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Abstract

Available computing resources play a large part in enabling the training of modern deep neural
networks to complete complex computer vision tasks. Improving the efficiency with which this
computational power is utilized is highly important for enterprises to improve their networks
rapidly. 

The first few training iterations over the data set often result in substantial gradients from seeing
the samples and quick improvements in the network. At later stages, most of the training time is
spent on samples that produce tiny gradient updates and are already properly handled. To
make neural network training more efficient, researchers have used methods that give more
attention to the samples that still produce relatively large gradient updates for the network. The
methods used are called ''Importance Sampling''. When used, it reduces the variance in
sampling and concentrates the training on the more informative examples.

This thesis contributes to the studies on importance sampling by investigating its effectiveness
in different contexts. In comparison to other studies, we more extensively examine image
classification by exploring different network architectures over a wide range of parameter
counts. Similar to earlier studies, we apply several ways of doing importance sampling across
several datasets. While most previous research on importance sampling strategies applies it to
image classification, our research aims at generalizing the results by applying it to object
detection problems on top of image classification.

Our research on image classification tasks conclusively suggests that importance sampling can
speed up the training of deep neural networks. When performance in convergence is the vital
metric, our importance sampling methods show mixed results. For the object detection tasks,
preliminary experiments have been conducted. However, the findings lack enough data to
demonstrate the effectiveness of importance sampling in object detection conclusively.
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Populärvetenskaplig Sammanfattning

Utvecklingen av mjukvara och h̊ardvara för att möjliggöra självkörande bilar är idag ett mycket aktuellt
högteknologiskt omr̊ade där flera av fordonsindustrins giganter är med och försöker skapa den bästa
lösningen. Självkörande bilar kan delas upp i sex niv̊aer av autonomi som sträcker sig fr̊an ingen
automation till total automation där en förare inte behövs. Ingen tillverkare kan idag erbjuda en
konsekvent p̊alitlig lösning där föraren elimineras totalt i bilkörning. Zenseact [1] är ett av företagen
som tagit sig an utmaningen i att producera mjukvara med m̊al att uppn̊a total autonomi för bilar.
Företaget har sitt ursprung i Volvo Cars som än idag har delägarskap och täta samarbeten med
företaget. Volvos historiska fokus p̊a säkerhet kopplat till bilkörande är n̊agot som lever kvar inom
Zenseact som, framför allt annat, ser självkörande bilar som en möjlighet att drastiskt minska antalet
olyckor p̊a bilvägar. Denna uppsats är skriven i samarbete med Zenseact med förhoppningar att
kunna bidra till den fortsatta utvecklingen av företagets produkt. För att uppn̊a totalt oberoende av
en förare krävs s̊aväl avancerad mjukvara som h̊ardvara. I denna uppsats lägger vi tankar om h̊ardvara
åt sidan och fokuserar istället p̊a mjukvaruutvecklingen för självkörande bilar.

För att uppn̊a självkörning krävs det att bilen, likt oss människor, kan se, identifiera och sedan
agera i sin omgivning. Lösningen för att kunna se sker genom den tidigare nämnda h̊ardvaran. De
senare delarna kräver först̊aelse fr̊an bilen. Denna först̊aelse försöker man läsa genom artificiell intelli-
gens (AI) p̊a olika sätt. Mer specifikt tillämpas olika deep learning modeller, p̊a svenska djupinlärnings-
modeller, p̊a det som bilen ser (även kallat input). Deep learning är ett omr̊ade inom AI där man
skapar stora nätverk som ämnar att imitera hur en hjärna fungerar och processerar information.
Nätverken benämns ofta som neurala nätverk. De är uppbyggda av lager med noder (neuroner) som
i sitt första lager tar emot exempelvis en bild. Denna bild analyseras lager efter lager i nätverken och
varje neuron i varje lager har en särskild uppgift när det kommer till analysen av denna bild. När
bilden har g̊att igenom samtliga lager kommer slutligen en gissning fr̊an nätverket, denna gissning
avser bildens inneh̊all. Till en början är dessa nätverk, likt ett nyfött barn, usla p̊a att avgöra vad de
ser. Men efter omg̊angar av träning blir dessa nätverk, likt när barnet växer upp, mer och mer trygga
i att identifiera vad de ser. En stor, och viktig skillnad mellan fallet för en människa och ett neuralt
nätverk är att det inte tar flera år för nätverket att skapa sin kompetens. Med hjälp av prestandan
hos dagens processorer kan denna träning ske p̊a en betydligt kortare tid.

För att beskriva träningen av nätverket använder vi oss återigen av exemplet där vi använder en
bild som input. Träningen av nätverken sker genom att återupprepade g̊anger skicka in bilder som
man har det ”rätta svaret” för. Med det rätta svaret menar vi att vi har markerat vad som finns i
bilden. Genom att l̊ata nätverket processa bilder och sedan gissa p̊a inneh̊allet kan vi, för de bilder där
vi har det rätta svaret, berätta för nätverket hur nära eller l̊angt ifr̊an sanningen gissningen var. När
vi berättat detta för nätverket har den möjlighet att göra förändringar i hur den väljer att behandla
bilder för att i fortsättningen bättre kunna identifiera inneh̊allet. Efter m̊anga tusentals iterationer av
denna process är det troligt att nätverket till en hög utsträckning kan skapa p̊alitliga gissningar. Hur
bra ett nätverk blir p̊a att göra sina gissningar beror dels p̊a hur sv̊ara bilderna är att identifiera men
även p̊a hur det neurala nätverket är uppbyggt. Uppbyggnaden av nätverken är en otroligt komplex
process vilket vi inte kommer redogöra för i denna sammanfattning.

Med detta ur vägen kan vi nu börja diskutera vilket problem denna uppsats tänkt undersöka.
Träningen av stora neurala nätverk är extremt processortunga och idag dyra s̊aväl sett till tid som
monetärt [2]. En nedskalning av träningstiden med enbart ett f̊atal procent är n̊agot som skulle vara



väldigt betydelsefullt d̊a det sparar väldigt mycket pengar men kanske framförallt d̊a det möjliggör en
snabbare feedback-loop. Att behöva spendera vad som kan vara veckor för att f̊a tillbaks resultat är
idag en flaskhals när det kommer till utvecklingen av mjukvaran för självkörande bilar.

I denna uppsats undersöker vi ifall en uppsnabbning av träningen g̊ar att uppn̊a med hjälp av en
metod som heter ”Importance sampling”, en s̊a kallad samplingmetod. Som det g̊ar att utröna fr̊an
namnet försöker denna samplingmetod fokusera p̊a de ”viktiga” bilderna. För att först̊a vad nätverket
ser som viktiga bilder behöver vi först först̊a hur en typisk träningsprocess av ett neuralt nätverk ser
ut. Efter en kortare tids träning är nätverket oftast kapabel att korrekt identifiera majoriteten av
bilderna som den tränas p̊a. Den tidskrävande delen av träningprocessen handlar därför om att lära
sig resterande, det vill säga en minoritet av bilderna. Det är dessa bilder som anses vara sv̊arare och
därmed ”viktiga”. Metoden ”Importance sampling”, som ska snabba upp träningen, fungerar därför
genom att först avgöra vilka bilder v̊art nätverk upplever som sv̊ara. Därefter, vet nätverket vilka
bilder som i större utsträckning ska användas för träning. P̊a s̊a sätt, genom en större exponering av de
sv̊ara bilderna, är förhoppningen att nätverket snabbare än tidigare ska komma till en tillfredsställande
prestanda.

Forskningsfältet som denna typ av lösningar ryms inom kallas för ”computer vision”, eller p̊a sven-
ska datorseende. Vi har i denna uppsats utfört experiment inom tv̊a av de mest populära uppgifterna
inom computer vision. De tv̊a uppgifterna är ”object detection” och ”image classification”. De b̊ada
är till för bildanalys men vad de utför för analys skiljer sig. Image classification berör enbart klassifi-
cering av bilder. När s̊adana uppgifter löses innefattar bilderna, som är input till nätverket, maximalt
ett objekt och objektet är det solklara fokuset i bilden. Uppgiften är här för nätverket att avgöra vad
för typ av objekt som finns i bilden. När vi istället utför object detection med hjälp av ett neuralt
nätverk är bilderna som skickas in som input till nätverket representerade i en större kontext och det
kan vara s̊a att det finns fler, eller inga objekt i en bild. Nätverkets uppgift är här att dels, likt image
classification, avgöra vilka typer av objekt som finns i bilden. Utöver det ska nätverket även avgöra
vart objekten befinner sig. Med det sagt är object detection en mycket mer komplex uppgift att lösa
inom Compute vision än image classification.

Den absoluta majoriteten av uppsatsens resultat kommer fr̊an experiment p̊a image classification.
I dessa experiment har vi dels kontrollerat hur en baslösning av importance sampling förh̊aller sig i
prestanda jämfört med den traditionella metoden där alla bilder har samma sannolikhet att bli valda
vid träning av neurala nätverket. Utöver baslösningen har vi experimenterat med ett antal olika
parametrar. Vi har undersökt hur ett neuralt nätverks komplexitet p̊averkar importance samplings
prestanda. Vi har även undersökt olika tung viktning av de sv̊arare bilderna och hur detta p̊averkar
prestandan av importance sampling. Slutligen har vi även utrett hur olika metoder för importance
sampling presterar i jämförelse med varandra. Resultaten fr̊an dessa experiment tyder p̊a att im-
portance sampling har stor potential när det kommer till uppsnabbning av träningen för ett neuralt
nätverk, speciellt i början av träningen. När vi ser till slutresultatet, när nätverket har konvergerat
i prestanda, är det dock inte lika självklart att importance sampling är att föredra framför en metod
där vi väljer alla bilder med samma sannolikhet.

När det kommer till experimenten för object detection har vi gjort ett försök i att överföra
metoderna och resultaten fr̊an image classification. De experiment som vi presenterar för object
detection visar inte samma lovande resultat. Detta beror p̊a att det neurala nätverk vi använt för
object detection visar d̊aliga resultat oavsett om vi använder importance sampling eller ej. Därmed
kan studien inte ge n̊agot definitivt resultat huruvida importance sampling snabbar upp träningen för
object detection eller inte. Vi ser dock ett stort behov av att fortsätta utreda metoden för object de-
tection; dels motiverat genom de lovande resultaten fr̊an image classification men även d̊a de resultat
vi presenterar i denna uppsats inte fullt ut kan ses som representativa.
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Acronyms

ANN Artificial Neural Network
AUC Area Under the Curve
AP Average precision
CNN Convolutional neural network
CV Computer vision
DNN Deep Neural Network
FN False negatives
FP False Positives
FPR False positive rate
GTSRB German Traffic Sign Recognition Benchmark
IS Importance sampling
MLP Multilayer perceptron
NIS No importance sampling / Uniform sampling
OD Object detection
ROC Receiver operating characteristics
SGD Stochastic gradient descent
SSD Single shot detection
TN True Negatives
TP True Positives
TPR True positive rate
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Chapter 1

Introduction

Efficient and robust detection of objects under a broad range of possible circumstances is a central
challenge in the development of autonomous vehicles [3]. The object detectors used by market
leaders are commonly deep neural networks trained on a large number of frames captured by on-car
cameras [3]. The resolution of the input images to the object detection (OD) network is necessarily
large to ensure sufficient performance [4]. Combining a very complex neural network, high-resolution
frames, and a large data volume results in a need for immense computational power during training.
High monetary costs are a direct consequence of this, which is an actively discussed issue within the
field [2, 3, 5, 6].

During the first few iterations, the training of a neural network tends to converge relatively quickly.
Most frames produce substantial contributions to how we want to optimize the network; these contribu-
tions are known as gradients. At later stages of training, the network training slows down significantly.
To a large extent, this is due to the network already being able to produce correct predictions for the
bulk of the frames in the training set [5], resulting in tiny gradient updates. A fraction of frames
corresponding to objects and circumstances more challenging to handle for the network will keep pro-
ducing relatively large gradients [5]. Such frames significantly contribute to developing the network
training.

In this thesis, we will systematically investigate the possibility of improving the training time of
neural networks on CV tasks through importance sampling strategies. Oversampling the frames that
have a high impact on the learning of the network might be a powerful way of decreasing the training
time of neural networks on CV tasks while achieving a similar network performance in the end [5, 7].
Doing so would have a host of benefits as issues could be addressed more quickly in the new version of
the network. As a result, more experiments could be carried out to improve the network performance,
and as the data volume keeps growing larger and larger, the training time would stay manageable.

The structure of this thesis is as follows: in Chapter 2 the necessary knowledge for understanding
the results of this thesis is presented. A short overview of CV is followed by an extensive section
explaining deep learning. We go through what neural network architectures we use and how the
training and evaluation happen. In Chapter 3 there is a summary of previous studies regarding
importance sampling. This chapter concludes with an explanation of how this study aims to develop
the area further. In Chapter 4 we present the different datasets that are being used in our experiments.
This is also where we present the tools used in the thesis. The chapter concludes with an explanation
of our process when working on this thesis. Next is Chapter 5, where all the different experiments are
explained in detail, and their results are presented and also discussed. Lastly, Chapter 6 is where we
present the contributions and conclusions made from all the experiments combined. Even if the thesis
aims to improve OD training times, this thesis will implement its importance sampling strategies on
both image classification (IC) and OD tasks. Most chapters are divided in a logical way where we
separate discussions on IC and OD into different sections.

1



CHAPTER 1. INTRODUCTION 2

1.1 Purpose

This thesis investigates if and how we can improve the training times of neural networks on CV tasks
by using importance sampling. We aim to provide a broad understanding of importance sampling
strategies, like how and when they can be helpful. We do this by conducting experiments on different
datasets, networks, problems, and hyperparameters.

1.2 Collaboration

This thesis is done in collaboration with the software company Zenseact which develops high-end
software intended to ultimately create safe self-driving software that can be used in the real world.
The idea behind this thesis originated from the supervisors at Zenseact. They saw a need for a speed-
up of the training of their neural networks for OD. During the duration of this project, we, the authors,
have been able to work closely together with the supervisors through daily communication and weekly
check-up meetings. The results were presented to Zenseact as a means to share the intel we gathered
through this process.



Chapter 2

Background

Computer Vision (CV) is the scientific inquiry in how computers can gain understanding from videos
and images [8]. OD and IC are two of the most common tasks in CV and the development of complex
image and video analysis [9]. IC is a fundamental task in CV. Given an input image X, the aim is to
predict the class Y it belongs to among some predefined classes. Both classic CV and DL (DL) [10]
can be used to tackle such tasks. However, in some tasks, such as detecting other road users in a
self-driving vehicle, the classification of images is not enough. An integral part of OD is not only to
classify an object but also precisely estimate the location of said object. This type of method is called
OD. Two subtasks need to be solved in OD: 1) the localization and 2) the classification of objects [11].
Recently, DL has been the method of choice for real-world OD and can generally be divided into
two categories, 1) Two-staged detectors and 2) Single-stage detectors [12]. Two-staged detectors are
generally more accurate but too slow to be used in real-time applications as they would achieve far
worse detection performance than single-stage detectors. [12]. As autonomous vehicles are a real-time
application, the priority of quick inference is essential; therefore, single-stage detectors are used in this
thesis [12]. They treat the task as a single regression problem where objects are located and classified
in the same stage [12]. This thesis will evaluate importance sampling for both IC and OD to see if
the conclusions we make for each case can be generalized between the problems.

