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Abstract 

Accurate day-ahead grid loss forecasts are, among other things, essential to determine the 

electricity price for the upcoming day. The more accurate forecast, the closer the trading on the 

‘day-ahead’ electricity market can become the actual operation the next day, which decrease the 

need for correcting production on the balancing market. Followingly, the need for extra imbalance 

costs, which make the electricity price higher, is reduced with accurate forecasts. This project’s 

purpose was to explore a wide-range of mathematical models to increase the energy company 

Fortum’s day-ahead grid loss forecasting accuracy, and thereby contribute to lower the risk for 

high imbalance costs.  

Two electrical grids located in Sweden, with different characteristics, were studied. One electrical 

grid was located in Dalarna and the other one was located in Värmland. Four different model types 

were tested for each grid. The linear models ARIMAX and SARIMAX were explored and the two 

artificial neural networks FNN (Feedforward Neural Network) and LSTM-RNN (Long-Short 

Term Memory Recurrent Neural Network) were explored. By constructing different model 

structures of each model type, as well as statically testing which predictors to include as input to 

the models, the most accurate model for grid loss forecasting was found. The models’ forecasting 

accuracy were validated based on the MAPE (Mean Absolute Percentage Error).  

Variables important as predictors were found to be power production, electricity prices and grid 

losses at previous time steps. For the grid in Dalarna ARIMAX(2,0,2) was the model generating 

most accurate day-ahead grid loss forecasts and for the grid in Värmland, 

SARIMAX(1,0,0)(0,0,1)[24] was the most accurate model. That is, different models were found 

as the most accurate one for grid loss forecasting, as the two studied electricity grids had different 

characteristics. Hence, this result implies that there is no universal model that is the most adequate 

at modelling all types of grid losses. To find useful models when forecasting grid losses day-ahead, 

an analysis of the particular grid losses being studied is therefore not irrelevant. 
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Populärvetenskaplig sammanfattning 

Elektricitet används på alla nivåer i samhället. I hemmen utförs bland annat mycket 

hushållsarbeten med elektriskt drivna apparater och elektrisk belysning möjliggör att 

vår dygnsrytm inte enbart styrs av solljuset. I industrin spelar elektricitet en viktig roll 

då tunga arbeten både underlättas och blir säkrare med elektricitetens hjälp. Även frakt- 

och transportmedel, såsom järnvägen, är beroende av elektricitet. Därmed skulle 

alternativet, att inte ha tillgång till el, innebära en helt annan vardag med ett fullständigt 

annorlunda sätt att leva på. Alltså är elektricitet en samhällsviktig resurs för att dagens 

samhälle ska fungera så som vi är vana vid.  

Precis som med alla andra resurser är tillgängligheten på elektricitet en kostnadsfråga. 

Elpriserna bestäms på marknader med bud från producenter av el och konsumenter av 

el. Båda parter lägger bud på hur mycket el och till vilket pris de är villiga att sälja 

respektive köpa. Det finns olika typer av marknader, varav en är ’Dagen före 

marknaden’ (fritt översatt från engelskans ’Day-ahead market’). Som namnet antyder 

bestäms elpriset för nästkommande dag. Till exempel, elpriset på onsdagar bestäms på 

tisdagar. Likväl, under dygnets alla stunder måste produktionen av elektricitet vara 

precis lika mycket som konsumtionen. Om mängden produktion och konsumtion inte är 

lika kan elnätet bli instabilt och till och med kollapsa.  

Dessvärre kan inte den på förhand överenskomna mängden el (på dagen före 

marknaden) alltid exakt överensstämma med det faktiska behovet av el dagen efter. En 

orsak är att konsumtionen ständigt varierar, bland annat baserat på årstid, veckodag och 

tid på dygnet. För att kompensera för avvikelser nästkommande dag anpassas 

produktionen för att matcha den rådande konsumtionen. Det sker på den så kallade 

balansmarknaden. Extra kostnader tillkommer till elpriset via balansmarknaden och 

dessa kallas obalanskostnader. Dessa kostnader är instabila och kan variera hastigt, 

vilket gör dem icke önskvärda eftersom elpriset riskerar att bli väldigt högt i och med 

tillskottet av dem. Därmed är det eftersträvansvärt att minimera behovet av 

obalanskostnader. För att minimera obalanskostnader behövs därför precisa prognoser 

av elkonsumtionen för nästkommande dag. Därtill är även prognoser för elnätsförluster 

nödvändiga.  

