝑆, 𝐸𝐹} is a
set of two subsets, each containing a set of edges. 𝐸𝑆 = {𝑣𝑡𝑖𝑣𝑡𝑖 | (𝑖, 𝑗) ∈ 𝐻 }, where 𝐻

is the set of bone connections in the particular skeletal pose estimator used, represents
the natural edges between the nodes in each frame and 𝐸𝐹 = {𝑣𝑡𝑖𝑣 (𝑡+1)𝑖} contains the
connection between each specific node between the frames. (Yan et al. 2018, p. 3)

Furthermore, it wouldn’t really make sense to compare all joints distance to all other
joints since that’s not how the human body works. For example, a foot joint’s distance to
it’s knee should contain more information about an action than, say, that foot’s distance
to the head. A number of partition strategies are suggested to solve this. The strategies
describe different ways to define what nodes to compare to each other. The strategy
relevant for this project is the spatial configuration partitioning. It divides the neighbour
set into three subsets: 1) the root node, 2) the neighbouring nodes that are closer than
the root node to gravity center of the skeleton and 3) the rest of the neighbouring nodes.
See figure 4 for a visual reference. (Yan et al. 2018, p. 5)

Finally, the ST-GCN model is composed of 9 layers of ST-GCN units, or spatial temporal
graph convolution operators. These are layers designed to extract features from a spatial
temporal graph. Each unit has a number of input- and output channels related to a
variable named base_channels, or 𝐵𝑆. In the paper and base model, we have that
𝐵𝑆 = 64. The first three layers have 1 ∗ 𝐵𝑆 output channels, the following three layers
have 2 ∗ 𝐵𝑆 output channels and the final three have 4 ∗ 𝐵𝑆 output channels. The size

11

Uppsala University 2022

Figure 4: An example of the spatial partitioning (Yan et al. 2018, p. 5)

of 𝐵𝑆 will determine how many details each convolution will extract. Each layer has a
kernel size of 9 and the 4th and 7th layers have stride 2 instead of 1 for pooling. After
this, a global pooling layer is applied to reduce the resulting tensor to a 256 dimension
feature vector. This vector is then fed into a SoftMax classifier. Stochastic gradient
descent is applied in the learning process with a learning rate of 0.01. This is reduced
by 0.1 per every 10th epoch. (Yan et al. 2018, p.6)

CTR-GCN

Building upon the work done with the ST-GCN model, researchers at the Chinese
Academy of Sciences realized an inherent flaw in the way topology and partitioning was
handled. All methods proposed by Yan et al. 2018 limited their topology to neighbouring
nodes as defined by the given skeleton. While these relations are important, they risk
missing out on features not presented by the bones of the body. For example, while
one hand’s distance to its elbow is an important feature, that hand’s distance to the head
might be equally or more important when trying to identify an action. (Chen et al. 2021,
p.1)

The Channel-wise Topology Refinement Graph Convolutional Network, or CTR-GCN,
propose a method to address this flaw. The CTR-GCN does this by taking high-level
features transformed from input features and then dynamically inferring topologies
in order to capture the features and correlations between joints under different kinds
of motion features. The dynamic features are inferred channel-wise and features are
aggregated channel-wise with corresponding topology to get the final output. This
is done in three steps: feature transformation, channel-wise topology modelling and
channel-wise aggregation. (Chen et al. 2021, p.3)

The CTR-GCN model is built up of "basic blocks". Each basic block consists of a spatial
modelling module, a temporal modelling module and a final ReLu function. The spatial
modelling consists of three parallel CTR-GC units whose outputs are added and sent into
a batch normalization and ReLu module. The temporal modelling module consists of

12

Uppsala University 2022

Figure 5: (a) A visualization of the basic block. (b) A visualization of the CTR-GC
unit. T = the number of frames per input, N = number of keypoints per frame and C =
number of features per keypoint. (Chen et al. 2021, p.6)

four branches doing different combinations of 1x1 convolutions, 5x1 convolutions and
3x1 max poolings. The output of the four branches are concatenated. See figure 5 for
visual representations of the two systems. (Chen et al. 2021, p.6)

The model uses base_channels, or BS much in the same way as the ST-GCN model
described above does. In total, the network lines ten basic blocks with a final global
average pooling and a SoftMax classifier. The first four blocks have 1 ∗ 𝐵𝑆 channels, the
following three have 2∗𝐵𝑆 channels and the final three have 4∗𝐵𝑆 channels. The 5th and
8th block halves the temporal dimension by strided temporal convolutions. Stochastic
gradient descent is used when training with momentum 0.9 and weight decay 0.0004.
(Chen et al. 2021, p.6)

2.2.2 Training

The implementations of the ST-GCN and the CTR-GCN models are practically identical.
This section will therefore mostly describe the implementation of the "model", implying
that this represents both models. If that’s not the case it will be explicitly expressed at
that specific point.