Understanding how neural networks work and train is needed so that we, later in this chapter,
grasp why and how an importance sampling algorithm can speed up the training of neural networks.
DL methods have outperformed previous state-of-the-art machine learning (ML) techniques for many
tasks, with CV being one of the most prominent fields [13]. There is a variety of DL frameworks in
use today. For this thesis, two different convolutional neural networks (CNNs) will be used for the
IC, while we use YOLOv2 for OD, which is a single-staged OD architecture [14]. CNNs are a class of
neural networks commonly used in CV; this section will explain their structure and how they work.
Afterward, we describe how training and evaluation are conducted in general and specifically for this
thesis.

2.1 Artificial Neural Networks

CNNs are a class of artificial neural networks (ANNs). ANNs are structured in a way that imitates
biological brains. This structuring has been proven helpful when dealing with CV tasks. The largest
component of the ANNs structure is its node layers. There is one input layer, one output layer, and
one or more hidden layers in a network. A simple representation of such a network can be seen in
Figure 2.1. Note that the network in the figure is a deep neural network, which is just a ANN with
multiple hidden layers. We send information from the input layer iteratively through each layer in
the network until the output layer is reached. At which point the network, based on the information
processing of each layer, makes a prediction. Information processing depends heavily on each layer’s
task and will be discussed in Section 2.1.1. With this very broad description of a ANN, we now focus
on what happens inside and between node layers.

3



CHAPTER 2. BACKGROUND 4

Figure 2.1: The basic element of a neural network: node computation. [15]

At their core, node layers consist of nodes that are called neurons, much like a biological brain.
Together with their weights, the neurons are what process the tasks of the neural network. The
computations connected to each neuron consist of

1. a set of inputs On,

2. a set of weights wn which determine the importance of each input, and

3. a bias b which determines the importance of that neuron.

How each neuron processes information from 1 to 3 can be viewed as the linear regression model

n∑
i=1

wi ×Oi + b (2.1)

The inputs On are the outputs of neurons from the previous layer. The weights wn of our neuron
are added to determine the importance of each input. These are tuned during the training stage [16].
Weighting is a crucial part of how an ANN works. The weights and bias are updated based on how
far from the truth our predictions from the output layer are. How this is done specifically is discussed
in Sections 2.2.1.1 and 2.2.1.2.

The resulting sum in 2.1 is then usually passed through an activation function f . These are used
to add non-linearity and ensure that the network does not degenerate into a single-layer network that
would have been linear [17]. For a visual representation of a neuron’s integral computations, see Figure
2.2. As earlier noted, how a neuron processes, its input depends heavily on what type of node layer
it is a part of. From Figure 2.2, we can observe connections with input going from O0 to On; these
connections are what send information between neurons. The resulting Oj from the neuron in Figure
2.2 will send information forward to neurons in the next layer, where it will be represented as one of
the Ois that is being received as input.

With what is usually thousands of these neurons divided into different node layers, a ANN can pro-
cess and send information through its network and hopefully, with training, provide correct predictions
for its tasks.

The idea we have presented in this section is for so-called multilayer perceptrons (MLPs), a class of
neural networks that use fully connected layers. They are characterized by having every neuron in one
layer send input to all neurons in the next one [19], making them fully connected. These are often used
to make predictions when the input is tabular data. Due to MLPs becoming heavily parameterized



CHAPTER 2. BACKGROUND 5

Figure 2.2: The basic element of a neural network: neuron computation. [18]

from high dimensional input, these networks are inferior to CNNs for CV tasks. Additionally, CNNs
also have the upper hand in CV because of the being spatially invariant, which MLPs are not.

2.1.1 Convolutional Neural Network

CNNs are currently the go-to method for CV. Its role is to reduce the images into a form that is easier
to process without losing critical features for getting a good prediction [20]. While not all their layers
do, some reduce the dimensionality of their input. As a result, they do not see the same problems as
MLPs when handling input of high dimensions. Additionally, a significant advantage of CNNs is that
they are spatially invariant. Compared to an MLP, which is acutely aware of which exact pixel some
information came from, a CNN is not. This precisely gives CNN their spatially invariant powers while
an MLP learns to only care about certain features if they appear in a particular pixel or set of pixels.
A noticeable difference to MLPs is also that CNNs can, instead of being exclusively fully connected,
be sparsely or partially connected [21]. In a CNN, there exist at least three types of layers. Those are:

• Convolutional layers, which are the pillars of any CNN. As the name suggests, the convo-
lutional layer performs a ”convolution”. It initially handles input like previously described,
multiplying it with weights. The convolutional layers differ by using what is called ”filters”.
They are matrices smaller than the input that can be used to detect specific parts of the input,
such as the edges of objects. They work by taking the dot-product of a filter-sized part of the
image and the filter. Later, summarizing the values of the dot-product through addition [22].
The final value of this process alludes to how well the region resembles the filter. By doing this
repeatedly, traversing the input, filters process the image. To visually understand how these
works see Figure 2.3. How it does this will depend on the two hyperparameters’ stride and
padding. The stride defines the step size of the filter as it passes over the input. The padding
defines how far outside the input the filter can go. At each step, the summarized value from the
dot product is added to what is called a ”feature map”; which is the output from the convolu-
tional layers filters [23]. The feature map is then passed through an activation function before
becoming the layer’s output. These filters are what cause the earlier described spatial invariance
of CNNs. By being iteratively used over segments spanning the entire input, the filters can
detect the features we look for anywhere in an image [22].

• Pooling layers are layers which, as the name gives away, pool together the input it receives and
reduces the dimensionality [21]. Given an input of feature maps from a convolutional layer, the
pooling layer typically divides the input into smaller regions. Each of these regions gets assigned
one value each, representing that entire region going forward [23]. There are different methods
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of obtaining this representative number. Two of the more common ones are max- and average
pooling. Max pooling will take the highest value in each region as a representation, while average
pooling will take the region’s average value. Pooling is used to reduce the dimensionality, thus
decreasing the computational power required to process the data [20].

• Fully connected layers have, as previously mentioned, every neuron in one layer sends input
to all neurons in the next one [19]. These layers are frequently used in the later parts of CNNs
to build more robust capabilities from the features given to them by previous layers [24].

Figure 2.3: Example of a Filter Applied to a Two-Dimensional Input to Create a Feature Map. [22]

An example of how all these layers look together in a CNN can be seen in Figure 2.4. In addition
to these layers, we use activation functions between layers. For this thesis, the activation functions
ReLU [25] and the softmax function [26] have been used. These layers can be seen in Figure 2.4.
Another challenge when working with CNNs is that it is hard to train models as the parameters in
each layer change during training, and thus the input and output to each layer change. This challenge
is referred to as internal covariate shift and is commonly addressed by batch normalization, which
normalizes the inputs [27]. For this study, we apply batch normalization as it allows for a higher
learning rate and less careful initialization [27]. The network’s final output is received after a pass
through a combination of all these types of layers.

The training and optimization of CNNs in practice will be further explained in the following
sections. Nevertheless, it is now time to address why we use CNNs for this thesis. One of the main
advantages of CNN is that the location is invariant, which means that the filter can find the pattern
anywhere in an image, no matter where the pattern is located [21]. This makes the network more
suited for an image-focused task as it allows to encode image-specific features into the architecture [21].

2.2 Training neural networks

This section describes the necessary knowledge to understand the training and optimization of our
neural networks. Before explaining how this thesis specifically optimizes our neural networks, we give
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Figure 2.4: A simple CNN architecture showing its most common components. The network in the
example give one prediction for 1000 different classes. [28]

a general introduction to the optimization algorithm gradient descent. Lastly, we present the loss
functions for our different tasks. A basic familiarity with these subjects is crucial to understanding
the aim of our importance sampling strategies.

2.2.1 Gradient Descent

Several existing methods exist for training and optimizing neural networks, and gradient descent is
one of the most popular and common algorithms [29]. The gradient is calculated from training on
labeled data where the algorithm minimizes the objective function J(θ) parameterized by the model
parameters θ. The parameters are updated in the opposite direction of the gradient of the objective
function J(θ) with respect to the parameters. To determine the size of the steps the algorithm utilizes
a learning rate n, which is used to scale the gradient update. Through this process, the goal is to
reach a local minimum, preferably not just any local minimum but a very low one. The process of
finding one is a task tackled differently depending on the method used; this is discussed in Section
2.2.1.3. This process can be visualized in Figure 2.5. At each training step, we move in the direction
of the slope of the hypersurface created by the objective function. We do this until the minimum is
reached [29]. We will explain each part of the training process in the following subsections. Before we
go into details about gradient descent it is worth mentioning that our description applies to the simple
MLP case. The MLP case is the easiest example from which you can illustrate the mechanisms.

2.2.1.1 Forward propagation and cost function

A forward pass is the first step in optimizing the model’s objective function, referred to as the cost
function. Furthermore, the parameters θ we aim to optimize will be referred by weights w, and biases
b as this more specifically representing what we actually optimize in a neural network. The forward
pass refers to the calculations of the output of a neural network. This series of calculations start from
the input data and then iteratively calculates each neuron in the next layer. Going from the input
to the output of each layer until the output of the last layer is obtained. The last layer’s output
corresponds to the actual prediction. After the forward pass, the predicted output is compared to the
target and measured with a cost function which we aim to optimize in training [31].

2.2.1.2 Back propagation - computing gardients

After a forward pass, the model performs backpropagation to calculate the gradients; this is the main
step in the gradient descent algorithm. The gradients tell us in what direction the parameters need to
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Figure 2.5: A visualization of how gradient descent finds the local optimum on a hypersurface. The
gradients descents path marked by the black line. [30]

change to minimize the cost function. There are different approaches for computing these, which differ
in how many samples are used in the gradient computation [29]. The most common approaches are
discussed in the subsection 2.2.1.3. Even though these methods accomplish the task differently, they
all share common characteristics in minimizing the cost function. The core idea of backpropagation
is to compute the relationship between the parameters of the neural network and the cost function.
This is done by calculating the partial derivatives of the cost function

∂C

∂wilj
(2.2)

of for the weight w, which adjust the strength of connections between neurons,

∂C

∂blj
(2.3)

of for the bias b, which make adjustments within neurons, in the neural network. These expressions
tell how changing the weights and biases change the behavior of cost function and thus the neural
network [31].

To understand the computation of the mentioned partial derivatives some details and expressions
about the network need to be clarified. Notation wj

l
k will be used to express the weight from the

kth neuron in the (l − 1)th layer to the jth neuron in the lth layer. Similarly, for the activation and
biases in the network: alj expresses the activation of the jth neuron in the lth layer. While blj expresses

the bias of jth neuron in the lth layer. wl express all weights connecting to layer l. Similarly, the
activation and bias vectors are defined as bl and al whose components take values alj and blj for each
neuron in the layer l. Another notation is σ to denote vectorizing a function (elementwise application
of a function). This is because the activations in one layer can be expressed and related to activations
in earlier layers al = σ(wla(l−1) + bl). When this is used, the quantity inside σ denotes as zl and is
called the weights input to neurons in layer l. These expressions will be used in a detailed description
of backpropagation, where the goal is to find the partial derivates of (2.2) and (2.3) [31].

To find the partial derivatives the first need is to find the loss δlj , for every jth neuron in every
layer l, which is defined as follow [31]:

δlj =
∂C

∂zlj
(2.4)
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Four fundamental equations are used to compute the loss and the two partial derivatives. The first
expresses the loss in the output layer L [31]

δLj =
∂C

∂aLj
σ′(zLj ) (2.5)

The first term of (2.5) denotes how fast the cost function changes for the jth output activation. In
other words, δlj will be small if C does not depend on the output from the jth neuron. The last term

expresses how fast the activation function σ changes at zLj . Another fundamental equation is the loss

δlj expressed in terms of the next layer δl+1
j [31]

δlj = ((wl+1)T δlj
+1)� σ′(zl) (2.6)

The loss in layer l + 1 multiplied by the weight matrix for layer l + 1 forms the error at the output
of layer l. When then taking the Hadamard product [32] �σ′(zl) of that, the error moves through the
activation function in layer l resulting in the error δlj in the weighted input to layer l. With (2.5) and

(2.6), it is possible to compute the error δl for any layer in the network. This is done by using (2.5) to
compute the error in the last layer δL and then using (2.6) to compute the error δL−1 and then (2.6)
again back to the first layer in the network [31]. The last two fundamental equations are for the rate
of change of the cost for any bias

∂C

∂blj
= δlj (2.7)

and,

∂C

∂wj lk
= alkδ

l
j (2.8)

any weight (2.8) [31]. The cost rate of change for the bias is exactly equal to the error δlj while

the cost rate of change for the weight is the error δlj multiplied by al−1 [31]. These computations
effectively measure the change of parameters concerning the cost function and tell the model in what
direction the parameters should be updated to minimize the cost function and thus improve the neural
network [31].

In summary, the backpropagation’s equations from (2.5) - (2.7) provide a way of computing the
gradients. zl and al are computed for each layer during the feed-forward process. After that, the loss
in the final layer L is computed with (2.5). Then followed by the computation of the loss backward
for each layer with (2.6). As a final step the gradients are computed with (2.8) and (2.7) [31]. The
backward movement through the network is the reason for the name backpropagation, starting from
the final layer and iterating backward through the network to find all losses. This explanation of
the backpropagation algorithm should provide enough understanding of the subject for this thesis.
As mentioned earlier, different approaches include varying data usage in backpropagation. These
approaches will be described in the three following subsections.

As mentioned, the description applies to the simple MLP case. It is a bit different in practice
as it uses automatic differentiation. Automatic differentiation is an approach for calculating values
of the partial derivatives in a given point, for instance, the gradient. Without going into details, it
decomposes any complex mathematical expression into a sequence of elementary ones for which the
derivative is known. Then the chain rule is applied to get the mathematical expression; gradients in
our case [33]. Note that it is the numerical value of each partial derivative.

2.2.1.3 Gradient Descent Variants

There exist some variants when computing the gradients during backpropagation. The three most
common approaches for computing these differ in the number of samples used in the gradient compu-
tation and will be described in the following paragraphs. Instead of using the cost function where we
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optimize the biases and weights, we will use the more general term, objective function J(θ) parame-
terized by the model parameters θ, again.

Batch gradient descent
The first variant, batch gradient descent, uses the entire dataset when computing the cost function
and the gradients using the four equations described in (2.5) - (2.7). If any trainable parameter is
expressed as θ, the update of θ can be described as

θt+1 = θt − η · ∇J(θt) (2.9)

The parameters are updated in the opposite direction of the gradients, where the update size is
determined by the learning rate η. When the gradient, ∇J(θ) for each parameter θ is computed by
using the whole dataset, this approach is slow and can cause memory problems for big datasets [29].
The main advantage of batch gradient descent is that it guarantees to converge to the global minimum
for convex error surfaces and to the local minimum for non-convex problem [29].

Stochastic gradient descent
In contrast to batch gradient descent, Stochastic gradient descent updates the parameters for each
training sample [29] and the parameters optimization is described as

θt+1 = θt − η · ∇J(θt;x
i; yi) (2.10)

Stochastic gradient descent performs an update after each sample; due to frequent updates with high
variance, the fluctuation is noticeable [29]. This fluctuation enables us to jump to a new and potentially
better local minimum. At the same time, Stochastic gradient descent can complicate convergence to
the exact minimum as there is a risk of overshooting if the learning rate η is too large. By decreasing
the learning rate η to a reasonable rate, Stochastic gradient descent shows the same convergence
behavior as batch gradient descent [29] apart from the fact that there is still noise from the statistical
uncertainty.

Mini-batch gradient descent
The third variant, Mini-batch gradient descent, mixes the two above. In this case, the parameters are
updated for every mini-batch of size n [29] which result in

θt+1 = θt − η · ∇J(θt;x
i:i+n; yi:i+n) (2.11)

The size of the batch varies depending on the experiment [29]. Mini-batch gradient descent is a
common choice when training neural networks as it provides a more stable convergence thanks to the
variance reduction in parameter updates [29]. In addition, it also does not have any of the drawbacks
of batch gradient descent. This variant of gradient descent is the baseline in this thesis. In selecting
batches in this approach, it is typical to reshuffle the dataset after each epoch and then iterate through
the dataset by sampling one batch at a time [34].