När el transporteras i elnätet från producenter till konsumenter är uppkomsten av 

förluster oundviklig. Ur ett elnätsperspektiv är elnätsförluster samma sak som 

konsumtion, eftersom båda företeelserna innebär att energi ’plockas ut’ från elnätet. 

Följaktligen är även korrekta prognoser av elnätsförluster nödvändiga för att mer 

korrekt kunna handla på elmarknaden en dag i förväg, och därmed minska behovet av 

obalanskostnader.  

I det här projektet har flera olika matematiska modeller undersökts med syfte att öka 

precisionen av energiföretaget Fortums prognoser för nästkommande dags 
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elnätsförluster. Förlusterna i två olika elnät i Sverige studerades, ett i Dalarna och ett i 

Värmland. För att hitta en passande modell som kunde beskriva förlusterna på ett 

korrekt sätt, för respektive elnät, valdes fyra olika modelltyper ut för att testas. 

Gemensamt för alla fyra modeller var att de konstruerades med samma metod. Metoden 

var att studera elnätsförluster som ett system med indata och utdata. Indata bestod av 

olika variabler som påverkar hur stora elnätsförlusterna blir och utdata var 

elnätsförlusterna.  

Tillvägagångsättet var att anpassa de valda matematiska modellerna till uppmätt in- och 

utdata, eftersom modellerna därigenom dimensionerades för att beskriva elnätsförluster 

baserat på känd data, såsom väder-, elproduktions- och elprisdata. Följaktiglen kunde de 

anpassade modellerna användas för att prediktera framtida elnätsförluster baserat på de 

kända variablerna. 

Genom det här projektet upptäcktes det att mängden producerad elektricitet i elnäten 

samt elnätspriserna var passande variabler för att beskriva de studerade 

elnätsförlusterna. Därtill visade det sig att mängden elnätsförluster vid tidigare 

tidpunkter kunde användas för att modellera framtida förluster än mer precist. 

Resultateten från det här projektet indikerar att mer exakta elnätsförlustprognoser är 

möjliga att generera med modellerna som testats i det här examensarbetet. 
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1. Introduction 

This introducing section contains general background of the subject, the purpose of the 

thesis, limitations and delimitations. Also, an overview of the report’s disposition is 

presented.  

1.1 General background 

At all instances – every second, hour and day of the year – the exact amount of 

consumed electric energy must also be produced, meaning that power production 

coincide with consumption in time. In Sweden the main power resources generating 

electric energy are hydro power, nuclear power, wind power and thermal power [1]. The 

momentaneous occurrence of power production in time does generally not hold for the 

spatial occurrence. Power stations are often located far away from consumption, with 

power grids connecting the producers and consumers. Power grids are divided in two 

parts, transmission and distribution grids. In this thesis distribution grids refer to 

regional and distribution grids. The transmission grid transports electricity from power 

plants to substations and distribution grids transport power from substations to end 

consumers. In Sweden it is the state owned Transmission System Operator (TSO) 

Svenska Kraftnät (Svk) who alone operates the transmission grid, with voltage levels at 

220 and 400 kV. There are many distribution grids which are operated by many 

different local Distribution System Operators (DSOs).  

When transmitting electricity from producers to consumers, grid losses inevitably occur 

and some of the produced energy is ‘lost’ in the grid. Grid losses are the difference 

between the amount of power that is injected and the amount of power that is withdrawn 

from a grid. Injected power consists of two parts, local power production situated in the 

grid and imported power to the grid. Withdrawn power is also a two folded entity. Local 

consumption in the grid, as well as exported power from the grid [2]. Grid losses are 

undesirable since they reduce a grids’ transmitting capacity. Moreover, losses also 

affect the electricity market and followingly has an impact on actors trading on the 

market. 

1.1.1 The Swedish Electricity Market 

The Swedish electricity market is divided into four areas: SE1, SE2, SE3 and SE4. The 

most northern area is SE1 and SE4 is the most southern (see Figure 1). The 

geographical borders of the four areas have been set where power transmission 

generally is constrained. If transmitting capacity across a border is constrained, a price 

difference occurs between the two areas. On the other hand, if capacity is sufficient, 

prices are equal in the two areas. Power flows from low price areas to high price areas 

[3]. In the northern zones SE1 and SE2 power production is normally larger than 

consumption, resulting in these areas being low price areas. The opposite holds for the 
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south, production is less than consumption, making the southern areas SE3 and SE4 

high price areas. Hence, electricity is generally transmitted from north to south [4]. 