The models are available in their original, extended forms within publicly available
repos. However, it’s not these exact versions that are implemented in this project. This
is mainly since those versions are built for the experimental settings described in their
papers and not easily translated to the specifics of this scenario. Also, some changes to

13

Uppsala University 2022

the models had to be made which was easier to do in the controlled setting of a familiar
code base.

The classes and methods related to the model architecture are basically copied in their
entirety. These classes include the main Model class holding the architecture and sup-
port methods, the Graph class defining the adjacency matrix and partitioning strategies,
and several layer classes defining, for example, the CTR-GC unit. While the latter
two classes are left mostly untouched, the Model class has been altered. The most
obvious change is that it is implemented using the pytorch_lightning library. It is
a Python library building upon PyTorch, automating most of the architecture around
a model such as training and validation. Crucially it also logs the training and saves the
latest version of the model automatically, together with measurements from the training.

Other than implementing pytorch_lightning, some minor changes was made
to the model. The base_channels variable was introduced in order to facilitate
experimentation with that hyper-parameter. The number of classes, input channels,
number of frames, number of joints etc. was made dynamic as well, in order to fit the
parameters to this specific data. The possibility to turn off GPU-utilization by making
cuda, a GPU driver, a boolean was done in order to run the code on a machine without
GPU-support. Finally, the model and graph was changed to fit the pose estimations
created by MediaPipe.

The models are defined within the project repo but in order to access a GPU and speed up
the training, the actual training loops are written and ran in Google Colab; a service for
hosting Jupyter Notebooks on Google Drive and run them using freely available GPUs.
The loop consists of loading the dataloaders with the correct batch size and camera
setup, using them to train a model set up with the same parameters and a defined base
channel size, and afterwards manually moving and renaming the saved, trained model.
All versions of trained models are trained from the ground up, no transfer learning has
been implemented.

Several variations of the two models have been trained in order to find the optimal
combination. Mostly it’s the base_channels variable that’s been varied but the
batch size has also been experimented with. For every version, four sets of the data were
trained on: a set with the keypoints from all three angles combined (or the compounded
dataset) and one set per camera angle. They are named 0, 1, 2, 3 and 4 respectively,
with 0 being the compounded set. Finally, a reduced dataset with less noisy data, due to
the data from one store being very distorted, was generated and experimented with. The
bigger dataset with 1570 samples is named D1 and the smaller with 436 is named D2.
All variations are presented in figures 10, 11 and 9.

14

Uppsala University 2022

2.2.3 Evaluation

The evaluation of the models looks the same regardless of that model’s variation. It
is handled by a custom function, evalModel, and produces a host of measurements
relevant to consider when evaluating. The method can be used with both validation and
test sets.

First, the method produces predictions based on the data and model given. The pre-
dictions are decimals in the range 0 − 1, representing the probability that the sample is
an action. These predictions are then used to find the optimal threshold for this label.
This is done by calculating the F1 score, using the f1_score14 library available in
sklearn.metrics15, for each threshold value in the range 0 − 1 with a 0.001 step.

The F1 score is a metric combining Precision - the fraction of true positives found of
all found positives - and Recall - the fraction of true positives found of all true positives
- and works well on both skewed and evenly distributed data. It is the mean of the two
measurements, defined as

𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(1)

and thus gives equal weight to both measurements. The metric is a good alternative
for approaching the precision-recall trade-off. The optimal threshold is then decided by
taking the threshold scoring the biggest F1 score. (Korstanje 2021)

When the optimal threshold is decided, that threshold is used to calculate the accuracy of
the model. This is done by comparing the predictions generated earlier to the threshold
and labelling any prediction greater than the threshold an action. Each labelled prediction
is then compared to its true label, present in the data set, and the number of accurate
labels are counted towards a score. The accuracy is then defined as the score’s fraction
of all samples in the dataset, converted to percentage (Korstanje 2021).