2.2.1.4 Optimization

Backpropagation is used to calculate the gradients efficiently, and as described above, this can either be
done by using one sample, all samples or averaging over n samples in a batch. Optimizers then use the
gradients computed during backpropagation to update the neural network parameters to minimize the
loss function. The Equations (2.9), (2.10) and (2.11) describes how the update of a neural network’s
parameters works. Each parameter θ in each layer is updated in the opposite direction of the gradient
−∇J(θ). The learning rate η determines how big the parameter update should be. Picking a tiny
learning rate can cause slow convergence, while a too big learning rate can hinder convergence since
this can cause overshooting of the optimal point [29]. Another challenge with the learning rate is that
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the same one is not necessarily the optimal one for all parameter updates. For instance, it can be
preferred to perform a larger update on parameters connected to rarely occurring features [29]. Due
to these challenges, the adaptive learning rate is often used during training [29]. For this thesis, we
use the Adam optimizer [35]. Adam stands for Adaptive Moment Estimation and is one adaptive
learning rate method. It uses momentum by having a moving average that includes the gradient of
our current step with gradients of previous steps in calculating the direction. Adam is chosen in this
study as its performance has been widely tested and is also computationally efficient [35].

2.2.2 Loss functions

In this section, we are talking about the cost functions used in our study. The loss function and cost
function are synonymous, the loss function is used when talking about a single training example while
the cost function, on the other hand, is the average loss over the entire training dataset. For simplicity,
we will in this section refer to loss functions and only look at one training example when we describe
what we applied to our experiments. For the loss function in IC see Section 2.2.2.1, and for OD see
Sections 2.2.2.2 and 2.2.3.

2.2.2.1 Loss function for image classification

For IC, the loss function is much more trivial than for OD. In the IC case, the probabilities for each
class will be compared to the target label with a loss function. In this study, the IC will be a multi-
class classification task; therefore, categorical cross-entropy [36] will be used as the loss function. The
following equation describes it:

Loss = −
C∑
i=0

yi log ŷi (2.12)

where ŷi is the ith scalar value in the model output, yi is the target label, and C is the number of
scalar values in the model output; in other words, the number of classes. The cross-entropy loss is
designed so that the neural network maximizes the likelihood of its parameters with respect to the
training data set [37].

2.2.2.2 You Only Look Once

OD is generally a more complex CV task to solve than IC. The following section explains how it
works with our chosen YOLO-model for OD. DL-based OD solutions can mainly be divided into two
sub-categories 1) Two-staged and 2) Single-stage detectors [12]. The first category is often referred to
as Region Proposal Based Framework and follows a more traditional pipeline by first locating objects
by generating region proposals and then classifying them [11]. The second category, single-stage
detectors, treats the task as a single regression problem where objects are located and classified in the
same stage. Therefore it is also common to refer to them as regression-based methods [12]. As single-
staged detectors can reduce time expense, this method is preferred for real-time applications, such
as autonomous vehicles, since quick inference is important [12]. The single-staged detectors includes
MultiBox [38], AttentionNet [39], G-CNN [40], YOLO [41], SSD [42], and more. For this thesis, we
use a version of YOLO called YOLOv2.

YOLO is a single CNN method that directly predicts bounding boxes, a rectangle surrounding an
object, and class probabilities [41]. The first version of YOLO was developed in 2015; then, it was a
new approach for object detction [41]. The idea behind YOLO is that the network divides the image
into regions, and for each region, it predicts bounding boxes and probabilities, visualized in Figure
2.6. More specifically, YOLO divides an image in an S ×S grid where each grid cell is responsible for
detecting all objects whose center is inside that cell [41]. Every grid cell predicts X bounding boxes,
and each box holds a confidence score and class probabilities C [41]. The confidence score is between
0 and 1, and defined as

p(Object) ∗ IOU truthpred (2.13)
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where p(Object) reflects how likely the box contains an object and IOU truthpred reflects how accurate
it thinks the box’s predicted coordinates are [41]. The IOU refers to intersection over union and is a
value between 0 and 1, representing the overlap between a predicted box and the ground truth. If an
object exists in the grid cell, this score should be close to 1 and otherwise close to 0 [41]. The C, class
probabilities, is a conditional class probability on the grid cell containing an object

p(Classi|Object) (2.14)

[41]. With this explained, the predictions are an S × S × (X ∗ 5 + C) tensor, where the number 5
represents each bounding box confidence score as well as the four coordinates: x, y, w, h where (x, y)
is the center location and (w, h) is the width and height of the bounding box [41]. In our study, we
use S = 13, X = 4, and C = 80. The reasons behind the different numbers are described in Section
2.2.3.

Figure 2.6: The picture illustrates the main idea of YOLO. The method divides the image into
regions, an S × S grid, for each region it predicts X bounding boxes. Each predicted bounding box
has a confidence score as well as C class probabilities. [41]

During training, YOLO optimizes the following loss function [41]

λcoord

S2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2 + (yi − ŷi)2] + λcoord

S2∑
i=0

B∑
j=0

1objij [(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2]

+

S2∑
i=0

B∑
j=0

1objij (Ci − Ĉi)2 + λnoobj

S2∑
i=0

B∑
j=0

1noobjij (Ci − Ĉi)2 +

S2∑
i=0

1obji

∑
c∈classes

(pi(c)− p̂i(c))2

(2.15)

The first two terms penalize the bounding boxes’ coordination predictions, the two following terms
penalize the confidence score predictions for the bounding boxes, and the last one penalizes the clas-
sification prediction for the bounding boxes. Each loss term does not consider all predicted bounding
boxes when calculating the total loss. To understand this and the loss function, we must understand
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some fundamental parts behind YOLO. The first thing to acknowledge is that the grid cell where an
object’s center falls is responsible for detecting that object; this will be referred to as a responsible
cell. Furthermore, there are three indicators to understand in the loss function (2.2.2.2). The first one

1objij is 1 if an object’s center falls inside the grid cell i and if the bounding box j gives the best IOU
among all X bounding boxes in that cell, that predicted box would be referred to as the responsible
box. The second one 1noobjij is 1 for all bounding boxes j in a grid cell i where no objects center falls

into, to be referred to as the non-responsible cell. The last indicator 1obji denotes 1 if it is a responsible
cell and thus any object’s center appears in cell i [41].

If we then go term by term in the loss function(2.2.2.2), the first two terms are only calculated

for bounding boxes where 1objij is 1. The 1 refers to all responsible boxes, where each should be close
to the corresponding ground truth bounding box coordinates (x, y, w, h) to minimize the coordination
loss. By taking the square root of the width and height in term two, we want deviations on larger
boxes to have a more negligible effect than deviations on smaller boxes. We achieve this by using
the square root as it downscales high values to a greater extent than lower ones. The loss terms are
multiplied by λcoord to emphasize the localization error [41].

Continuing to the third and fourth terms. These calculate the loss of the predicted confidence
score. For the responsible boxes, it should predict as close to 1 and is optimized by term three.
However, the loss of the confidence score is calculated not only for the responsible boxes but also for
grid cells with no object assigned. For non-responsible cells, the confidence score should be as close to
0 as possible for all bounding boxes. This is optimized by term four in the loss function(2.2.2.2). As
most cells do not contain any object, we have to weight this loss-term down to not train the model to
detect background more frequently than detecting objects; this is done by λnoobj [41].

The last term refers to the optimization of the classification. It is only calculated for the responsible
cells, grid cells responsible for predicting an object. This term minimizes the difference between the
conditional class predictions and the label class. Note that in the loss function(2.2.2.2), from original

YOLO, this classification error only calculates once per responsible cell as we have the indicator 1obji .
Important to note is that this is not the case for YOLOv2, which is the version used in this study.
The difference is that in YOLOv2, this is moved to the bounding box level, and thus it no longer
assumes that only one label is assigned to a grid cell. That means the indicator in the loss-class term
also changes to 1objij and thus penalizes the error for responsible boxes [14].

Another thing that changed in the loss function from YOLO to YOLOv2 is that two more contes-
tants λobj and λclass are added to weight terms three and five [14].

To summarize, the loss function for YOLOv2 penalizes coordination and classification errors only
for predictions that are responsible boxes in the responsible cells, bounding boxes that give the best
IOU among all bounding boxes in a grid cell where the ground truth’s center falls into. In comparison,
the confidence loss penalizes the loss function for grid cells that have and do not have objects assigned,
even if the boxes’ from responsible cells and non-responsible cell loss are weighted differently [14].

2.2.3 YOLOv2

In this study, YOLOv2, which is an improvement of the first release, will be used. This version focuses
on improving objects’ localization and bettering the relatively low recall seen in the first release [14].
One thing that was added and worth explaining in detail is anchor boxes. The original version of YOLO
predicts bounding boxes using fully connected layers after the convolutional feature extractor [14]. In
Faster R-CNN, a two-stage object detector, hand-picked priors are used [43]. In YOLOv2, we also
use priors to predict bounding boxes by removing the fully connected layer. Anchor boxes are a set
of boxes defined to match the desired ground truths in the training set best [14]. The shape of an
anchor box is width and height to match ground truth bounding boxes. Two hyperparameters have
to be predefined to decide the anchor boxes: 1. the number of anchor boxes, and 2. their shapes.
The YOLOv2 paper suggests using the K-means clustering algorithm to find these [14]. K-means
clustering consists mainly of two steps. First, we set the number of clusters and initialize those centers.
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The second step is to find the closest cluster for each ground truth in the training dataset and calculate
the IOU mean of all objects in each cluster. The mean is then used to recalculate the centers of the
clusters. The center of the clusters corresponds to the anchor boxes’ width and height. This second
step is repeated until two iterations give the same cluster centers, as this means we have found the
optimum of the cluster centers, and the algorithm has converged. We run this algorithm for different
K clusters to find the optimal number of anchor boxes. The scale of the anchor boxes is between 0
and 1, where the boxes are rescaled to localize objects for each cell.

It is also worth mentioning that YOLOv2 is improved by shrinking the resolution from 448x448
pixels to 416x416. This is because big objects often seem to have the center exactly in the middle of the
picture, and thus an odd number of grids are wanted, so we have a single-center cell [14]. Additionally,
to improve accuracy and regularize the model we use batch normalization for all convolutional layers
in YOLOv2 [14].

Aside from what has been improved, it is also essential to mention what flaws YOLOv2 has. The
main limitation of YOLOv2 is that it struggles to detect small objects, mainly due to only predicting
objects at one scale [44]. Later versions of YOLO used at least three different scales to be able to
predict smaller objects [44].

2.3 Importance sampling

Importance sampling is a technique used as an approximation method in statistics. In its application
importance sampling creates a new distribution used to sample from an original distribution. The
method is often used because the original distribution is hard to sample from or because importance
sampling can act as a variance reduction method, [5]. The sampling method is historically most
commonly used in Monte Carlo computing [45], [46], [47], [48] but has also seen implementations in
DL [6], [34] [7]. Its DL applications are used to obtain harder samples for the network to handle and
hopefully improve the learning. We start by demonstrating the methodology of importance sampling
in the context of Monte Carlo computations. Subsequently, we expand the method to the context of
DL.

A function f(x) and a density function p(x) has for its continous case the expected value

E p[f(x)] =

∫
p(x)f(x) dx (2.16)

Our goal in importance sampling is to approximate the expected value of f(x). If (2.16) has a high
dimensionality it can often be computationally intractable to calculate. To solve this it is possible to
approximate the expectation value (2.16) by computing an average over the sampled values from p(x)
and computing the function f for the sampled values of x. Resulting in

E p[f(x)] ≈ 1

N

N∑
n=1

f(xi)︸ ︷︷ ︸
m1

, xi ∼ p(x) (2.17)

By applying the central limit theorem [49] to m1, which is the result of (2.17), it approaches the
distibution

m1 → N (µ, σ2)

{
µ = E p[f(x)]

σ2 = 1
NVar p[f(x)]

(2.18)

This equation’s variance is limited by the variance of f(x) over the distribution p, so the square root
limits the σ. Importance sampling specifically introduces a new distribution when approximating the
values, which is fundamentally arbitrary but chosen to q(x). This distribution is used as a substitute
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distribution to p(x) and will be used in sampling. We can introduce this new distribution q(x) into
(2.17) by rewriting it as

E p[f(x)] =

∫
p(x)f(x)

q(x)

q(x)
dx (2.19)

This will not change the values of E p[f(x)] as long as q(x) > 0 whereever p(x)f(x) 6= 0. (2.19) can
be written as an expectation value over q instead of p:

E q

[
p(x)

q(x)
f(x)

]
=

∫
q(x)

[
p(x)

q(x)
f(x)

]
dx (2.20)

As we previously did to obatin (2.17) and (2.18) we are now able to get an approximation of (2.20)
by computing an average over the sampled values from q(x) and computing the function (f ∗ p)/q for
the sampled values of x. Resulting in

E q

[
p(x)

q(x)
f(x)

]
≈ 1

N

N∑
n=1

[
p(xi)

q(xi)
f(xi)

]
︸ ︷︷ ︸

m2

, xi ∼ q(x) (2.21)

In the same way, as we did for m1, we now get the distribution in which m2 approaches

m2 → N (µ, σ2)

{
µ = E p[f(x)]

σ2 = 1
NVar q

[
p(x)
q(x)f(x)

] (2.22)

In so, we can now sample q(x).
With (2.21) and 2.22 for the importance sampling we can now aim at reducing the variance of the

samples by making it so that the variance in (2.22) become lower than that in (2.18). To accomplish
this q(x) should be high where |p(x)f(x)| is high [50] [37]. In making the variance of the sampling
alogrithm decrease it is possible to obtain a better approximation of the expectation value faster than
previously.

Before we explain how this is done in DL, it is appropriate to demonstrate why importance sampling
can help us in CV tasks. In DL, we want to achieve an understanding of some unknown distributions.
In IC, for any class A, the model predicts the probability for class A given x, where x is any sample. In
order to understand what the model’s output describes, we can use Bayes’ theorem, then the model’s
output is p(A|x), called the posterior in Bayes theorem. If we invert the posterior, using the Bayes
theorem again, we can understand that the model needs to know a ratio of two pdfs and some trivial
prior of class A p(A). In the region where both pdfs are small, the tails will sample rarely, and that
is where it will learn more slowly.

Quite early on in the network training, it becomes good at distinguishing between classes where
one of the classes’ distribution is large relative to the other. During training, the real challenge
is to approximate the distribution’s tails (i.e., challenging samples). To visualize the tails, we use a
relatively easy DL task. We have a binary classification problem where the unknown distribution of the
two classes can look like in Figure 2.7. When the model is trying to approximate these distributions,
the real challenge is where X is close to 0 in Figure 2.7. In this area, the distributions are similar
in size, and both classes rarely fall in this region, so it will naturally take far more samples for the
network to become good at distinguishing between classes. Oversampling that area compared to the
two classes’ combined distribution density will result in the network learning how to handle these
samples better. In so, we will be making fewer misclassifications. Two important notes are regarding
our reasoning above. Firstly, Figure 2.7 is a visualization of the classes distribution density; in reality,
we are sampling points in some unknown high-dimensional hyperspace. However, there will still be
an unknown region between the two classes where the model the real challenge, and that is what the
figure 2.7 is trying to visualize. Secondly, we have to distinguish between our tasks and DL in general.
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In our case, we can assume that the classes are perfectly separable, which is not the case for DL tasks.
However, this is the reason it makes sense to oversample the challenging area.