 

Figure 1: An illustration of the Swedish electricity price areas SE1, SE2, SE3 and SE4, 

located from north to south. Highest and lowest electricity prices in October 2021 are 

presented in euro, showing lower prices in the north and higher in the south [5].    

In Sweden, as well as in all other Nordic countries, electricity prices are decided in an 

auction taking place on electricity markets. Nord Pool Spot is the market place for the 

day-ahead spot market Elspot and the intraday market Elbas [6]. On the day-ahead 

market, buyers and sellers place bids on how much electricity they can sell respectively 

buy the next, and to what price. Bids are placed every day before noon and concern the 

24 hours in the upcoming day, hence, the name ‘day-ahead market’ [7]. When the 

auction has closed, hourly spot prices are determined at the point where selling and 

buying bids intersect, see Figure 2 for an illustration [8]. In comparison to the spot 

market, the intraday market enables bids on the operating day, which are placed one 

hour before the operating hour [9].  
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Figure 2: A schematic picture illustrating the concept of electricity prices being 

determined at the intersection of supplying and demanding bids [10]. 

Except for Elspot and Elbas there is also the balancing market operated by a country’s 

TSO, who has the responsibility that there is balance in the electricity grid at all times 

[11]. In Sweden balance is achieved by keeping the grid frequency at 50 ± 0.1 Hz, 

which is accomplished when power production exactly matches consumption [1]. 

Consumption varies frequently due to seasons, weather conditions, outdoor 

temperatures, hour of the day, day of the week and holidays. If consumption is larger 

than production, production is not enough to meet the demand and grid frequency 

decreases. The other way around, consumption being less than production, means that 

too much electricity is produced in comparison to the demand and grid frequency 

increases. Therefore, to handle deviations in grid frequency, power production is altered 

to match consumption and in Sweden this is managed on the balancing market by Svk 

[12]. In addition to beforehand traded day-ahead and intraday prices extra costs arise on 

the balancing market. Imbalance costs are volatile and prices can fluctuate fast, making 

these costs undesirable and a reduction of them interesting to attain. 

To reduce imbalance costs, accurate predictions of day-ahead power consumption is 

essential. The more precise consumption forecasts, the closer the day-ahead trading can 

become the actual operation the next day. Consequently, the need for extra imbalance 

costs at the operating hour decreases. In a power system perspective power consumption 

is not any different from grid losses. Consumption and losses are equal in the sense that 

power is withdrawn from the system. Therefore, it is not only forecasts of power 

consumption that are needed when deciding day-ahead prices on the day-ahead market. 

Accurate grid loss forecasts are also of importance to achieve adequate day-ahead 

trading. The responsibility to provide grid loss forecasts lays on all grid market actors 

who are a Balance Responsible Party (BRP). BRPs are responsible to report day-ahead 

grid loss forecasts to Nord Pool every day before noon. This means that the amount of 

expected grid losses at every hour of the upcoming day must be forecasted and 

presented. [2]  
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1.1.2 Technical Grid Losses  

There are two types of losses that arise in power grids; non-technical and technical. 

Non-technical losses include theft, measurement errors and non-measured power 

consumption [13]. On the other hand, technical losses are caused by well-known 

physical constraints in components shaping power grids. These components are e.g. 

conductors, transmission and distribution line equipment, transformer windings and 

cores. Technical grid losses can both be fixed and variable. Fixed losses do not change 

as electric current changes, whereas variable losses change as current varies. In other 

words, variable losses depend on the amount of electricity being transmitted in the 

electricity grid [14]. 

In general there are five types of active power losses that appear when alternating 

current is transmitted. These are: 1) resistive heat losses, 2) leakage losses, 3) dielectric 

magnetizing losses, 4) dielectric polarization losses and 5) corona losses. Overall, these 

five types of losses depend on current, voltage and grid frequency in different forms 

[15]. Additionally, grid losses relate to the electrical network configuration, in terms of 

grid development, outages and maintenance. Market behaviour and weather conditions 

are also factors directly affecting grid losses [16].  