Following the accuracy, the AUC Score is calculated and a ROC Curve is created. These
actions are done using the roc_auc_score16 and RocCurveDisplay17 methods
respectively, both present in the sklearn.metrics library. The ROC Curve is
generated by plotting the True Positive Rate, or TPR, on the y-axis against the False
Positive Rate, or FPR, on the x-axis. The AUC Score is the area under the ROC Curve.
The score is a measurement of how well a model labels samples correctly: the higher

14https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html; visited 2022-06-07
15https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics; visited 2022-06-07
16https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html; visited 2022-

06-07
17https://scikit-learn.org/stable/modules/generated/sklearn.metrics.RocCurveDisplay.html; visited

2022-06-07

15

Uppsala University 2022

the score, the better the model. A score of 50% means that the model is equally likely
to label a measurement true or false regardless of its true state. (Narkhede 2018)

Finally, a confusion matrix is generated. This is done using theconfusion_matrix18

method available in the sklearn.metrics library. This method only generates
the scores of the matrix and in order to plot it, the ConfusionMatrixDisplay19

method present in the same library can be applied. Using the confusion matrix, the TPR
is calculated one final time, manually this time.

3 Results
The following sections will present the results of the methods described in section 2.
Section 3.1 will show some examples of data representation while section 3.2 will detail
validation results for the different models trained and 3.3 will present testing results for
the models with the most promising validation scores.

3.1 Data Preparation
The data preparation was the biggest part of the project time-wise. The result is an
almost automated process that combines, prunes and refines two different sources of
data into one, instantly usable database. The process should also be generic enough to
instantly apply to new data being ingested to the raw databases.

Following, figure 6 is one example of a basket JSON-file with all but the relevant fields
removed. Figure 7 is an example of the frames from one basket video before any
processing is done. Note that, as described in section 2.1.1, the video is actually three
separate videos, here combined into one figure to make the presentation easier. The
faces in all frames, except for one frame in figure 8 in order to show the annotated face,
have been obscured specifically for this paper in order to not reveal anyone’s identity and
is not representative of their state when in the process.

18https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html; visited
2022-06-07

19https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ConfusionMatrixDisplay.html; vis-
ited 2022-06-07

16

Uppsala University 2022

Figure 7: Example of a frame from an unprocessed basket video

Figure 6: Example of a basket JSON-file with the only the fields relevant for the data
preparation process

Finally, figure 8 show the same frames after they’ve been processed. Notice the an-
notated skeleton described in section 2.1.3 and the obscured angels described in sec-
tion 2.1.2. The annotations on those frames are representative of the content of the
SkeletonKeypoint instance. It’s interesting that the frame is the exact frame la-
belled in the basket as the action. However, it looks like the action occured some second
earlier. This is a good example of noise in the data and the importance of adding enough
padding as discussed in section 2.1.3. In this case the noise is probably due to sloppy
labelling and not distortion.

The biggest dataset generated, D1, have 1570 samples in it. It is generated from 1261
baskets and took around 20 hours to generate on a modern CPU. The splits and fractions
of this dataset is presented in table 2. The biggest time-sinks were the object detector
described in section 2.1.2 and pose estimator described in section 2.1.3. However, these

17

Uppsala University 2022

Figure 8: Example of a frame from a processed basket

Set Actions Non-Actions Fraction
Total 50 % 50 % 100 %
Train 49 % 51 % 72 %

Validate 55 % 45 % 18 %
Test 46 % 54 % 10 %

Table 2: Splits and fractions in the dataset of size 1570 samples

two parts are paramount to the process and can’t be avoided. They would probably work
quicker on a GPU though. The lack of access to a local GPU and the limit on how much
data one can upload to a remote solution like Google Colab necessitated the use of a
CPU. The smaller dataset, D2, with less noisy data has 436 samples.

3.2 Training
The training was a time-consuming and, at times, irritating task. One big obstacle was
the lack of access to a reliable GPU. Google Colab, which the training took place on,
has a seemingly arbitrary time limit and could at any time cancel a process mid-training.
Much of the day it would lock one out for having used the GPU too much the day before.