Furthermore, by oversampling the tails, we will be oversampling some samples, and thus we might
also adjust the prior class distribution p(A). Therefore, the gradient might be biased because we shift
the class priors. We also use ”area under the curve” (AUC) as an evaluation metric, as it is invariant
under the prior class distributions and thus robust against the bias. More details of AUC will follow
in Section 2.4.2.

However, in making the sampling more concentrated on the tails of the distribution where the
more challenging samples are located, we reduce the sampling variance as in (2.22). Compared to
the Monte Carlo case, where we wanted the sampling to have a high probability where |p(x)f(x)| was
high, we, in this case, need some metric that can determine how hard a sample is for the network and
then shift the sampling appropriately. When this is accomplished, we select samples more efficiently,
seeing where we need to get better at classifying. In so, we possibly make the training of the network
more efficient.

Figure 2.7: Example of two normal distributions with some overlap.

To understand how importance sampling translates to DL, we will start by understanding what we
are trying to improve by introducing an importance sampling scheme. At its core, importance sampling
for DL is used to obtain more challenging samples at a higher rate than uniform sampling. Within
the application of DL, previous studies show that in doing so, we can improve the gradient estimate
for models such as classifiers where much of the cost function is made up of a minority of misclassified
samples [37]. Earlier studies have concluded that sampling these more complex samples with a higher
frequency can reduce the gradient’s variance, ultimately resulting in an increased convergence speed
[51]. We, therefore, focus on these more complex samples knowing that the network does well enough
on the easier ones.

To understand which samples are complex or easy for the network to handle, it is possible to use
the gradient of each sample. However, due to the high computational cost caused by continuously
calculating the gradients, it is computationally more effective to apply importance sampling to an
approximation of the gradient. One such is the loss function shown theoretically by Katharopoulos
et al. [7]. Their paper uses the loss function and constructs a framework that reduces the variance
and achieves better performance in speed and accuracy than uniform sampling. We apply the same
strategy for this thesis, using the loss function directly and sample proportional to it. A summary of
the theoretical background to why importance sampling can speed up the training of a network by
reducing its variance is as follow.

In the training of our CNN, the goal is to minimize

θ∗ = arg min
θ

1

N

N∑
i=1

L(ψ(xi; θ), yi) (2.23)



CHAPTER 2. BACKGROUND 17

,having xi and yi as the i-th output of the trainingset, ψ(xi; θ) as the DL model parameterized by
vector θ, and N being the number of samples in the trainingset.

Using the equation earlier presented for updating the parameters of Stochastic gradient descent
2.2.1.3, one iteration for updating the parameters in the vector θ is given by

θt+1 = θt − ηαi∇θtL(ψ(xi; θ), yi) (2.24)

with α as a weight of the i-th sample from a distribution p and a learning rate defined as η. Comparing
θs of one iteration to the next makes it possible to define the algorithm’s convergence speed (noted as
S). This is done by using each version’s distance from the optimal solution θ∗, resulting in

S = −E p[||θt+1 − θ∗||22 − ||θt − θ∗||22] (2.25)

Much like equation (2.17) for the Monte Carlo algorithm it is possible in this case to define

E p[αi∇θtL(ψ(xi; θ), yi)] = ∇θt
1

N

N∑
i=1

L(ψ(xi; θ), yi) (2.26)

, using this Wang et al. [52] has proven that S is

S = 2η(θt − θ∗)E p[αi∇θtL(ψ(xi; θ), yi)]

− η2E p[αi∇θtL(ψ(xi; θ), yi)]
TE p[αi∇θtL(ψ(xi; θ), yi)]

− η2Tr(Var p[αi∇θtL(ψ(xi; θ), yi)])

(2.27)

Looking at the term η2Tr(Var p[αi∇θtL(ψ(xi; θ), yi)]) in (2.27), we can see that minimizing this term
would lead to a speedup of S. The gradient expressed as the term αi∇θtL(ψ(xi; θ), yi) is used by
Katharopoulos et al. [7] to show that the loss can compute a tighter upper bound to the gradient
norm than uniform sampling. Katharopoulos et al. [7], proves that the variance reduction achieved
by sampling according to the loss achieves similar results to that of the gradient norm. Thus the loss
can be used as an approximation of the gradient [7]. In addition to Katharopoulos et al.’s proof,
the use of loss as an approximation of the gradient norm can be further motivated by Section 2.2.1.2
where the relationship between loss and gradient is described in detail. In this thesis, the samples are
therefore chosen for training at each iteration based on how large the loss (L(ψ(xi; θ), yi)) is for each
sample. The probability (Lossi) of each sample being drawn is set by calculating its probability,

pi =
L(ψ(xi; θ), yi)

1
N

∑N
j=1 L(ψ(xj ; θ), yj)

(2.28)

We have chosen to base the sampling on these probabilities instead of a uniform distribution that
selects batches randomly. Performing this probabilistic sampling will make it so that samples with
a high loss will be oversampled compared to the majority. In so, the variance which we looked to
minimize in (2.27) will decrease and in so decrease S.

2.4 Evaluation metrics

It is essential to have evaluation metrics that allow easy analysis to understand how well a model
performs. In this thesis, the confusion matrix has been the foundation of the evaluation. Using
the confusion matrix over multiple ”thresholds” (explained below), we can create more visual repre-
sentations such as AUC and ”average precision” (AP) for specific tasks. We explain these metrics
here.
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2.4.1 Confusion matrix

A confusion matrix is one of the more common metrics used to analyze performance in ML [53]. It
is an easy-to-understand way of visualizing how good a model is that we utilize in both the IC and
the OD part of this thesis. The matrix is split into four boxes, each containing a number representing
how many times that event has occurred in the ML model prediction [54]. A visual representation of a
confusion matrix can be seen in Table 2.1. The first measurement is true positives (TP), representing
the number of times the model can correctly predict an object. If there is an image where no object
is present, and the model correctly concludes not classifying any object in that image, then this is the
case of a true negative (TN). Note that TN is not used in OD. The latter two metrics are for false
classifications. The first is false positives (FP). It is when the model falsely classifies an image class
or falsely detects an object when there is no object present. The last, false negative (FN), is when the
model does not predict the image as a member of any class or detect an object, but it is in reality.
[54].

Actual
value

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

Table 2.1: Confusion matrix

Combining different parts of the confusion matrix result in new measurments. One is the true
positive rate (TPR) or recall

TPR =
TP

TP + FN
(2.29)

, which is the ratio between all the TP’s and the total number of ground truth positives. Another
important metric for this thesis is the false positive rate (FPR)

FPR =
FP

FP + TN
(2.30)

, which is the ratio between FP and the total number of ground truth negatives. Lastly, this thesis
uses precision,

Precision =
TP

TP + FP
(2.31)

, which represents the ratio between TP and the total number of predicted positives, the rate at which
the model’s predictions are correct.

2.4.2 Area under the curve with Receiver Operating Characteristics (ROC)

An integral part of this thesis evaluation is the area under the ROC curve, or the AUC for short.
It is one of the more popular methods for analyzing classification models. Before understanding the
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AUC measurement, the ROC must first be understood. The AUC is used widely with different curves
that calculate area. In our IC case, the curve that AUC refers to in its name is the ROC. The ROC
curve shows a model’s performance at all classification thresholds. A classification threshold governs
what we do or do not view as belonging to a specific class. At ”0”, the threshold tells us that all
cases belong to a class, and at ”1”, it tells us that no samples belong to a class. The ROC curve is
formed by plotting a model’s TPR (y-axis) against its FPR (x-axis), making it a probability curve
telling us how the TPR will behave over an increasing FPR. To visualize this process see the Figures
in 2.10. With a sliding classification threshold going from the right side of Figure 2.8 towards the left,
the ROC curve in 2.9 will be created. These figures represent the simplistic task of classification with
two classes. When there are more than two classes, a ROC for each class is created where the class is
compared to all other classes for its ROC [54].

Figure 2.8: Example of a confusion matrix distibutions. Figure 2.9: Example of a ROC-curve.

Figure 2.10: An example of a ROC-curve and the two distribution that creates it.[55]

To represent the model’s overall performance with the AUC for a task with more than two classes,
we use the same methodology as for the ROC. Moving from a ROC to an AUC is done by calculating
the area under the ROC curve, which is visualized in Figure 2.11. The AUC is calculated for each
class in comparison to all others. After that, an average of all AUCs is calculated as the final one [54].
In this study, all classes are weighted equally. This metric works well to indicate how ably the
model is at distinguishing classes. The average AUC provides an insensitive evaluation metric and
can withstand potentially unbalanced data created in oversampling rigid frames, as in importance
sampling. The AUC is a good way to compare importance, and uniform sampling as the average AUC
score compensates for unusual sampling frames.

Figure 2.11: Example of how a ROC curve (green line) relate to the AUC (gray area). [55]

2.4.3 Average precision

For OD, the mainly used metric for this thesis is AP. This metric makes use of some parts of the
confusion matrix, namely the recall2.29 and the precision2.31[56]. The AP creates a metric that
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combines these two measurements with the intersection over union (IOU)[56]. The IOU is a value
between 0 and 1, representing the overlap between a prediction and the ground truth. See Figure
2.12 for a visual representation[56]. It is used to assert if a prediction is a FP or a TP given some
threshold that is commonly set at IOU = 0.5. The prediction is defined to TP if IOU > 0.5 and FP
if IOU < 0.5[56]. When there are no predictions for the ground truth, it becomes a FN. It is also
categorized as a FN if IOU > 0.5, but the class is wrong [56]. It is also common to calculate TP and
FP for a range of different IOU thresholds[57]. In this study, we only use one threshold; this is the
most traditional way of doing it.

Figure 2.12: How the IOU for a prediction is calculated by being combined with its ground truth.

[58]

With the IOU being able to identify which predictions are correct or not, it is possible to calculate
the recall and precision according to (2.31) and (2.29). Continue to AP, defined as precision averaged
across all recall values. To calculate the AP-curve, we need to rank all predictions, which is done by
their confidence score[57]. When all predictions are ranked, we can iterate over them and calculate
the precision to the corresponding recall value[56]. To create the precision-recall curve, we plot these
against each other. One example of this is in Figure2.13 where the y-axis is the precision, and the
recall is the x-axis[56]. Calculating the area under that PR-curve results in AP score[56]. Note that
mAP often can refer to the same thing as AP, but it can also refer to taking the mean AP over all
classes and overall IOU thresholds[57]. In this thesis, the metric is referred to as AP as we neither use
the mean over classes nor IOU thresholds.
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Figure 2.13: Example of how an arbitrary AP curve could look.

[56]



Chapter 3

Related Work

Several previous studies have used importance sampling to accelerate the training of neural networks.
One application of importance sampling within DL has been in designing a scheme that provides
the neural network with increasing difficulty of samples, reflecting human learning [59]. More closely
related to this thesis, several studies use the history of losses, gradients, or an approximation of the
gradients for all seen samples as weighting to prioritize training examples during training [5–7, 34, 60,
61]. In this chapter, existing importance sampling methods will be revisited.

Both Schaul et al.[60] and Loshchilov et al.[34] use the losses as the weighting of the samples.
Loshchilov et al. [34] propose a simple strategy where all samples are ranked by their last known loss
value. The samples were then chosen with a probability that decays exponentially as a function of their
loss rank. In the study by Loshchilov et al. [34] they use the MNIST dataset to perform experiments
on image classification. The results show that their proposed sampling strategy speeds up by a factor
of 5. The paper also states that additional speedup would be possible by linking learning rates and
batch size [34]. A limitation of this study is that it does not generalize to other datasets or other DL
techniques such as OD. The study made by Schaul et al.[60] also uses the losses to weight samples.
Their result obtains faster learning with this approach and proves that the algorithm’s results are
robust and scalable. They test two variants, one which prioritizes proportional to the loss and another
that does rank-based prioritization. Both show to speed up compared to a uniform baseline [60]. The
experiments of the study are in Deep Q-Networks, which is a neural network that utilizes deep Q
learning [62] [60]. The results are demonstrated on Atari 2600 games, and the network can play games
on a human expert level. They show that prioritized experience replay outperforms uniform experience
replay on 41/49 games [60]. Uniform experience replay stores all experiences in a replay memory, and
during training of the network, draw random samples from memory. To summarize, both studies [34,
60] show promising results for importance sampling methods using loss as weighting. One common
challenge for both studies [34, 60] is that the history of losses may poorly reflect the current situation
as the model is constantly changing, and thus the loss for each sample does. Because of this, the main
limitation of the studies by Schaul et al. [60] and Loshchilov et al. [34] are that many hyperparameters
have to control the effect of samples with outdated weights. Schaul et al.[60] use different approaches
to smooth out the losses that work as the weighting, and Loschilov et al. [34] control when losses
are computed and how sampling distribution is computed based on the ranking by hyperparameters.
In contrast, prioritized experience replay prioritizes experiences that the reinforcement learning agent
learns most efficiently from [60].

Katharopoulos et al. have done two studies [5, 7] about importance sampling within DL. The first
one, which was released in 2017[7], shows that the loss can be used as an importance metric during
training in DL. The study results show that importance sampling effectively reduces the training time
compared to uniform sampling. Furthermore, the study[7] theoretically shows that faster convergence
is achieved by reducing the variance of the gradient, something that in this case is done through
importance sampling based on each sample loss. The paper show both theoretically and empirically
that the training of a DL network can be accelerated by using loss as an importance metric. Their

22
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study is based on image classification and language modeling tasks using deep convolutional and
recurrent neural networks. As the loss requires a complete forward pass, they propose a creation of a
parallel model to be able to approximate the loss and thus the importance of the samples to have a
low computational overhead. In comparison to their first study, Katharopoulos et al., in their second
study, released in 2018 [5], present importance scoring based on an upper bound to the gradient norm.
They use an upper bound for the gradient norm and not the actual gradient norm due to it being
computationally prohibitive. The upper bound can still be computed with only one forward pass. In
addition to that, the approach presented in the paper uses the upper bound to predict how useful
importance sampling will be. In so, it decides when to switch the importance sampling on and off
during training. The study [5] empirically proves that the importance sampling method achieves lower
training and test loss after equal length on three tasks: image classification, sequence classification,
and fine-tuning [5].

Another paper using gradient norm as an importance metric is Alain et al. [6]; this paper uses
an approach where gradient norms are calculated without storing the gradients themselves. This
study only applies to MLPs and not CNNs where parameter sharing is present. The results do show
that the importance sampling method led to significant improvements in training [6]. However, their
approach is computational heavy as more than a single forward pass of the network is needed. A
sixth study [61] claims an algorithm that is not sensitive to hyperparameters that neither requires
a calculation of all gradient norms, which is consuming to calculate. The study proposes a robust
approximate importance sampling that achieves at least a 20% speed up. Their proposed importance
sampling scheme approximates the gradient with an uncertainty set and then minimizes the worst-case
value of all possible gradient norms in that uncertainty set. The exact calculation and algorithm can
be found in their report [61]. However, compared to others presented work, this algorithm is not
sensitive to hyperparameters as robust approximate importance sampling trains the uncertainty set
in an adaptive manner[61].

3.1 Additions to the field

This study aims to add value to the understanding of importance sampling by doing the same exper-
iment on different datasets, providing more robust evidence for our importance sampling results. A
majority of previous studies have been carried out focusing on one dataset in determining the con-
vergence speed of their importance sampling [5–7, 34, 60]. Studies on importance sampling have
shown that the method outperforms uniform sampling in many tasks. However, no earlier study has
determined how importance sampling varies in performance depending on several different methods
used in sampling. Neither has any study determined how importance samplings performance depends
on the neural networks’ complexity. This study has explored different batch generators for importance
sampling and tried all experiments on two different neural network models to achieve context for when
importance sampling can be fruitful. While many of the previous studies on importance sampling have
examined the possibilities of the method when implemented in IC, [5, 7] research on its implemen-
tation on an OD problem is something that remains largely unexplored. Adding an assessment on
importance sampling for OD can hopefully further contribute to understanding the method.