Weather conditions such as solar radiation, wind speed and outdoor temperature have 

been found to have a complex effect on power production, consumption and losses. 

Hence, power transmission is a very dynamic process [16], [17], [18]. As seen in Figure 

3, grid losses can have a seasonal behaviour, depending on the month, week, day and 

hour. Furthermore, as the share of intermittent generation – wind and solar power – 

increases, the more weather dependent and dynamic the grid losses become. 

Followingly, grid losses become an even more difficult phenomenon to forecast [18].  

 

Figure 3: Two graphs illustrating a seasonal behaviour of grid losses. The top graph 

shows grid losses over one year. The bottom graph shows grid losses over one week 

[17]. 
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1.2 Purpose 

The purpose of this thesis project was to investigate mathematical models and 

predictors when forecasting day-ahead grid losses at the energy company Fortum. 

Fortum is a BRP and obliged to report adequate day-ahead grid loss forecasts to Nord 

Pool on a daily basis. In this project, a range of forecasting techniques were explored 

with the aim to increase Fortum’s day-ahead grid loss forecasting accuracy and thereby 

contribute to lower the risk for producers and consumers paying high imbalance prices. 

To fulfil the purpose, following aims were set up as guidance. 

Aim 1. Identify predictors that are of importance when forecasting grid losses. 

Aim 2. Distinguish suitable model structures for grid loss forecasting. 

Aim 3. Validate tested models and compare the forecasting accuracy with the 

forecasting tool used at Fortum. 

1.3 Limitations & Delimitations  

1.3.1 Limitations 

Fortum’s consumption data were available on a network and geographical scale only, 

which was not relevant to use when modelling grid losses. Hence, pure power 

consumption data were not used as a predictor when forecasting gird losses. Instead, 

other variables were used as a measure of consumption. More about that is addressed in 

Section 4.1.  

It was not possible to get access to the forecasting models used by Fortum, causing the 

Fortum models appear as black-boxes. The lack of information about the model 

structures restrained a detailed analysis of the Fortum models. Consequently, the 

comparison of this thesis’ models with Forum’s forecasts could not righteously and 

evidently state if the explored models were better or worse at forecasting grid losses. 

Instead, the comparison gave an indication if the explored models were more or less 

accurate at forecasting losses compared to Fortum’s models. In other words, the 

comparison was limited to suggest, and not doubtlessly declare, if tested models in this 

project were more adequate or not.  

Another limitation consisted of the amount of time and computational capacity that was 

required for tested model types in this project. That is, time and computational capacity 

needed for parameter estimation of some of the regression models and parameter 

optimisation of Artificial Neural Networks were limited. These model types are 

described further in Section 2.2.1 and 2.2.2. 
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1.3.2 Delimitations 

A necessary delimitation was to model grid losses in no more than two electrical grids. 

As time was limited, two grids had to be chosen instead of modelling losses in all grids. 

One of the chosen grids was located in the Swedish county Dalarna and the other one in 

Värmland. These two grids were most relevant to study due to their grid losses being 

largest in volume in Fortum’s portfolio.  

Furthermore, it was essential to delimit the types of models being explored. As there is a 

huge amount of mathematical models presented in research work, it was neither 

reasonable or feasible to test all of them. Hence, relevant model types for this project 

was distinguished by the literature review of related studies, conducted in this thesis.   

1.4 Disposition 

The report is structured in seven chapters, the first being the introduction presenting the 

outline of the project. In the second chapter a theoretical background is given, 

addressing forecasting techniques in general and related work regarding grid loss 

forecasting in particular. Thereafter, a data chapter follows and the chosen data 

processing procedure is presented. Chapters four and five include the method and 

results. The two last chapters are discussion and conclusions, summing up the findings 

and learnings from this project. 
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2. Theoretical Background 

This section consists of existing theory and knowledge of forecasting methods. Text 

books and articles from previous studies in the field construct the base of knowledge 

needed for this project.  

2.1 Models and Forecasting Techniques 

Models are a common tools used to describe real systems and illustrate their behaviours. 