However, despite this obstacle a number of models were trained. The validation scores
for the trained ST-GCN models are displayed in table 3. For this table, and all other
tables showing model scores, the ID field is made up of batch size - base channels -
model version, OT is short for optimal threshold and F1 is the F1-score of that threshold.
The highest score in AUC, Accuracy and TPR are presented in bold (except for TPR
where some models scored perfectly which is unreasonable, since that could as well be
a model labelling all samples as true). Table 4, 5 and 6 shows different variations of the
CTR-GCN model’s validation scores. The confusion matrix and ROC curve for each
model is provided in Appendix B.

18

Uppsala University 2022

ID OT F1 AUC Accuracy TPR
16-32-0 0.142 0.778 0.746 0.716 0.903
16-32-1 0.223 0.716 0.756 0.645 0.920
16-32-2 0.172 0.765 0.786 0.699 0.952
16-32-3 0.133 0.724 0.734 0.645 0.956
16-64-0 0.035 0.772 0.759 0.709 0.897
16-64-1 0.023 0.693 0.728 0.585 0.964
16-64-2 0.159 0.757 0.763 0.702 0.903
16-64-3 0.263 0.709 0.759 0.688 0.781
64-64-0 0.035 0.790 0.722 0.727 0.935
64-64-1 0.106 0.749 0.780 0.695 0.934
64-64-2 0.012 0.753 0.766 0.667 0.986
64-64-3 0.252 0.757 0.799 0.741 0.832

Table 3: ST-GCN with D1 dataset Validation Scores

ID OT F1 AUC Accuracy TPR
16-16-0 0.000 0.709 0.482 0.550 1.000
16-16-1 0.327 0.668 0.624 0.535 0.964
16-16-2 0.000 0.679 0.543 0.514 1.000
16-16-3 0.448 0.687 0.632 0.571 0.971
16-32-0 0.328 0.723 0.664 0.624 0.890
16-32-1 0.243 0.655 0.595 0.493 0.993
16-32-2 0.352 0.700 0.555 0.578 0.959
16-32-3 0.174 0.677 0.629 0.535 1.000
16-64-0 0.153 0.771 0.685 0.699 0.923
16-64-1 0.000 0.654 0.528 0.486 1.000
16-64-2 0.011 0.679 0.476 0.518 0.993
16-64-3 0.294 0.689 0.674 0.599 0.912
16-128-0 0.005 0.721 0.629 0.585 0.974
16-128-1 0.166 0.693 0.648 0.606 0.912
16-128-2 0.268 0.703 0.659 0.589 0.945
16-128-3 0.268 0.706 0.671 0.649 0.869

Table 4: CTR-GCN with D1 dataset, Batch Size = 16 Validation Scores

19

Uppsala University 2022

ID OT F1 AUC Accuracy TPR
4-64-0 0.232 0.717 0.540 0.578 0.974
4-64-1 0.000 0.654 0.430 0.486 1.000
4-64-2 0.000 0.679 0.545 0.514 1.000
4-64-3 0.064 0.667 0.543 0.521 0.985
16-64-0 0.153 0.771 0.685 0.699 0.923
16-64-1 0.000 0.654 0.528 0.486 1.000
16-64-2 0.011 0.679 0.476 0.518 0.993
16-64-3 0.294 0.689 0.674 0.599 0.912
32-64-0 0.209 0.741 0.677 0.670 0.858
32-64-1 0.297 0.678 0.674 0.610 0.847
32-64-2 0.244 0.689 0.641 0.589 0.924
32-64-3 0.092 0.680 0.627 0.543 1.000
64-64-0 0.059 0.739 0.691 0.624 0.968
64-64-1 0.382 0.701 0.708 0.674 0.788
64-64-2 0.188 0.725 0.627 0.621 0.972
64-64-3 0.090 0.694 0.671 0.574 0.993

Table 5: CTR-GCN with D1 dataset, Base Channels = 64 Validation Scores

ID OT F1 AUC Accuracy TPR
16-64-0 0.014 0.735 0.533 0.603 0.977
16-64-1 0.021 0.780 0.600 0.654 0.980
16-64-2 0.021 0.696 0.489 0.551 1.000
16-64-3 0.019 0.729 0.592 0.590 0.977