Furthermore, most of the earlier mentioned studies [5, 7, 34, 61] show that IS outperforms uniform
sampling in convergence speed, but commonly they do not evaluate until full convergence is reached.
Two studies do evaluate until convergence is reached, [6, 60], but their experiments are not performed
on CNNs. The study by Alain et al. is performed on MLPs, and the study by Schaul et al. is
performed on Deep Q-Networks. With that said, we would like to make sure what happens later on
during training when comparing IS to NIS also for CNNs, as CNNs are one of the most commonly
used DL networks today [63].

Finally, the most common evaluation of network performance in the above studies seems to be
evaluation or training loss [5–7, 34, 61]. As we know, importance sampling might get a biased estimate
due to oversampling of informative samples. Thus changing the prior, we propose an evaluation metric



CHAPTER 3. RELATED WORK 24

robust to this bias. This is important to be able to check the network performance in an unbiased
way.



Chapter 4

Method

This thesis aims to systematically investigate the possibility of improving an OD network’s training
times through importance sampling strategies. In the following paragraph, we describe the method-
ology of investigating whether importance sampling is a powerful way of decreasing the training time
of neural networks.

The first step was to study scientific papers to identify promising methods that could improve the
training time by oversampling the frames that significantly impact the network’s learning. Part of the
result from this study is in Section 3. The next step was to create an environment where we used
uniform sampling on an IC and an OD problem. We created this using Python and TensorFlow4.3.
After ensuring the network worked well with uniform sampling, we implemented the importance sam-
pling methods. The central part of the overall process was developing different importance sampling
methods we could apply to the network’s training. Later, these methods were evaluated on both the
training and validation dataset to see how well they managed to speed up the training. These two steps
were done agilely; designing and building new setups was followed by testing and reviewing them. It
involved changing hyperparameters to understand if the weighting of samples affects the training time
and how they do so. In addition to the theoretical analysis explaining how importance sampling can
reduce training time by variance reduction, our developed sampling methods were empirically proven
by conducting experiments. The result can be seen in Section 5.

This section will now explain the methods we have applied during the thesis. We split it to explain
IC and OD separately, each going through the different datasets and networks they use. The section
ends with an explanation of which framework we used to solve all CV tasks.

4.1 Image Classification

This section describes the datasets used in the training and evaluation of the IC tasks. It also provides
information about which network architectures we used in the image classification experiments.

4.1.1 Data

The experiments on IC in this thesis are done using the German Traffic Sign Recognition Benchmark
(GTSRB) dataset and the Mapillary traffic sign (Mapillary) dataset. The GTSRB dataset is a single-
image set containing 43 classes at a total of 51,840 images[64]. The data was collected from a video
recording of a 10-hour drive in Germany on different road types. Each sign in the dataset consists of a
sequence of images referred to as a track. After data collection, the data was compiled by discarding
tracks with less than 30 images and discarding classes with less than nine tracks[64]. The reason for
keeping several images for each track is that since the traffic sign can vary a lot over the complete
track, for instance, at a high distance, the traffic sign may result in low resolution, and closer ones
result in motion blur[64].

25
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The Mapillary dataset has, in comparison to the GTSRB dataset, a variety of weathers, seasons,
time of day, and cameras [65]. The full dataset has a global geographic reach consisting of 100,000
images collected from 6 continents with over 300 traffic sign classes [65]. The actual dataset consists
of bounding box annotations for detecting and classifying traffic signs worldwide. This study used
the cropped version of all traffic signs bounding boxes, making it an IC problem instead of an OD
problem.

The main results of this thesis stem from experiments on the Mapillary dataset, while the results
from the GTSRB dataset function essentially as a way of validating the results from Mapillary and
generalizing the results. The GTSRB dataset was split into the same two subsets, the training and
validation set, having a 3:1 split ratio for all experiments. For Mapillary, the training and validation
set was split randomly with a ratio of 7:3 for each experiment.

4.1.2 Network Architecture

This section describes the architecture behind the two models used for the IC problems. We utilize
architectures which will be referred to as CrapNet (Section 4.1.2.2) and ResNet (Section 4.1.2.1).
Experiments carried out on both networks use similar hyperparameters in training. Both utilize the
same batch size of 256 and the Adam optimizer. The length we train each network is a difference
between the two. The more complex ResNet architecture converges significantly faster than CrapNet
in our experiments because of its greater capacity to solve complex tasks. The baseline used for the
models is what we present in the following sections. Depending on the experiment, the networks
may differ in how they look. All convolutional layers in the two networks are followed by batch
normalization to stabilize training, speed up convergence, and regularize the model [14], and lastly,
a ReLU activation function. For clarity these are not visualized in the architecture display in Tables
4.1 and 4.2. When downsampling the image resolution, both ResNet and CrapNet use convolutional
layers with stride 2. In these cases, the number of filters doubles. For ResNet, we use five stride-two
layers, which decreases the resolution to a 32:rd (25) of the original input. For CrapNet, two stride-two
layers decrease the resolution to a fourth (22) of the original input. At the end of each network, we
use global average pooling to get a 1 × channels vector, on which we then apply a fully-connected
layer for classification. Lastly, both networks apply a softmax activation function.

4.1.2.1 ResNet

ResNet is a residual network that, when introduced, was mainly focused on improving learning in
general. Another significant contribution from ResNet is that it also combats the problem of vanishing
gradients [66] and enables training on a high number of layers while maintaining good performance.
The architecture solves the problem by adding so-called ”shortcut connections” that send information
from one layer to another to skip multiple layers. Specifically for the thesis, we use a version of
ResNet, which is called ResNet-18. The architecture was created in 2015 by Kaiming et al. [67]. The
architecture of the network can be seen in Table 4.1. The network consists of mostly convolutional
layers, one fully connected layer, one max-pooling layer, a global average pooling layer, and a softmax
function. The network starts with a convolutional layer with a kernel size of 7×7 filters, followed by a
max-pooling layer. Most of the network consists of 16 convolutional layers, each applying 3× 3 filters.
The architecture ends with a global average pooling before applying a fully connected layer and a
softmax function for a final output of classes × 1. Missing in the table are the shortcut connections
that occur every other layer for ResNet-18 starting from the max-pooling layer [67].
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Type Filters Size/Stride Output
image

resolution

Convolutional 1 64 7 ×7/2 112 ×112

Maxpool 3 ×3/2 56 ×56

Convolutional 2 64 3 ×3/1 56 ×56

Convolutional 3 64 3 ×3/1 56 ×56

Convolutional 4 64 3 ×3/1 56 ×56

Convolutional 5 64 3 ×3/1 56 ×56

Convolutional 6 128 3 ×3/2 28 ×28

Convolutional 7 128 3 ×3/1 28 ×28

Convolutional 8 128 3 ×3/1 28 ×28

Convolutional 9 128 3 ×3/1 28 ×28

Convolutional 10 256 3 ×3/2 14 ×14

Convolutional 11 256 3 ×3/1 14 ×14

Convolutional 12 256 3 ×3/1 14 ×14

Convolutional 13 256 3 ×3/1 14 ×14

Convolutional 14 512 3 ×3/2 7 ×7

Convolutional 15 512 3 ×3/1 7 ×7

Convolutional 16 512 3 ×3/1 7 ×7

Convolutional 17 512 3 ×3/1 7 ×7

Avg. pooling Global classes ×1

Fully connected classes ×1

Softmax

Table 4.1: The architecture for ResNet-18
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4.1.2.2 CrapNet

CrapNet is a simple CNN benchmark explicitly created for this thesis, for which architecture can be
seen in Table 4.2. It is a simpler network than ResNet but still responds well to image classification
tasks. The networks used in real-time applications are much more complex than any network we
use. They also have much more data than parameters in their network. The networks are therefore
limited compared to the size of the datasets they use in training. Even if those networks are far more
complex than CrapNet, it might be a good comparison as the smallness of the network compared to
the size of the dataset resembles each other situation. CrapNet, with its longer learning curve, also
serves the purpose of exploring how different architectures react to IS. The architecture consists of 7
convolutional layers, one global average pooling layer, a fully connected layer, and a softmax function.
It initiates with seven convolutional layers where the first layer applies 7× 7 filters and the following
six use 3 × 3 filters. The first convolutional layer differs from all others by not using ReLU or batch
normalization. CrapNet ends in a global average pooling, a fully connected layer, and a layer with
softmax.

Type Filters Size/Stride Output
image

resolution

Convolutional 1 8 7 ×7/1 28 ×28

Convolutional 2 8 3 ×3/1 28 ×28

Convolutional 3 8 3 ×3/1 28 ×28

Convolutional 4 16 3 ×3/2 14 ×14

Convolutional 5 16 3 ×3/1 14 ×14

Convolutional 6 32 3 ×3/2 7 ×7

Convolutional 7 32 3 ×3/1 7 ×7

Avg. pooling Global classes ×1

Fullly connected classes ×1

Softmax

Table 4.2: The architecture for CrapNet.

4.2 Object Detection

This section describes the datasets used in the training and evaluation of the OD tasks. It also provides
information about which network architecture we used in the OD experiments and details how we use
said network.

4.2.1 Data

For OD tasks, a variety of popular datasets are in use today. Common ones are COCO [68] and
Pascal VOC [69] for 2D OD, and KITTI [70] and NuScenes [71] for 3D OD. While we use multiple
datasets in the IC experiments for the thesis’s OD part, we mainly wanted to explore if the methods
would translate. Due to this goal and time constraints, we implemented one dataset chosen to be
COCO. The dataset consists of 328,000 images containing 2.5 million labeled objects that belong to
91 classes of everyday objects. The thought behind the dataset’s content is to show objects in their
natural habitat to make it as realistic as possible and make it practically applicable [68]. The classes
used in the dataset are ”entry-level” categories, i.e., a German Sheppard dog is a member of the class
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”dog” and not specifically its breed. In contrast, COCO, which we use in IC, has images not explicitly
created for the dataset. Instead, it is collected from online images using search motors such as Google
and Bing. In collecting data, they wanted a majority of so-called ”non-iconic” images, which are
images with more than one object that also contain contextual information. To avoid making the
dataset contain too many similar images, we added a constraint of a maximum of five images from
one photographer during a short time window. For our experiments, we have used parts of the entire
dataset. More precisely, there are 82,081 images in the training set and 40,137 in the validation set,
roughly a ratio of 2:1 for training and validation.

4.2.2 YOLOv2 Anchor Boxes

As explained in the background about YOLOv2 2.2.3, we need to find anchor boxes for the COCO
dataset. We achieved this with the K-means clustering algorithm. The first step in the algorithm is
to look at the menu IoU. The results of the clusters with the different number of anchor boxes can be
seen in Figure 4.1 where it is easy to see that more clusters result in a better mean IoU of all objects in
the dataset. We expected this result as the optimal solution would have been to have K = N objects,
then the mean IoU would have been 1. Nevertheless, as it is very computationally heavy to have even
nine anchor boxes, it is common to use an elbow curve [72] to decide on a point where diminishing
returns are no longer worth the additional cost. To find the elbow on the curve, we look at where the
slope of the mean IoU stops being ”substantially” large. Given our curve, which can be seen in Figure
4.2, at least four or more anchor boxes would be a reasonable choice as the rise of the curve flattened
out after N = 4. In Redmon et al.’s paper [14] they use five anchor boxes which made us try the
experiments on both four and five anchor boxes. An important note is that when using anchor boxes,
there is a risk of having too specialized predictors. Thus some objects may not achieve IoU of 50%
with predefined anchor boxes. However, as this study aims not to create the best object detector but
instead to create a network that can compare sampling methods, this is ok. When adding the anchor
boxes, the class prediction mechanism also changes slightly from the original YOLO. Now the class is
predicted for every anchor box instead of predicting class probabilities per grid cell as in the original
YOLO [14]. This improvement increases the recall [14].

Figure 4.1: Our IoU mean for different number of Anchor Boxes.
Ranging from two to ten Anchor Boxes.
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Figure 4.2: Our elbow curve for
different number of Anchor Boxes.
The idea is that the true number
of clusters is captuered when the
increase in the mean IoU slope is
”substantially” large. In this case,
four or five anchor boxes may be a
good size.
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4.2.3 Object Localization

As we have already evaluated importance sampling methods for IC, the most interesting part to analyze
in OD is the object localization. Therefore experiments with YOLOv2 without the classification have
been performed. We accomplish this by removing the classification part of the network. This is done
by changing filter size from anchorsboxes×85 to anchorboxes×5. The change alters the dimensionality
of the final convolutional layer from the output space. Thus, the final output tensor was changed to
S × S × (X × 5) instead of S × S × (X × 5 + C). As a result, the rest of the code needed to change
accordingly. The main change was that the loss function in (2.2.2.2) remove the classification error as
it is not taken into account when optimizing the neural network

λcoord

S2∑
i=0

B∑
j=0

1objij [(xi − x̂i)2 + (yi − ŷi)2] + λcoord

S2∑
i=0

B∑
j=0

1objij [(
√
wi −

√
ŵi)

2 + (
√
hi −

√
ĥi)

2]

+
S2∑
i=0

B∑
j=0

1objij (Ci − Ĉi)2 + λnoobj

S2∑
i=0

B∑
j=0

1noobjij (Ci − Ĉi)2

(4.1)

4.2.4 Network Arcitecture

This section explains the networks which YOLOv2 uses as its backbone. Much of what we applied to
the networks used in IC also applies to the OD network. All experiments use the Adam optimizer.
A major difference compared to IC is that a limiting factor is GPU memory when we operate on
high-resolution images, which we need for the localization of objects. The batch size varies between
experiments and is between 16 and 128. It is important to note that what we present in the following
sections is the baseline used for the models. Depending on the experiment, the networks may differ
in how they look. Unlike IC, the network used in OD was pre-trained. The convolutional layers and
the batch normalization layers were initialized with weights. The model was pre-trained on COCO,
and the weights were taken from YOLO’s official website[73].

There are some cases where we want to see how performance depends on a model’s complexity.
For those experiments, we increase the trainable parameter count of the model. This does not add
any new layer to the model, as it is done by widening the models and increasing the channel count of
all convolutions.