There can never be one ‘true’ model of a system since models are simplifications and 

not exact replicas of reality. Hence, no model is perfect but some are useful in certain 

situations. To find a useful model in a certain situation many different models should be 

tested and validated. Two types of modelling approaches are physical modelling and 

system identification [19]. For technical systems, physical modelling typically means 

that laws of nature are utilised to construct models, and the objective is to model 

fundamental physical properties in the system. For instance, Ohm’s law can be utilised 

when modelling electrical systems. However, modelling vast and complex systems, 

such as electrical systems, by only physical laws can be extremely difficult. To correctly 

model a system with physical modelling, all physical phenomena involved in the system 

must be known. Therefore, the other modelling approach called system identification is 

often used as a complement to physical modelling, or entirely used by its own [19].  

2.2 System Identification 

The principal of system identification is to use measured observations from a system to 

adapt a model so it accurately represents the behaviour of the system. Based on 

measured input and output data from a system, a mathematical model can be found, 

describing how input values transfer in the system to become the output values. This 

means that models found by a system identification approach heavily depends on the 

data gathering process. Available data lay the foundation for the rest of the modelling 

procedure and followingly affects the outcome and final model’s usefulness. Hence, this 

approach does not require extensive insight about how everything in the system works, 

as physical modelling does. Figure 4 illustrates the type of models, and typical input-

output relation, usually identified within system identification. Input is denoted 𝑢, a 

disturbance signal is denoted 𝑒 and output is denoted 𝑦 [19].  
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Figure 4: A schematic illustration of the principal of a system identification approach. 

Measured data (u) and disturbance (e) are inputs to a system which gives the measured 

output (y).  

A highly general flowchart of the modelling process is presented in Figure 5. ‘Step 1’ in 

Figure 5 is to choose what data to gather from the system, which then must be processed 

and studied. For example, missing or erroneous samples, detected outliers or unwanted 

trends must be dealt with [19]. Thereafter, input variables (𝑢) that are of importance to 

describe the output variable (𝑦) should be identified. Statistical tests such as correlation, 

causation and regression analyses are common tools used to find variables that 

preferably should be chosen as input (𝑢) to describe the modelled output (𝑦) [20]. In 

this thesis, variables significant as input to describe the output variable are referred to as 

predictors. 

 

Figure 5: The general process of modelling regression models. Rectangles are 

processes and the diamonds are decision points. 

With pre-processed data and chosen predictors, one moves to ‘Step 2’ in Figure 5, 

choosing a model structure to model the system. There are many different model 

structures that can be explored when modelling systems. Therefore, it is important to 

decide model structure in consideration of the specific system and purpose of the model. 

This report focuses on models found as key examples in related research work. Figure 6 



12 
 

shows a taxonomy tree of models reviewed in this project. For a more complete 

literature review of models, see e.g. [21]. Generally, models can be divided in physical 

and system identification models as stated above. In turn, system identification models 

can be categorised in linear and non-linear models. The theory of these two model types 

are presented in more detail below.  

 

Figure 6: Taxonomy tree of models reviewed in this project. 

2.2.1 Linear Models  

There is a group of standardised linear model structures that are based on transfer 

functions, 𝐺(𝑞, 𝜃) and 𝐻(𝑞, 𝜃), mapping input data 𝑢(𝑡) and a disturbance signal 

𝑒(𝑡) to the modelled output 𝑦(𝑡). The transfer functions contain unknown variables, 

which are constructing an n-dimensional column vector 𝜃, generally called the 

parameter vector. When adapting a model to measured data, the aim is to find the 

unknown variables in the 𝜃 vector, so the output accurately can be modelled based on 

the input. All these models are variants of the Box-Jenkins model and can be described 

by the equation:  

𝑦(𝑡) = 𝐺(𝑞, 𝜃)𝑢(𝑡) + 𝐻(𝑞, 𝜃)𝑒(𝑡), (1) 

or written as 

𝑦(𝑡) =
𝐵(𝑞)

𝐹(𝑞)
𝑢(𝑡) +

𝐶(𝑞)

𝐷(𝑞)
𝑒(𝑡), (2) 

where 

𝐵(𝑞)

𝐹(𝑞)
=

𝑏1𝑞
−𝑛𝑘 + 𝑏2𝑞

−𝑛𝑘−1 + ⋯+ 𝑏𝑛𝑏𝑞
−𝑛𝑘−𝑛𝑏+1

1 + 𝑓1𝑞−1 + ⋯+ 𝑓𝑛𝑓𝑞−𝑛𝑓
= 𝐺(𝑞, 𝜃), (3) 

𝐶(𝑞)