Table 6: CTR-GCN with D2 dataset Validation Scores

20

Uppsala University 2022

Model Dataset ID OT F1 AUC Accuracy TPR
CTR-GCN D1 16-64-0 0.157 0.681 0.643 0.631 0.861
CTR-GCN D1 16-64-1 0.000 0.611 0.585 0.439 1.000
CTR-GCN D1 16-64-2 0.001 0.595 0.450 0.427 1.000
CTR-GCN D1 16-64-3 0.270 0.702 0.679 0.605 0.948
CTR-GCN D1 64-64-0 0.174 0.693 0.665 0.650 0.861
CTR-GCN D1 64-64-1 0.300 0.641 0.627 0.586 0.841
CTR-GCN D1 64-64-2 0.280 0.625 0.650 0.580 0.833
CTR-GCN D1 64-64-3 0.255 6.709 0.618 0.624 0.935
CTR-GCN D2 16-64-0 0.000 0.635 0.526 0.465 1.000
CTR-GCN D2 16-64-1 0.091 0.762 0.689 0.651 0.960
CTR-GCN D2 16-64-2 0.000 0.697 0.605 0.535 1.000
CTR-GCN D2 16-64-3 0.004 0.667 0.524 0.512 1.000
ST-GCN D1 64-64-0 0.009 0.710 0.758 0.656 0.917
ST-GCN D1 64-64-1 0.065 0.670 0.705 0.611 0.899
ST-GCN D1 64-64-2 0.250 0.720 0.773 0.713 0.879
ST-GCN D1 64-64-3 0.027 0.734 0.743 0.662 0.948

Table 7: Evaluation scores for models with the test set

3.3 Testing
Based on the validation scores, four models were picked for running the test set on. The
models chosen are ones with the highest validation scores from each table in section
3.2. The test scores are presented in table 7. Their corresponding confusion matrices
ROC-curves are presented in Appendix B. This is the first time the models are evaluated
on the test set in order to keep with good machine learning practice.

4 Conclusions
From table 7 it is obvious that the ST-GCN model performs best with the given dataset.
This is interesting since it is a predecessor to the CTR-GCN model and thus should be
less developed. However, it is possible that this is the reason for the better performance.
It could be that CTR-GCN picks out too many irrelevant features in a dataset as flawed
as this one and that less features is a good thing because of this.

The dataset is very flawed. This is due to multiple factors, some discussed in section 2.1.
Firstly, sloppily labelled data combined with a high fraction of poor quality data meant
that the samples collected are varying in pertinence. If the labelled action’s timestamp
is off for more than a couple seconds the entire sample could end up mislabelled. Poor
quality video footage makes it harder for the pose extractor to extract a complete and

21

Uppsala University 2022

correct skeleton and a lot of potentially useful samples had to be discarded because of
the problem with unsynced videos. These issues could be solved by relabelling the data
with higher precision and collect new data of higher quality. It would be time consuming
and expensive but not impossible.

Secondly, finding a pose estimator that reliably put out high quality skeletons even on
good data turned out near to impossible. Due to it not being the main issue of this project
- the issue being big enough to warrant its own project - and almost all publicly available
pose estimators having been tried earlier in the company’s history, this project had to
settle with the somewhat reliable and easily implemented MediaPipe pose estimator. Not
being able to handle more than one person in a frame discarded a lot of potentially useful
samples. Another big issue is that all footage is taken at an angle from the roof while
all pose estimators found online are trained on levelled footage. This is impossible to
solve save for training a custom pose estimator on angled footage which would be a huge
and expensive undertaking. Obviously poor quality skeletons will effect performance
immensely since they are the main input data.

Thirdly, due to lack of data from each store the models had to be trained in a very generic
fashion. The angles of the cameras differ between all camera feeds, thus making it harder
for the models to extract reliable features specific to one store or angle. The more angles
provided the more general the model has to become, thus making good predictions
harder. This problem is almost impossible to solve before a store has been open for long
enough to train models on data provided from it. At that point, it might be too late to
implement the model. A way of solving this could be to build a 3D-representation of
the store in a game engine like Unity and create a dataset from modelled interactions.
However, this would be very time-intensive and thus expensive, and it would have to be
done for every store opened.