4.2.4.1 DarkNet

DarkNet is the network architecture we use for OD. It was introduced in 2016 by Redmon et al. [14].
The core architecture consists of 23 convolutional layers, five max-pooling stride-two layers, and a
layer used to reshape the output. The structure can be seen in Table 4.3. For the convolutional
layers, the model switches between using 3 × 3 and 1 × 1 filters [14]. A notable difference between
convolutional layers that use 3×3 and those that use 1×1 filters is that the ones that adopt 1×1 use
half the number of filters in their layer. Most convolutional layers are followed by batch normalization
and a ReLU function. The final output from the model is of shape 13 × 13 × 4 × 5 if we use four
anchor boxes. 13 × 13 represents all the cells in the grid, 4 represents the bounding boxes predicted
for each cell, and 5 represents the bounding box confidence score plus its x, y, w, and h coordinates.
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For DarkNet, one shortcut connection is added between the 13th and the 21st convolutional layer.
DarkNet, like the other networks, utilizes stride-two, which, when applied, cuts the size of each axis
in the feature map/output in half. We double the number of filters used from there on out for these
layers.
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Type Filters Size/Stride Output
image

resolution

Convolutional 1 32 3 ×3/1 416 ×416

Maxpool 1 2 ×2/2 208 ×208

Convolutional 2 64 3 ×3/1 208 ×208

Maxpool 2 2 ×2/2 104 ×104

Convolutional 3 128 3 ×3/1 104 ×104

Convolutional 4 64 1 ×1/1 104 ×104

Convolutional 5 128 3 ×3/1 104 ×104

Maxpool 3 2 ×2/2 52 ×52

Convolutional 6 256 3 ×3/1 52 ×52

Convolutional 7 128 1 ×1/1 52 ×52

Convolutional 8 256 3 ×3/1 52 ×52

Maxpool 4 2 ×2/2 26 ×26

Convolutional 9 512 3 ×3/1 26 ×26

Convolutional 10 256 1 ×1/1 26 ×26

Convolutional 11 512 3 ×3/1 26 ×26

Convolutional 12 256 1 ×1/1 26 ×26

Convolutional 13 512 3 ×3/1 26 ×26

Maxpool 5 2 ×2/2 13 ×13

Convolutional 14 1024 3 ×3/1 13 ×13

Convolutional 15 512 1 ×1/1 13 ×13

Convolutional 16 1024 3 ×3/1 13 ×13

Convolutional 17 512 1 ×1/1 13 ×13

Convolutional 18 1024 3 ×3/1 13 ×13

Convolutional 19 1024 3 ×3/1 13 ×13

Convolutional 20 64 1 ×1/1 26 ×26

Convolutional 21 1024 3 ×3/1 13 ×13

Convolutional 22 1024 3 ×3/1 13 ×13

Convolutional 23 20 3 ×3/1 13 ×13

Reshape 13
×13× 4× 5

Table 4.3: The architecture for DarkNet.
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4.3 Framework

Throughout the experiments in this thesis, the end-to-end platform for ML, Tensorflow[74], is the
DL framework we use. Tensorflow implements automatic differentiation as the underlying principle of
gradient computation. To differentiate automatically, Tensorflow needs to know the order of operations
during the forward pass. By remembering this, Tensorflow traverses the graph of operations and
computes the gradients during the backward pass[75]. More closely, we used the tf.GradientTape API,
provided by Tensorflow, for automatic differentiation[75]. This API records the order of operations
inside the context of a tf.GradientTape onto a tape and then use this to compute gradient using reverse
mode. Thus the loss for the current batch is calculated as a forward pass inside the GradientTape as
shown in Code-snippet 1. Both are passed as sources to the gradient method to get the final gradient
of the loss for the trainable parameters in the model[75].

Algorithm 1 Code sample of gradients calculation using Tensorflow tf.GradientTape API

with GradientTape as tape:
y = model(x) . Forward pass
loss = loss function(y) . Forward pass

gradients = tf.tape.gradient(loss, trainable variables) . Backpropagation



Chapter 5

Experiments

In this section, we present all experiments used to analyze the behavior of the proposed importance
sampling schemes. The section is divided between 5.1, 5.2.1 and 5.2.2. Common for all is that we
compare every experiment using importance sampling to an experiment with uniform sampling. For
readability, this chapter will refer to these as IS (importance sampling) and NIS (uniform sampling).
Instead of the average AUC score, we use the 1-AUC score to compare sampling methods in IC. We
report it on a logarithmic scale where all classes contribute equally. Note that, opposite to the AUC
score, this metric achieves higher performance as the values decrease. In OD evaluation, we use the
metrics recall, precision, and AP.

The baseline of how we use the IS scheme in all our experiments is as presented in (2.28). To
perform IS, we need to get the losses for all samples in the dataset. Therefore we need to complete
one iteration over the entirety of the dataset. Before we initialize the training, the strategy is to set
every sample loss in the loss table to a much higher value than they will ever receive from training.
Every sample is likely to be selected for training once before any of them is selected a second time. In
turn, IS has no effect during the first epoch of the training.

For robustness, each experiment presented has been running 20-100 times, and the average is
what we report. One important thing to point out is that all the experiments deviate slightly from
the theoretical analysis presented in Section 2 by sampling Mini-batch gradient descent instead of
Stochastic gradient descent. In addition, the Adam optimizer is used instead of the constant learning
rate presented in (2.24). Other than that, there is some variation in how the IS is sampled depending
on the experiment. These variations of the sampling will be discussed for each experiment separately.

5.1 Image Classification

This section represents the majority of all experiments carried out for this thesis. In Section 5.1.1 we
explain experiments examining how a network’s complexity affects IS performance. In Section 5.1.2,
we review how the weighting for losses implementation affects IS in different training stages. Lastly, in
Section 5.1.3 a comparison between different IS methods is presented. In order to check IS performance
at a later stage in training, we run the experiments long enough to reach full convergence. We partly
motivate this by lacking previous studies analyzing IS performance in convergence. To summarize
what the experiments of this chapter aim to investigate, we use the following four points.

1. If IS can gain convergence speed compared to NIS.

2. How IS is related to model complexity in terms of the number of parameters.

3. How different models will differ in performance by making the losses exponentially larger or
smaller.

4. How different IS methods perform against each other.

34
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5.1.1 Model Complexity

While previous studies, see Section 3, show that IS outperforms NIS in terms of convergence speed.
This study aims to analyze if there is any correlation between IS and a model’s complexity to gain a
deeper understanding of the effectiveness of IS.

We decided to customize the models by changing the number of trainable parameters to set up the
experiments, thus getting a range of different model complexities. The two model architectures, ResNet
and CrapNet, were used where ResNet is more complex than CrapNet. We use each architecture, and
its range of model complexities for all experiments we perform to map out how model complexity
affects IS performance.

Initially we present CrapNet displaying the average 1-AUC results for three different models re-
spectively having 2.1× 105 (Figure 5.1), 3.4× 105 (Figure 5.2), and 5.2× 105 (Figure 5.3) number of
trainable parameters. The first one, Figure 5.1, which is less parameterized, clearly shows that IS per-
forms better faster than NIS. One can also see that the final performance does not differ significantly
between NIS and IS. Similar results are found for the other, more heavily parameterized CrapNet
models see Figures 5.2 and 5.3.
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Figure 5.1: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on CrapNet with 2.1×105 train-
able parameters using the Map-
illary dataset.
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Figure 5.2: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on CrapNet with 3.4×105 train-
able parameters using the Map-
illary dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of samples 1e6

10 2

10 1

1-
AU

C

Average 1-AUC for importance sampling
Average 1-AUC without importance sampling

Figure 5.3: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on CrapNet with 5.2×105 train-
able parameters using the Map-
illary dataset.

Our similar experiments for ResNet can be seen in Figures 5.4, 5.5, and 5.6. In the first one,
Figure 5.4, IS still outperforms NIS. In the other two Figures, 5.5 and 5.6, the models are heavily
parameterized. They most likely overparameterize compared to the dataset, and the effect of IS seems
not to be as competitive anymore. In some cases, it even seems to reach worse performance in the
later stage of training5.5.

To get an overview of the performance of IS in correlation to the model complexity, we ran the
experiment for a range of different numbers of parameters for each type of network. For CrapNet, it
ranged between 25k and 520k trainable parameters for a combined ten different models. Moreover, for
ResNet, it ranged between 120k and 9300k parameters for ten different models. The experiment results
are shown in two types of graphs, one showing the convergence speed against the number of trainable
parameters and the other showing max performance against the number of trainable parameters. The
convergence speed, on the y-axis, in Figures 5.7 and 5.9, expresses how soon we reach max performance
in terms of number of samples. The maximum performance is where we reach the average maximum
performance. The average performance over 2000 batches was compared against each other to find
this average maximum performance. As we are interested in where the convergence starts, the earlier
one was selected if two average values had the same performance. As mentioned, the models have
been trained for a long enough time to ensure convergence, and thus average maximum value will
reflect where the model starts to converge.

Starting with CrapNet, Figure 5.7 represents the convergence speed versus the number of pa-
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Figure 5.4: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on ResNet with 2.9 × 106 train-
able parameters using the Map-
illary dataset.
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Figure 5.5: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on ResNet with 5.6 × 106 train-
able parameters using the Map-
illary dataset.
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Figure 5.6: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on ResNet with 9.3 × 106 train-
able parameters using the Map-
illary dataset.

rameters, and Figure 5.8 the max performance versus the number of parameters. The figures are
complements of each other, as no conclusion can be made from only analyzing the convergence speed
without checking the performance at a particular convergence stage. In both figures, the values of one
standard deviation are shown by the area around the two lines. These are used to understand how
the 100 runs are distributed, thus giving us insight into how stable the methods are.
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Figure 5.7: A comparison of convergence speed depending on the number of trainable parameters in
the network. The plot compares NIS and IS and displays each sampling method’s average performance
with one standard deviation. The y-axis shows how many samples have been processed before the
network’s 1-AUC value converges; convergence is given by which 2000 batches have the highest average
performance. The experiment is on CrapNet using the Mapillary dataset.
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Figure 5.8: How the performance of a model varies based on its number of trainable parameters. The
performance is given by the model 1-AUC score at its highest average performance over 2000 samples.
The runs are on CrapNet using the Mapillary dataset.
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Looking at the comparison between the sampling methods for CrapNet in Figure 5.7, one can see
that IS reaches convergence faster than NIS. In addition, Figure 5.8 shows that IS performs better or
is similar to NIS. The experiments on ResNet shows similar results, see Figure 5.9 and 5.10.
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Figure 5.9: A comparison of convergence speed depending on the number of trainable parameters in
the network. The plot compares NIS and IS and displays each sampling method’s average performance
with one standard deviation. The y-axis shows how many samples have been processed before the
network’s 1-AUC value converges; convergence is given by which 2000 batches have the highest average
performance. The experiment is on ResNet using the Mapillary dataset.
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Figure 5.10: How the performance of a model varies based on its number of trainable parameters. The
performance is given by the model 1-AUC score at its highest average performance over 2000 samples.
The runs are on ResNet using the Mapillary dataset.
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Therefore, one can argue that IS needs fewer samples to reach max performance and get the same
or better asymptotic performance. We cannot argue for any clear correlation between IS and the
complexity of either ResNet or Crapnet from the results of the Mapillary dataset. One can argue that
IS would be more beneficial for less complex model architectures, represented by CrapNet (see Figure
5.7), as the difference between IS and NIS convergence speed is slightly larger than for ResNet (see
Figure 5.9). In addition, less complex models naturally take a longer time to train, thus increasing
the need to speed up the training.

Earlier, we discussed the costs of training a neural network. Increasing training times extensively
for a minor increase in performance, which we might be able to achieve in convergence, is not always
possible or profitable. One can argue that IS would be more useful when full convergence is not needed,
which is often the case. By that logic, IS could be advantageous independent of how it performs in
convergence. An arbitrary comparison of NIS and IS can be seen in Figure 5.11. This comparison
shows that IS outperforms NIS significantly during the first half of the training. When the model
reaches a stage of convergence, NIS’s 1-AUC score becomes almost identical to IS’s. We should add
that the comparison is made regarding the number of samples, not the actual time. As we know,
IS needs a complete forward pass to compute the weighting of samples. Therefore it would be an
engineering challenge to not incur any runtime overhead from sampling the images tagged by IS. That
said, IS should be viewed as the preferred sampling method when full convergence is not needed.
When max performance is needed, the conclusion of whether IS or NIS is preferred is not as clear.
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Figure 5.11: Comparison of 1-AUC score for NIS and IS over number of samples on CrapNet. The
window clearly showing that IS outperforms NIS.

When checking the results for GTSRB dataset, IS continue to reach max performance earlier than
NIS see Figures 5.12 and 5.14. When looking at average max performance in Figure 5.13 and 5.15,
NIS clearly reach better final performance than IS. These results would further motivate that IS is not
preferred when max performance is needed. Before deciding whether IS should be preferred when max
performance is not needed, we must discuss the differences in the datasets we use. As mentioned in
Section Data 4.1.1 GTSRB is a more narrow dataset than Mapillary. Therefore, the Mapillary dataset
results should be considered as the immediate results, but it is interesting to see how IS performance
varies depending on multiple parameters.
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Figure 5.12: A comparison of convergence speed depending on the number of trainable parameters in
the network. The plot compares NIS and IS and displays each sampling method’s average performance
with one standard deviation. The y-axis shows how many samples have been processed before the
network’s 1-AUC value converges; convergence is given by which 2000 batches have the highest average
performance. The experiment is on CrapNet using the GTSRB dataset.
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Figure 5.13: How the performance of a model varies based on its number of trainable parameters. The
performance is given by the model 1-AUC score at its highest average performance over 2000 samples.
The runs are on CrapNet using the GTSRB dataset.
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Figure 5.14: A comparison of convergence speed depending on the number of trainable parameters in
the network. The plot compares NIS and IS and displays each sampling method’s average performance
with one standard deviation. The y-axis shows how many samples have been processed before the
network’s 1-AUC value converges; convergence is given by which 2000 batches have the highest average
performance. The experiment is on ResNet using the GTSRB dataset.
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Figure 5.15: How the performance of a model varies based on its number of trainable parameters. The
performance is given by the model 1-AUC score at its highest average performance over 2000 samples.
The runs are on ResNet using the GTSRB dataset.
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When checking the results of the 1-AUC score for the GTSRB dataset using ResNet, one repre-
sentative result is found in Figure 5.16, the model learns almost everything in the first two epochs and
then only improves its 1-AUC score marginally. It suggests that our model is overparameterized, and
thus all challenging samples can be learned by heart. We believe this could be why NIS outperforms
IS regarding the final performance.

Looking at CrapNet for the GTSRB dataset, one can see that the least parameterized models in
Figure 5.17 are still very advantageous in IS when looking at convergence speed. When the number
of parameters increases, as in Figure 5.18, for the CrapNet model, the results differ from what we
observed on the Mapillary dataset. IS reaches better or equal performance for the figure’s first 10-15
epochs. After that, IS becomes much worse in performance and oscillates upwards. This explains why
Figure 5.13 is showing better maximum performance for NIS. One potential explanation could be that
the model gets biased toward the more challenging samples and ”forget” the easier ones. However,
drawing any definitive conclusions regarding this is hard without deeply analyzing specific samples
chosen in IS.

With the results from the different datasets, network architecture, and network complexity in mind,
we can say that IS correlates with model complexity in some cases. Regarding the above results, what
can be said is that our IS method mainly performs worse or is equal to NIS when max performance is
needed. Whether IS is preferred when max performance is not needed depends on how complex the
model is compared to the dataset, but possibly more things. If the model is not overparameterized, it
is more likely that IS would be preferred, as motivated by the Mapillary results.
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Figure 5.16: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on ResNet with 3.9 × 106 train-
able parameters using the GT-
SRB dataset.
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Figure 5.17: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on CrapNet with 2.1×104 train-
able parameters using the GT-
SRB dataset.
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Figure 5.18: Comparison of 1-
AUC score for NIS and IS over
number of samples. The runs are
on CrapNet with 2.1×105 train-
able parameters using the GT-
SRB dataset.
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5.1.2 Weighting of Loss Function

In assessing the effectiveness of IS, a comparison of how weighting each sample loss would affect the
convergence speed is yet to be conducted. In the past, there have been studies examining how weighting
losses are connected to the performance of a network, for example, using dynamically-weighted loss
functions for prognostics in the automotive and aerospace industry [76]. Said study does, however, not
involve IS. Given (2.28) which is used for calculating the probability of each sample getting chosen,
a growing curiosity in how weighting losses by exponentially scaling came to be. We make it so that
the loss distribution differences become larger or smaller in terms of percentage through exponential
scaling. This result in an increased or shrunk difference in the probability distribution of all samples.
To set up this experiment we needed to update (2.28) by adding an exponential variable ω,

Lossi =
(L(ψ(xi; θ), yi)

ω

1
N

∑N
j=1(L(ψ(xj ; θ), yj)ω)

(5.1)

We use the resulting equation to create the new probability distributions, which we then sampled.
To determine whether a large or small exponent was most suited for increasing the convergence speed,
several different values of ω were used. Varying from experiment to experiment, the ω’s used were:
[0.1, 0.5, 1.0, 1.5, 2.0], all of which were compared to NIS.