𝐷(𝑞)
=

1 + 𝑐1𝑞
−1 + ⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐

1 + 𝑑1𝑞−1 + ⋯+ 𝑑𝑛𝑑𝑞−𝑛𝑑
= 𝐻(𝑞, 𝜃), (4) 
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and 𝑞−𝑛 is the backward shift operator defined as 𝑞−𝑛𝑓(𝑘) = 𝑓(𝑘 − 𝑛). For instance, 

multiplying a variable with 𝑞−3 is the same as taking the variable three timesteps ago, at 

𝑡-3 [19]. As seen in (3)-(4) the two transfer functions 𝐺(𝑞, 𝜃) and 𝐻(𝑞, 𝜃) are made of 

polynomials 𝐵(𝑞), 𝐹(𝑞), 𝐶(𝑞) and 𝐷(𝑞), containing four sets of variables 𝑏𝑖, 𝑓𝑖, 𝑐𝑖 and 

𝑑𝑖. These sets of variables are the unknown elements, in the 𝜃 vector. 

How many unknown coefficients there are of each variable is determined based on the 

orders of the polynomials. The polynomial orders are set by the user who chooses 

model structure by the five hyperparameters 𝑛𝑘, 𝑛𝑏, 𝑛𝑓, 𝑛𝑐 and 𝑛𝑑. That is, selected 

hyperparameters determine the polynomial orders and consequently the model structure. 

All model structures have different properties being either advantageous or 

disadvantageous when describing studied systems and their behaviours [19].  

A common model structure is the ARMAX model, represented by setting the 𝐹(𝑞) and 

𝐷(𝑞) polynomials equal to each other by setting 𝐹(𝑞) = 𝐷(𝑞) = 𝐴(𝑞). ARMAX stands 

for AutoRegressive Moving Average with an eXogenous variable. ARMAX models are 

described by writing (2) as 

𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶(𝑞)𝑒(𝑡). (5)  

The autoregressive (AR) term 𝐴(𝑞)𝑦(𝑡) involves modelling the output variable (𝑦) 

based on its own values at previous time steps. The moving average (MA) term 

𝐶(𝑞)𝑒(𝑡) models the disturbances. Lastly, the exogenous term 𝐵(𝑞)𝑢(𝑡) means that 

other variables (𝑢) are used as input [19].  

Models presented so far assume that time series data are stationary, generally meaning 

that time series have a constant mean and variance over time. The formal definition of 

stationarity is that the 𝐴(𝑞) and 𝐶(𝑞) polynomials contain no roots inside the unit 

circle, which ensures causality and invertibility [22]. However, a time series might have 

trends, such that the mean value and variance vary in time, called non-stationary data. It 

is not uncommon that data is non-stationary in real applications, but methods designed 

for stationary time series should not be used on non-stationary data. If non-stationary 

data is used there is a risk of the results giving erroneous answers [23]. However, non-

stationary data can be transformed by differentiation to make it stationary. To 

differentiate non-stationary data with ARMAX models an integrating term ‘I’ is added, 

constructing ARIMAX models. Differentiation is selected based on successive unit-root 

tests and the order is determined once no unit root is found [24]. The order of 

differentiation is often 1 or 2. There could also be periodic patterns in data. To handle 

periodic patterns a seasonal term ‘S’ can be added to the ARIMAX model, creating the 

SARIMAX structure [25]. The value of the seasonal term ‘S’ is an integer 𝑚, set to the 

number of periods in one season. For example, 𝑚 can be chosen as 12 to handle data 

with a monthly periodicity [26]. Mathematically SARIMAX models are described by 

writing (2) as  

𝐴𝑆(𝑞
𝑚)𝐴(𝑞)∆𝑑∆𝑆

𝐷𝑦(𝑡) = 𝐵(𝑞)𝑢(𝑡) + 𝐶𝑆(𝑞
𝑚)𝐶(𝑞)𝑒(𝑡), (6) 
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where 𝐴(𝑞) and 𝐶(𝑞) are non-seasonal AR and MA components, 𝐴𝑆(𝑞
𝑚) and 𝐶𝑆(𝑞

𝑚) 

are seasonal AR and MA components, ∆𝑑 and ∆𝑆
𝐷 are non-seasonal and seasonal 

differentiating operators, 𝑚 is the seasonal term and 𝐵(𝑞) is the exogenous polynomial 

[27]. In Python [28] the polynomials and differentiating components are defined as 