Furthermore, the datasets are too small to reliably train any deep neural networks.
1570 samples simply aren’t enough for a model this complex. For comparison, one of
the datasets used in the CTR-GCN paper has 114 thousand videos to train on (Code
2022). This issue could be solved with time or by the 3D-representation discussed in the
paragraph above but the issues remains.

The flawed skeletons is the reason for trying compounded datasets (model version 0).
The idea was that since all camera feeds show the same action but from different angles,
the possibility of each frame providing any useful information increase if all three feeds
are provided at the same time. The results from validation and testing doesn’t prove or
disprove this hypothesis in any deciding way but the best performing model in table 7
is not one trained on compounded data suggesting that the method doesn’t provide any
reliable benefits.

Finally, the outcome of this project was the realization that the CTR-GCN model might

22

Uppsala University 2022

not be the optimal model for Moonshop’s Human Action Recognition. However, any
conclusion like that is shadowed by the flaws in the dataset. A more relevant conclusion
would be that trying to develop a reliable Human Action Recognition model based on
skeletal data at this point would be a little like trying to run before one can walk. The
models show potential so there could be a future for the technology but in order to
get there, Moonshop has to take a couple of steps back and solve the data issues first.
Once reliable skeletons can be extracted from a big, well-labelled dataset the methods
developed in this project could be used to draw more substantiated conclusion.

All this focus on the flaws in the dataset could make it sound like the conclusion only
explored excuses for a lack of results. However, that’s not the case. A more thorough
exploration of the dataset should have been done before any actual work took place, in
order to determine whether the tasks were reasonable to tackle at all. As we’ve come
to realize, such an exploration would probably have resulted in a pessimistic or negative
conclusion. This would’ve allowed the focus to shift to a more realistic problem, possibly
one of the problems suggested earlier in this section. This is one of the strongest lessons
I will take with me from this project.

To tie things off, one relevant question is whether the tasks this project set out to complete
are possible to solve at all, regardless of data quality and quantity. There might be a
reason why other solutions on the market use more complex setups with scales and
other measurements. Keeping track of multiple people, their actions in the store and
interaction with possibly hundreds of wares is an enormous task. Limiting the data input
to only a limited number of video feeds might be asking too much of AI at its present
stage of development. It’s not unreasonable to assume that such a system won’t ever be
100 % correct. If that’s the case, the question becomes one of business: at what level of
precision is the gains greater than the losses this lack of precision cause? That question,
however, is one best left to the capable hands of the Moonshop leadership.

23

Uppsala University 2022

References
Casalegno, Francesco (Jan. 2021). Graph Convolutional Networks — Deep Learn-

ing on Graphs. url: https : / / towardsdatascience . com / graph -
convolutional-networks-deep-99d7fee5706f.

Chen, Yuxin et al. (2021). “Channel-wise Topology Refinement Graph Convolution for
Skeleton-Based Action Recognition”. In: IEEE. doi: 10.1109/ICCV48922.
2021.01311.

Code, Papers With (June 2022). NTU RGB+D 120 Dataset. url:https://paperswithcode.
com/dataset/ntu-rgb-d-120.

Education, IBM Cloud (Oct. 2020). Convolutional Neural Networks. url: https:
//www.ibm.com/cloud/learn/convolutional-neural-networks.

Al-Faris, Mahmoud et al. (2020). “A Review on Computer Vision-Based Methods for Hu-
man Action Recognition”. In: Journal of Imaging. doi:10.3390/jimaging6060046.

Heller, Aron and Abhay Savargaonkar (Apr. 2021). The rise in automation and what it
means for the future. url: https://www.weforum.org/agenda/2021/
04/the-rise-in-automation-and-what-it-means-for-the-
future/.

Korstanje, Joos (Aug. 2021). The F1 Score. url:https://towardsdatascience.
com/the-f1-score-bec2bbc38aa6.

MediaPipe (June 2022). MediaPipe Pose. url: https://google.github.io/
mediapipe/solutions/pose.

Narkhede, Sarang (June 2018). Understanding AUC - ROC Curve. url: https :
//towardsdatascience.com/understanding-auc-roc-curve-
68b2303cc9c5.

PYMNTS (July 2021). The ‘Third Wave’ Of Self-Serve Checkout Turns Grocery Stores
Into Omnichannel Hubs. url: https://www.pymnts.com/news/retail/
2021/the-third-wave-of-self-serve-checkout-turns-grocery-
stores-into-omnichannel-hubs/.