We introduce our results from running this experiment on the Mapillary dataset. In Figure 5.19 the
experiment can be seen on the ResNet network, where the network has a total of 2.7× 106 trainable
parameters. As expected, there is no or only a tiny difference between each loss exponent in the
beginning. After the first epoch, when IS takes effect, the higher exponents (1.5, 2.0) 1-AUC go down
faster than the lower ones (0.1, 0.5), and all IS exponents perform better than the line corresponding
to NIS. After this initial performance boost, which occurs during the second epoch, the different
exponents vary in performance over the following several epochs. We can see a clear performance
difference between the higher and the lower exponents. Here the 1-AUC for the highest exponent
(2.0) starts becoming larger as it finally converges with the highest 1-AUC among the used exponents.
The same behavior is observed, but not to the same extent, for other high loss exponents such as 1.0
and 1.5, where the 1-AUC score converges at roughly the same value. The lower exponents 0.5 and
0.1 converge later in their runs at lower values than those of the higher exponents.

After the initial peak in performance from higher loss exponents, loss exponent 0.1 becomes the
exponent with the lowest 1-AUC value and remains so for the rest of the experiment. We also observe
that some high exponents obtain a worse 1-AUC score than NIS midway through the experiment. In
the end, NIS converges at a 1-AUC value similar to the high loss exponents. When looking at Figure
5.19 a pattern becomes apparent. Partly that the higher the loss exponent, the earlier the peak, but
also that they in their peak beat out every other runs 1-AUC. We also see that the lower the exponent,
the better the performance in convergence.

In Figure 5.20 the corresponding experiment but on CrapNet can be seen where the network has
2.1 × 105 trainable parameters. Other than the behavior of the different IS exponent coming far
later in these runs, caused by the differences between CrapNet and ResNet, changing the model does
not change much in behavior. The most significant difference compared to Figure 5.19 is that NIS
cannot outperform any exponent. Comparing the CrapNet result to the ResNet ones, we see the same
performance increase for the higher exponents in the beginning. That switches during the third epoch
as lower exponents start getting better performance. A difference between CrapNet and ResNet is
that we cannot see as clearly that smaller exponents are the best in convergence as they are far closer
together in performance.
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Figure 5.19: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for ResNet with 2.7 × 106 trainable parameters on the
Mapillary dataset.
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Figure 5.20: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for CrapNet with 2.1 × 105 trainable parameters on the
Mapillary dataset.
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When performing the experiments on the GTSRB dataset, as seen in Figure 5.21 for the ResNet
network, we observed the same behavior as ResNet did on the Mapillary dataset. After that, the
result becomes much harder to distinguish between as they are relatively close in performance. It is
possible to see the previous behavior where higher exponents perform better early and peak early. In
convergence, we see a clear difference between high and low exponents as the low ones perform far
better. Compared to the experiment on the Mapillary dataset, NIS is quite close to being the best
performer throughout the run. Some IS runs beat it, but in convergence, it is apparent that only the
lowest exponent, 0.1, can compete with its 1-AUC score.
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Figure 5.21: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, and 2.0 and NIS. The runs are for ResNet with 2.7×106 trainable parameters on the Mapillary
dataset.

In Figure 5.22 we see the same experiment for the GTSRB dataset on CrapNet. The result tells
much of the same story. The observed behavior in Figure 5.21 is far more exaggerated in this case.
There are two significant differences between this experiment and all previous ones. First, it seems as
if the higher exponents not only peak once but twice and also get the same oscillations that we saw
in Figure 5.18. Secondly, NIS beat all IS sampling methods in convergence.
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Figure 5.22: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, and 2.0 and NIS. The runs are for CrapNet with 2.1×105 trainable parameters on the GTSRB
dataset.
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In combination with the experiments described in Section 5.1.1 the experiments on loss exponents
were expanded. To build upon our earlier analysis of the correlation to the model complexity, we made
sure to do the experiments on both ResNet and CrapNet with three different number of parameters
of each model. For CrapNet that is 2.1 × 105, 3.4 × 105, and 5.2 × 105 trainable parameters and for
ResNet that is 2.7× 106, 6.3× 106, and 10.6× 106 trainable parameters. The result of all experiments
can be seen in Appendix A7 from 7.1 until 7.4 for the experiments on the Mapillary dataset, and from
7.5 until 7.8 for the experiments on the GTSRB data. An overview of which loss exponents we used
on each experiment can be seen in Table 7.1.

The patterns we have already noticed in the previously described figures are present when looking
at the plots in said table. First is a segment where higher exponents achieve the lowest 1-AUC scores.
From there on out, the IS exponents, starting with the highest and then moving on to lower ones,
peak out and slowly start getting worse. In convergence, the highest exponents get the highest 1-AUC
scores. In contrast, the lower ones get an incrementally better score until they converge with the lowest
exponent achieving the lowest 1-AUC. In the beginning, the runs with NIS attain the worst 1-AUC
score. In the later phase, the performance varies depending on the dataset. For the GTSRB dataset,
the performance of NIS is better than all but the very lowest loss exponent (0.1). For Mapillary, it
cannot compete with the lowest exponent but can achieve similar performance to high IS depending
on the model complexity.

We are unsure what causes the high exponents to get the worst 1-AUC score in convergence. It
could be explained by oversampling challenging samples more frequently, leading to a bias toward
those samples. A potentially better solution than the ones we have displayed in this section would be
to use a high exponent in the beginning, and once it no longer outperforms lower ones, make a switch
in how we sample. This switch could either be using NIS or having a decaying exponent. We have
toyed with a decaying exponent for this thesis but did not manage to execute the idea at a level where
it speeds up the training.

We determine that the performance of the different weighting of samples presented in (5.1) gave
no or minimal effect when comparing against different trainable parameters for each network type.
The only significant difference we see is the one between CrapNet and ResNet.

5.1.3 Importance Sampling Methods

We have used the same method of selecting samples for all previous experiments when performing IS.
To clarify, that is the IS scheme where we select the samples by calculating each sample’s probability
based on their loss and then sample based on that probability. This method is referred to as IS-
probabilistic in this section. While we have seen promising results in previous sections where the
IS-probabilistic scheme outperforms NIS in some aspects of the training, we wanted to evaluate how
our sampling process would compare to other IS variants. To accomplish this, we introduce two new
methods for IS. The first one, called IS-randomsubset, selects a random subset of all samples and
then selects a batch consisting of the samples with the highest losses from the subset. The size of the
subset that we used was 1/10 of our training set. The second variant, called IS-highsubset, selects a
subset consisting of the 1000 highest losses. With this subset, we then select a batch based on the
probability given by each sample loss.

IS-randomsubset immediately showed great first indications in our tests. However, IS-highsubsets
performance was way worse than any other IS method or NIS, and it became apparent quickly that
it would be useless to us. After we ensured that the method performed the task it was set out to
do and realizing it feathered no result, we moved on from it. One possible explanation for the lack
of performance of the IS-highsubset is that we only select the same high loss samples for the subset
repeatedly. Although, we have not been able to confirm that this was the case. An observation made
from toying with IS-highsubset is that not seeing easier samples is devastating to network learning.
Consequently, the undesirable performance excluded IS-highsubset from being run 100 times as we
otherwise have done for all our experiments. Therefore IS-highsubset will not be represented in the
comparisons we make in this section.
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The comparison presented and discussed in this section is between NIS, IS-probabilistic, and IS-
randomsubset. The methods have been benchmarked against the same networks presented in Section
5.1.2. For CrapNet that means comparisons with models using 200 906, 341 498, and 518 954 trainable
parameters. For ResNet that means comparisons with models using 2 707 420, 6 308 486, and 10 650 054
trainable parameters. We conducted these on the Mapillary and the GTSRB datasets like in previous
experiments.
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Figure 5.23: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 2.7×106 trainable parameters on the Mapillary
dataset.

In Figures 5.23 and 5.24 the experiment is presented when applied to Mapillary and GTSRB
respectively. The experiment is done on the ResNet network with the fewest trainable parameters
among the used networks. As seen in previous sections, IS-probabilistic outperforms NIS at the
beginning of training. This performance can be seen for IS-randomsubset as well.
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Figure 5.24: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 2.7× 106 trainable parameters on the GTSRB
dataset.
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Interestingly, when we reach convergence, IS-randomsubset outperforms both NIS and IS-probabilistic
for the Mapillary dataset. IS-probabilistic, as previously seen, performs almost identically to NIS
in convergence on Mapillary. For GTSRB in convergence, IS-randomsubset can outperform IS-
probabilistic once again. Similar to IS-probabilistic, it cannot achieve an as good 1-AUC value as
NIS.

If we only compare the two IS methods with the two datasets, we observe that both methods
start by achieving a similar speed-up of the training. These continuous improvements are maintained
for IS-randomsubsets 1-AUC score while IS-probabilistic 1-AUC slowly achieves tinier improvements.
This pattern of IS-randomsubset outperforming IS-probabilistic in later stages of training is some-
thing we observe in the majority of our experiments on ResNet. Since IS-probabilistic mainly lacked
performance compared to NIS in its convergence, this indicates that IS-randomsubset could be advan-
tageous. To view the experiments for all the different trainable parameters of ResNet see Appendix
B7 Figures 7.9 and 7.10 for the Mapillary experiments and 7.13 and 7.14 for the GTSRB experiments.

When it came to applying this experiment to CrapNet, we see the result for the model with 200 906
parameters in Figures 5.25 and 5.26. The same behaviors that we were able to detect in ResNet runs
are observable here. Both IS methods outperform NIS initially; IS-randomsubset can maintain its
steady improvement for the 1-AUC score while IS-probabilistic fades in performance. In convergence,
NIS outperforms both IS methods for the GTSRB dataset while IS-randomsubset outperforms both
for the Mapillary dataset. For all results of the CrapNet experiments see Appendix B7 Figures 7.11
and 7.12 for the Mapillary experiments and 7.15 and 7.16 for the GTSRB experiments. Taking all
experiments into account on CrapNet, we see that the findings on CrapNet, in large, further reinforce
what we saw for ResNet.
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Figure 5.25: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 2.1×105 trainable parameters on the Mapillary
dataset.

To generalize our findings from this section, we see that IS methods perform better than NIS
in the initial training phases. In convergence, NIS lacks performance for the GTSRB dataset but
is still outperforming it for the Mapillary dataset. Other than some small segments of the runs for
specific network comparisons between the two IS methods, this section shows that IS-randomsubset
outperforms IS-probabilistic in the long rung. This is an important note from this section, as we in the
earlier Sections 5.1.1 and 5.1.2 identify a challenge with IS in it not reaching an as good convergence
performance as NIS. With that said, the two IS methods, IS-probabilistic and IS-randomsubset, still
give us results that indicate that they are the preferred choice compared to NIS when max performance
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Figure 5.26: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 2.1× 105 trainable parameters on the GTSRB
dataset.

is not needed. What is new from this section is that IS-randomsubset also seems to be preferred
when max performance is needed, motivated by the Mapillary results. We see a need to study IS-
randomsubset more deeply to make the findings robust. A good start would be to implement it for
an OD task.
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5.2 Object detection

This section presents all experiments that have been made on the OD task. It will include a description
of what experiments were done and how they were conducted. In addition, it will also include the
challenges we have encountered.

5.2.1 Object detection with classification

We are starting with the experiments on OD that include classification. Figure 5.27 shows 1-AP50

score after each epoch except during the first, where we wanted to evaluate it twice as we expected
larger changes in the beginning. AP50 is the AP score using an IOU threshold of 0.5, which means the
predicted bounding box must have overlapped more than 50% with the ground truth bounding box to
be classified as a true positive. We can mainly state from this figure that the 1-AP50 score in general,
both for IS and NIS, does not reach good performance. As we compared YOLOv2 with other methods,
see Table 5.1, people can achieve higher performance with other methods. Note that the performance
for YOLOv2 on COCO is 44 % in this table, but reaching this requires many augmentations, tuning
an LR schedule, and probably more. Our results reached after 70 epochs were merely 28 % AP50.
It shows that the network learns a lot during the first ten epochs and keeps improving for 20 more.
After that, the training seemed to converge. YOLOv2 was chosen as a method before knowing it was
inadequate for COCO.

As mentioned in Chapter 4, we compare OD using a pre-trained DarkNet architecture. Pre-trained
means that the network weights have already been adapted to identify relevant features in the images.
What is pre-trained, to be precise, is DarkNet-19 which is the backbone of YOLOv2. It is a CNN
that extracts feature maps from the image. In YOLO, the backbone is then followed by the neck and
head, which is the part of the YOLO architecture that predicts the bounding boxes and classification
of the objects. However, worth mentioning is that we initially ran some experiments with DarkNet-19
backbone that was not pre-trained, but as the performance only reached around 11 % AP50, we chose
to continue with a pre-trained backbone. All results presented in this section and Section 5.2.2 use a
pre-trained backbone. Furthermore, we have used a batch size 32.

Coming back to the bad performance of our implementation. Due to that, we wanted to exclude
that the model was learning the wrong thing. Therefore we ran training on two minimal training sets,
one with one image and one with ten images. The results showed that the loss reached almost 0 on
the training sets and that we could detect almost all objects in the images. From this test, we could
exclude that the model tried to learn the wrong thing. Therefore, extensive experiments of this kind
excluded the fact that anything was wrong with our code.
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Figure 5.27: 1-AP50 score comparision for IS and NIS in OD for COCO. The DarkNet backbone is
pre-trained and evaluated every epoch.

Practically implementing OD is highly complex, but we wanted to do it from scratch to have
complete control. YOLOv2 was not the best solution for COCO; if we had had more time, another
method should also have been implemented. However, the small data tests described above have been



CHAPTER 5. EXPERIMENTS 53

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods

Faster R-CNN+++ ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN by G-RMI Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0

Faster R-CNN w TDM Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

RetinaNet ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2

Table 5.1: OD results brought from [77]. AP50 score comparision between different OD methods for
COCO dataset. From the comparison one can see that YOLOv2 is not a state-of-the-art model.

[77]

used to verify that our implementation is entirely correct. To narrow this experiment further, we
decided to remove the classification part. We could do this because IS was already evaluated on the
classification part earlier in the thesis. We state the results of this change in the next section.

5.2.2 Object detection without classification

Moving on to OD without classification, we will present what challenges we saw, what we tried that
did not work, and what we find interesting for future studies. In order to remove the classification, we
mainly changed the loss function by removing the term that creates an error when the class prediction
is wrong. This could be done as the classification is done independently of objects’ localization.

5.2.2.1 Challenges identified with Object Detection

The first thing to describe will be the challenges identified with OD. It is essential to understand which
challenges we have identified with our implementation of OD before going through any conclusions we
could draw from the results. We first verified that we could still perfectly solve the task on the small
training sets of one and ten images when removing classification. For this task, our model managed to
predict correct localizations on the training set, and thus we could conclude that the new loss function
optimizes the right thing. One example from these results can be seen in Figure 5.28.