Non-seasonal:    Seasonal:  

𝐴(𝑞) = 1 − 𝑎1𝑞
−1 − ⋯ − 𝑎𝑛𝑎𝑞−𝑛𝑎  𝐴𝑆(𝑞

𝑚) = 1 − 𝑎1
𝑆𝑞−𝑚 − ⋯− 𝑎𝑁𝐴

𝑆 𝑞−𝑁𝐴∗𝑚 

𝐶(𝑞) = 1 + 𝑐1𝑞
−1 + ⋯+ 𝑐𝑛𝑐𝑞

−𝑛𝑐 𝐶𝑆(𝑞
𝑚) = 1 + 𝑐1

𝑆𝑞−𝑚 + ⋯+ 𝑐𝑁𝐶
𝑆 𝑞−𝑁𝐶∗𝑚   

∆𝑑= (1 − 𝑞)𝑑   ∆𝑆
𝐷= (1 − 𝑞𝑚)𝐷   

Note that lowercase hyperparameters 𝑛𝑎, 𝑑 and 𝑛𝑐 belong to the non-seasonal models 

and uppercase hyperparameters 𝑁𝐴, 𝐷, 𝑁𝐶 and 𝑚 are included in seasonal models. 

With Python notation, ARIMAX and SARIMAX models are expressed as 

ARIMAX(𝑛𝑎, 𝑑, 𝑛𝑐) and SARIMAX(𝑛𝑎, 𝑑, 𝑛𝑐)(𝑁𝐴,𝐷,𝑁𝐶)[𝑚] [29]. This notation is 

used when referring to the models in the remaining parts of the report.  

When selecting hyperparameters for models with an ARMA-type structure, plots of the 

Partial AutoCorrelation Function (PACF) and AutoCorrelation Function (ACF) can be 

used as guidance. This method is limited, but brings an indication of the orders needed 

when iteratively testing different combinations of model orders. The PACF plot gives 

an estimate of the 𝐴(𝑞) polynomial. The ACF plot is used for estimating the order of 

the 𝐶(𝑞) polynomial [25]. See Figure 7 for an example.   

 

Figure 7: An example of an ACF plot (top graph) and a PACF plot (bottom graph). The 

plots indicate a 4:th order C(q) polynomial  and a second order A(q) polynomial. 

Furthermore, hyperparameters can be determined based on standard regression and 

statistical tests of parameter significance. Which order of the polynomials that are of 

Order of 𝐶(𝑞) polynomial 

 

Order of 𝐴(𝑞) polynomial 
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significance can be investigated with the statistical z- or t-test1. From the tests a p-value 

is produced for each parameter, showing the probability to reject the null hypothesis, 

insignificant parameters. If the p-value is less than or equal to the significance level 0.05 

there is at least a 95 % chance the parameter affect the output variable. By this approach 

a model order can be found when all polynomial parameters are significant. By the 

same statistical approach, exogenous variables that are significant to use as input to the 

model can be found. [30] 

In summary, choosing polynomial orders is ‘Step 2’, choose model structure, in Figure 

5 for linear Box-Jenkins models. Further, linear models constitute the most simple type 

of models and may be explored first in a modelling process. According to the principle 

to describe a system as simple as possible but no simpler, it is a valid approach to test 

linear models first. However, if there are nonlinearities in a system, it is not certain that 

linear models are able to describe the fundamental system behaviours good enough. 

There is a risk of oversimplifying real world systems and in that case other types of 

models should be tested. How model structure is chosen for non-linear models are 

described next. 

2.2.2 Non-linear Models 

One of the most common non-linear model types is Artificial Neural Networks (ANN), 

in shorter terms known as Neural Networks (NN). In computer science NN modelling is 

a widely used technique for forecasting variables of linear and non-linear systems. NNs 

can detect important behaviours of systems that have complicated internal physics or 

complex relationships between variables, that otherwise are difficult to fully discover 

and understand. 

The structure of a NN contains neurons (nodes), one input and one output layer, one or 

more hidden layers, activation functions, weights and biases/thresholds [31]. Figure 8 

gives an illustration of a NN. Each parameter has its own effect on the input and these 

are described more thoroughly below.  