Yan, Sijie, Yuanjun Xiong, and Dahua Lin (2018). “Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition”. In: AAAI. doi: 10.
48550/arXiv.1801.07455.

Zindi (2021). Autonomous Shopper Prediction by Cape AI. url: https://zindi.
africa/competitions/indabax-south-africa-2021.

24

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
https://doi.org/10.1109/ICCV48922.2021.01311
https://doi.org/10.1109/ICCV48922.2021.01311
https://paperswithcode.com/dataset/ntu-rgb-d-120
https://paperswithcode.com/dataset/ntu-rgb-d-120
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://www.ibm.com/cloud/learn/convolutional-neural-networks
https://doi.org/10.3390/jimaging6060046
https://www.weforum.org/agenda/2021/04/the-rise-in-automation-and-what-it-means-for-the-future/
https://www.weforum.org/agenda/2021/04/the-rise-in-automation-and-what-it-means-for-the-future/
https://www.weforum.org/agenda/2021/04/the-rise-in-automation-and-what-it-means-for-the-future/
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://towardsdatascience.com/the-f1-score-bec2bbc38aa6
https://google.github.io/mediapipe/solutions/pose
https://google.github.io/mediapipe/solutions/pose
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://www.pymnts.com/news/retail/2021/the-third-wave-of-self-serve-checkout-turns-grocery-stores-into-omnichannel-hubs/
https://www.pymnts.com/news/retail/2021/the-third-wave-of-self-serve-checkout-turns-grocery-stores-into-omnichannel-hubs/
https://www.pymnts.com/news/retail/2021/the-third-wave-of-self-serve-checkout-turns-grocery-stores-into-omnichannel-hubs/
https://doi.org/10.48550/arXiv.1801.07455
https://doi.org/10.48550/arXiv.1801.07455
https://zindi.africa/competitions/indabax-south-africa-2021
https://zindi.africa/competitions/indabax-south-africa-2021

Uppsala University 2022

Appendix A - Dictionary
• Action: A customer either taking a ware from a shelf or putting a ware back into

a shelf. Presented in the basket dictionary.

• Action Frame: The specific frame labelled as the action in the basket dictionary.
Calculated by a timestamp.

• Basket: A customer’s visit to the store. Everything related to that visit is saved in
the basket.

• Basket-ID: An identifier unique to every basket. Used, for example, to locate
baskets in the different databases.

• Batch: A set of tensors. A DataLoader consists of equally sized batches.

• Batch Size: A variable determining how many tensors to keep in each batch.

• Dataset: Usually refers to the set of SkeletalKeypoint instances created by the
data process pipeline.

• Frame: A picture of a movie, the smallest denominator. Presented as a matrix
with pixel values.

• Keypoints: The joints of the human skeleton extracted by the pose estimator. In
this project each skeleton has 33 keypoints.

• Model: A trained AI usable for whatever it was trained for. Sometimes also
referred to the AI’s architecture before it being trained.

• Non-action Frame: Any frame that’s not an action frame.

• Pose Estimator: A model trained to extract human poses from images and repre-
sent them as skeletons through keypoints.

• Raw Data: The videos and dictionaries related to the baskets before they have
gone through the data processing pipeline.

• Store: The physical location where the cameras were set up and the baskets were
recorded.

• Vendor: The owners of the stores. Each vendor can own multiple stores each
store can only have one vendor.

25

Uppsala University 2022

Appendix B - Plots

Figure 9: Plots with Validation Scores for CTR-GCN models with dataset D2

26

Uppsala University 2022

Figure 10: Plots with Validation Scores for CTR-GCN models with Batch Size = 16

27

Uppsala University 2022

Figure 11: Plots with Validation Scores for CTR-GCN models with Base Channels =
64 28

Uppsala University 2022

Figure 12: Plots with Test Scores

29

	Introduction
	Limitations
	Essay Layout

	Methods
	Data Preparation
	Raw Data, Pre-processing and Gathering
	Cleaning
	Extracting
	Storing
	Formatting

	Model Training
	Models
	Training
	Evaluation

	Results
	Data Preparation
	Training
	Testing

	Conclusions
	References
	Appendix A
	Appendix B