In this case, the model learns the images by heart when using a small training set. However, when
using the full COCO dataset for training with the same network, we still only achieved an AP50 score
of 28 %. With proof that we cannot achieve good results on large datasets, we checked the predicted
detections on a set of about 100 images. The aim was to check if we could identify any pattern of the
model’s difficulties in learning. Our conclusion from the experiment with the trained model on both
the validation and training sets was that larger objects could be detected more often than smaller
ones, which is a known flaw for YOLOv2 [14] as YOLOv2 only has one output scale. To alleviate the
scale issue, we tried to use the Deep Layer Aggregation [78] network as a backbone, which operates at
eight times the resolution compared to DarkNet. We did not get immediate results, but this should
be investigated further. Nevertheless, the important takeaway is that YOLOv2 can not solve COCO
well. As this thesis aimed to compare IS and NIS and not create a state-of-the-art model, we decided
to check if there was any difference between IS and NIS, even though the model was not reaching good
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Figure 5.28: Detection results on one image that was included in a training set of ten images. Red
boxes are predictions, green boxes are the ground truth boxes. White text shows confidence score for
each predicted box.

performance.
Figure 5.29 clearly shows no difference between IS and NIS. We see a potential explanation for the

lack of difference between IS and NIS by checking the loss distribution. The loss distribution after one
training epoch is visualized in Figure 5.30. Most of the samples were in a small range. Rechecking it
later in training, see Figure 5.31, the range was still not as expected. By checking Figures 5.30 and
5.31, one can understand that the probabilities for the different samples will not differ that much, and
thus IS will not have any significant impact on the choice of samples. Going back to what we said
before, we believe the main reason behind our lack of results comes from the model not being good
enough. The model is not in a stage where it produces correct predictions for the bulk of the samples
in the training set. Due to this, most of our losses are not close to zero. Ultimately the impact on IS is
that the distribution has no clear tail, and thus we can not find more informative samples. Compared
to the IC case, we had a clear tail in the distribution, where all informative samples were located.
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Figure 5.29: 1-AP score comparision for IS and NIS in OD w/o classification for COCO. The DarkNet
backbone is pre-trained and evaluated every epoch.

However, even if the model could not produce correct predictions for the bulk of our samples, we
wanted to investigate if IS could make a difference in speed up even before this stage. When drawing
samples with a probability proportional to the loss distribution, given in Figure 5.30, the samples will
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more or less have similar probabilities. Furthermore, even if there is a difference in how informative
the samples are, it will not be shown with the current IS method. To clarify, we wanted to investigate
whether the images with a loss of 950-1050 are significantly more informative than those around 500
or if all images are approximately equally informative. We did experiments by scaling the losses and
using an IS method where all samples were ranked according to their loss instead. The adjusted IS
methods we tried are described in the following Section 5.2.2.2.
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Figure 5.30: Loss distribution for IS after 1 epoch
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Figure 5.31: Loss distribution for IS after 40
epochs

5.2.2.2 Things that we tried that did not work

We introduced a loss exponent in the IS sampling scheme to create a higher probability of samples
with higher losses getting chosen. The idea is to use (5.1) and weight the probability to be sampled
by exponentially scaling their losses by an ω. Doing so increases the probability that samples with
higher losses will get selected for the next batch. For details of how we did this, see Section 5.1.2.
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Figure 5.32: 1-AP50 score comparision for IS methods with different loss exponents in OD w/o classifi-
cation for COCO. The DarkNet backbone is pre-trained and evaluated every epoch during 40 epochs.

When checking the loss distribution after 40 epochs, the resulting distribution is wider but not
enough to make a massive difference in the probabilities. See the difference between loss distribution
when using loss exponent ”2” 5.33 and loss exponent ”1” 5.34. Again the main explanation for why IS
is not creating any major difference compared to NIS is probably because the model cannot solve the
OD task well. If the model cannot handle most samples correctly, a minority of informative samples
that generate larger gradients than others will not exist. Thus, IS will not work theoretically.

As the loss distributions in OD do not enable us to oversample higher losses to the same extent as
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Figure 5.33: Loss distribution for IS after 40
epoch with loss exponent 2
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Figure 5.34: Loss distribution for IS after 40
epochs with loss exponent 1

we want, we decided to try another IS method. To do so, we used the IS method presented in Section
5.1.3 called IS-randomsubset. It selects a random subset of all samples and then selects a batch
consisting of the samples with the highest losses in the subset. To a greater extent, this approach will
choose samples with the highest losses independently of how the loss distribution looks; therefore, this
approach is more rank-based. The results after 40 epochs can be seen in Figure 5.35. We can identify
a difference between NIS and IS. However, it is hard to draw any conclusions as we need to evaluate
the experiment for more runs. Nevertheless, from this result, IS seems not to outperform NIS.
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Figure 5.35: 1-AP50 score comparison for IS-randomsubset and NIS in OD w/o classification for
COCO. IS-randomsubset selects a random subset of all samples and then selects a batch consisting
of the samples with the highest losses from that subset. The DarkNet backbone is pre-trained and
evaluated every epoch during 40 epochs.

Returning to the fact that the model does not solve the OD task well. Much time was spent
discovering why the model was not performing better than around 28%AP50. As described in Section
4, we chose to use four anchor boxes and wondered if this selection negatively affected our performance.
We tried using nine anchor boxes, but the AP50 score did not increase, see Figure 5.36. Still, the
performance was not good enough for us to provide a good comparison between IS and NIS. As the
model could not solve the OD task, not even able to solve for the most straightforward cases, the
result is hugely different from the IC tasks, where we could correctly handle most samples after the
first or second epoch. The IC results are what initially motivated the interest for IS in OD. When it
comes to OD, the samples seem to produce substantial contributions in optimizing the network for
much longer. Thus, we believe IS should be interesting to try at later stages of the training. However,
we have not been able to analyze this further in our thesis.
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Figure 5.36: 1-AP50 score for NIS in OD w/o classification for COCO using 9 anchor boxes. The
DarkNet backbone is pre-trained and evaluated every epoch during 35 epochs.

To summarize, we have not been able to train our model to a stage where it produces correct
predictions for the bulk of the samples in the training set. Mainly because YOLOv2 was not adequate
for COCO. Effectively this caused us to be unable to analyze IS’s impact comprehensively. Motivated
by the promising results for IS in IC, we still believe that further research on IS in OD is interesting
and needed as it could garner convergence speed-ups.



Chapter 6

Conclusions

In this paper, we evaluated importance sampling for accelerating DL training. Most of the experiments
were for IC problems, with a minority of the results coming from experiments on OD problems. The
results from these experiments are rather conclusive and robust for IC problems but are yet to show the
same confidence for OD problems. From our conclusions, we mainly propose an importance sampling
method based on the history of losses of samples in the dataset but also see great promise in other
potential sampling methods. It is essential to consider that all of our results are measured by the
number of samples rather than the time it would take for the training to be conducted.

6.1 Image Classification

We can state that, after the initial pass over all samples, importance sampling does see a better perfor-
mance than that of uniform sampling, see the result in Sections 5.1.1, 5.1.2, and 5.1.3. The excellent
performance lasts a few epochs; after that, the evidence becomes inconclusive. We see performance
better, worse, or at par with the performance of uniform sampling depending on the dataset and net-
work architecture. Poor performance could be explained by the high exposure to challenging samples,
resulting in the model becoming biased toward these and consequently ”forgetting” the easy samples.
Therefore the conclusion is that importance sampling could be helpful to speed up the training in
the beginning. However, if the aim is to reach maximum performance and complete convergence,
importance sampling is not always the right choice.

Furthermore, less complex models are better suited for importance sampling methods. Naturally,
lower complexity translates to a need for more training. Therefore improvement of the convergence
speed for less complex models is more compelling. Additionally, the results for less complex models
show that importance sampling, compared to uniform sampling, does not show worse final performance
to the same extent as the more complex models.

Our findings suggest that experimenting with exponentially scaling the losses for importance sam-
pling indicates a faster performance improvement for high exponents. This only last in the first few
epochs when the importance sampling is applied. After that, the lower exponents work better into
convergence. There is an observable pattern of higher exponent having an accelerated learning curve
in the beginning and reaching convergence earlier. The exact correlation is observable for the conver-
gence performance as well; the higher the exponent, the worse the performance. All exponents can
maintain better performance throughout the runs than uniform sampling for a more complex dataset.
For a simpler dataset, uniform sampling can beat out most importance sampling runs in convergence.

When we introduced new importance sampling methods, we saw that the performance of the
methods varies in large. We concluded that not sampling based on probabilities from sample losses
could be more beneficial than doing so. Specifically, we saw that selecting a subset of the highest
losses and then selecting a random batch from that subset achieved the best performance. This
is most probably because the approach makes sure to select the most challenging samples at the
beginning of the training process. Later in the training process, this approach still ensures more
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accessible samples, which would counteract the fact that we create a model that becomes biased to
challenging samples/classes in the long run.

6.2 Object Detection

Coming from promising results for IC tasks, the same methodology was applied to the OD tasks to
generalize our results. As far as this study goes, the result does not generalize as we cannot recreate
the same superiority in OD tasks. In solving the task, we have applied different exponents for loss,
sampling methods, and the number of anchor boxes, to name a few of the attempts made. From what
we have seen, we believe that the main issue was our choice of network architecture, as it cannot
achieve performance for the standard case of using uniform sampling. Furthermore, the distribution
of losses in OD does not as clearly distinguish challenging samples from the majority of the dataset.
This has been a problem when we try translating the results from IC to OD has been observed

However, from the results on IC, importance sampling shows that it can be used to effectivize
the computational power used during training. In the future, when even more data will be available
when training neural networks for autonomous vehicles, this algorithm will be even more important
to investigate further.



Chapter 7

Future Work

We have identified several aspects of importance sampling that we believe would be interesting to
further investigate through our work. Some have origins in promising results in our research, and
some from us not yet being able to fully take the methods to the depth they need to be for us to make
conclusions.

We have seen in Section 5.1.2 that exponentially increasing or decreasing the losses associated with
each sample significantly changes the performance and that high and low exponents are beneficial in
different segments of network training. Therefore we believe that taking this experiment to the next
step by using an exponent that varies throughout the training could be favorable. In the progress of
doing this thesis, we have tried making use of a decaying exponent and also completely switching from
importance to uniform sampling in the middle of training. Our attempts did not give us any conclusive
evidence for or against them as an idea. However, we believe that a key to making this as effective as
possible needs to revolve around figuring out the timing of the decay and making it generalizable for
any model. To further discuss this topic, although we see how training neural networks could benefit
from a solution like this, we also see the difficulty in generalizing it. It is unclear what a solution
would look like that is not optimized for specific networks and datasets and could be used by anyone
implementing importance sampling. Switching importance sampling on and off is something that our
results additionally support. This task has already been solved by Katharopoulos et al. [5] as they
can switch importance sampling on when it will result in an actual speed-up of the training.

Section 5.1.3 suggests that our baseline importance sampling is inferior to the newly introduced
strategy of using a random subset and then selecting a batch with the highest losses from that subset.
Experimenting with the size of the subset to find the optimal solution is something small that we
believe could be further tested as we have shown that it generalizes for different networks and their
complexity.

Continuing the discussion and research around which importance sampling method works best is
a topic we believe to be compelling for the future. There was a noticeable difference between just our
two methods of importance sampling. These are only a few of the possible ways of doing importance
sampling. Extending experiments to even more importance sampling methods to figure out which
method provides the better speed up of the training is something we find intriguing.

Perhaps the most exciting suggestion for future work relating to our thesis is to continue researching
how importance sampling translates to OD tasks. The area is largely unexplored in the scientific
community, and the need to speed up the network training for these tasks is vast.

Furthermore, in line with our belief that more studies on OD and importance sampling are neces-
sary, we see a need to investigate further how IS’s performance varies based on the model’s complexity.
Our findings are conclusive for IC but looking at if it translates to other CV areas such as OD is an
interesting topic that would contribute to mapping importance sampling as a study subject. Also,
looking at other network architectures is something that we do believe is important in generalizing
our findings.
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Appendix A

ImageNetwork modelDataset No. parametersLoss exponents

5.19 Mapillary Resnet 2.1× 105 [0.1, 0.5, 1.0, 1.5, 2.0]

7.1 Mapillary Resnet 3.4× 105 [0.1, 0.5, 1.0, 1.5, 2.0]

7.2 Mapillary Resnet 5.2× 105 [0.1, 0.5, 1.0, 1.5, 2.0]

5.20 Mapillary Crapnet2.7× 106 [0.1, 0.5, 1.0, 1.5, 2.0]

7.3 Mapillary Crapnet6.3× 106 [0.1, 0.5, 1.0, 1.5, 2.0]

7.4 Mapillary Crapnet10.6× 106 [0.1, 0.5, 1.0, 1.5, 2.0]

5.21 GTSRB Resnet 2.1× 105 [0.1, 0.5, 1.0, 2.0]

7.5 GTSRB Resnet 3.4× 105 [0.1, 0.5, 1.0]

7.6 GTSRB Resnet 5.2× 105 [0.1, 0.5, 1.0]

5.22 GTSRB Crapnet2.7× 106 [0.1, 0.5, 1.0, 2.0]

7.7 GTSRB Crapnet6.3× 106 [0.1, 0.5, 1.0]

7.8 GTSRB Crapnet10.6× 106 [0.1, 0.5, 1.0]

Table 7.1: The characteristics for every run from Figures 5.19 untill 7.8.

65



BIBLIOGRAPHY 66

0.0 0.2 0.4 0.6 0.8 1.0

Samples 1e6

10 2

10 1

1
-A

U
C

IS 1-AUC score for loss-exponent 0.1

IS 1-AUC score for loss-exponent 2.0

IS 1-AUC score for loss-exponent 1.5

IS 1-AUC score for loss-exponent 1.0

IS 1-AUC score for loss-exponent 0.5

NIS 1-AUC

IS 1-AUC for loss-exponent 0.1

IS 1-AUC for loss-exponent 0.5 

IS 1-AUC for loss-exponent 1.0 

IS 1-AUC for loss-exponent 2.0 

NIS 1-AUC

IS 1-AUC for loss-exponent 1.5 

Figure 7.1: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for ResNet with 6.3 × 106 trainable parameters on the
Mapillary dataset.
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Figure 7.2: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for ResNet with 10.6 × 106 trainable parameters on the
Mapillary dataset.
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Figure 7.3: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for CrapNet with 3.4 × 105 trainable parameters on the
Mapillary dataset.
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Figure 7.4: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for CrapNet with 5.2 × 105 trainable parameters on the
Mapillary dataset.
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Figure 7.5: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for ResNet with 6.3 × 106 trainable parameters on the
GTSRB dataset.
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Figure 7.6: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for ResNet with 10.6 × 106 trainable parameters on the
GTSRB dataset.
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Figure 7.7: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for CrapNet with 3.4 × 105 trainable parameters on the
GTSRB dataset.
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Figure 7.8: Comparison of 1-AUC over the number of samples between IS with loss exponents 0.1,
0.5, 1.0, 1.5, and 2.0 and NIS. The runs are for CrapNet with 5.2 × 105 trainable parameters on the
GTSRB dataset.
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Figure 7.9: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 6.3×106 trainable parameters on the Mapillary
dataset.
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Figure 7.10: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 10.6×106 trainable parameters on the Mapillary
dataset.
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Figure 7.11: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 3.4×105 trainable parameters on the Mapillary
dataset.
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Figure 7.12: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 5.2×105 trainable parameters on the Mapillary
dataset.
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Figure 7.13: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 6.3× 106 trainable parameters on the GTSRB
dataset.
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Figure 7.14: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for ResNet with 10.6× 106 trainable parameters on the GTSRB
dataset.
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Figure 7.15: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 3.4× 105 trainable parameters on the GTSRB
dataset.
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Figure 7.16: Comparison of 1-AUC over the number of samples between IS-probabilistic, IS-
randomsubset and NIS. The runs are for CrapNet with 5.2× 105 trainable parameters on the GTSRB
dataset.