 
1 In statistics the t-test is a hypothesis testing method, investigating if explanatory variables have 

independent effects on the dependent variable. The t-test is called z-test for large sample sizes [31][31].   
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Figure 8: An illustration of a NN constructed of 3 hidden layers and 3 neurons in each 

layer, except for the one neuron in the output layer. 

In practice the approach when modelling systems with NNs, is to decide the number of 

hidden layers, the number of neurons in each layer and type of activation functions. The 

number of neurons and number of layers are the hyperparameters of an NN, which the 

programmer choses to build the model [33]. Before adapting the constructed NN to 

measured data, data can be normalised to take values between 0 and 1. Moreover, a 

batch size and number of epochs must also be chosen. Instead of feeding NNs with the 

entire training dataset, a batch size divides the data to smaller batches and adapts the 

network by feeding the model pieces of data at a time. The number of epochs is a 

parameter defining how many times the learning algorithm goes through the NN [34].  

Weights and biases are the unknown parameters in NNs. Thus, weights and biases are 

not parameters chosen by the programmer, but optimised by computations [35]. By 

referring to the description of linear models, presented in Section 2.2.12.2.2, weights 

and biases construct the 𝜃 vector containing the model’s unknown parameters. 

The computational procedure of NNs is the following. Each given input is assigned a 

weight, expressing the importance of the input to the output neuron. An important input 

variable will be assigned a larger weight, making its contribution to the output more 

significant compared to other input variables. The inputs are multiplied with their 

respective weights and summed. This weighted sum is then passed through the 

activation function. There are different types of activation functions that can be chosen, 

e.g. sigmoid (logistic), ReLu (rectified linear activation) or tanh (hyperbolic tangent) 

(for a complete revision of these, the reader may refer to Malekian et al. [31] ) 

Activation functions are static functions determining the value of the output node based 

on the input. If the output value exceeds a given threshold (the bias) it activates the node 

and data is fed forward to the following layer. That is, if a node is activated, the output 

of the node becomes the input to nodes in the next layer. When data only travels in one 

direction, from one layer to the next, it is called a Feedforward Neural Network (FNN) 

[36]. How the output of one node is calculated, based on input values, weights, plus a 

bias and activation function, is demonstrated in Figure 9. 
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Figure 9: An example of how the output node is calculated based on input nodes an, 

their corresponding weighing factors wn, a bias and an activation function 𝑓. 

As an equation, the algorithm in Figure 9 is described as  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 (∑𝑤𝑖𝑎𝑖 + 𝑏

𝑛

𝑖=1

) . (7) 

where 𝑓 is an arbitrary activation function, 𝑤𝑖 are weights, 𝑎𝑖 are inputs and 𝑏 is the 

bias.  

Since data travels in one direction in FNNs they are static models, meaning that given 

the same input, the same output is always obtained. However, there are NNs that enable 

feedback loops and these are called Recurrent Neural Networks (RNNs). Activation of 

neurons might be determined by previous activations of that specific neuron or earlier 

input to the neuron [37]. More specifically, RNNs give feedback to a hidden state which 

is connected to the hidden layers in the RNN. Each hidden layer has its own hidden 

state. Consequently, the calculated output, at every node in the network, depends both 

on current input and the hidden state, which is based on previous input [38]. That is, the 

main difference between FNNs and RNNs is that RNNs have hidden states, allowing 

output to be calculated based on current and previous input. 

RNNs have become a competitive alternative to other more established models for time 

series forecasting. One advantage with RNNs is that they can model seasonal 

behaviours directly from data containing homogenous seasonal patterns [39]. However, 

one challenge with RNNs is that the training process becomes more difficult. Gradients 

of the cost function are not only propagated backwards in the network layers, but also 

backwards in time. To solve this issue there are many different methods addressing the 

gradient problem when training RNNs [37]. The most common techniques used are the 

Long-Short Term Memory (LSTM), Grated Recurrent Unit (GRU) and Elman 

Recurrent Neural Network (ERNN) techniques. Hewamalage et al, found that LSTM 

was the best approach for forecasting purposes compared to the two other techniques 

GRU and ERNN [39]. 
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That is, choosing type of NN, the number of hidden layers, the number of neurons in 

each layer, type of activation functions, batch size and number of epochs is ‘Step 2’ in 

Figure 5. The following step, after choosing a suitable model, is adapting the model to 

fit measured data from the studied system. This is ‘Step 3’, parameter estimation, in 

Figure 5. 

2.2.3 Parameter Estimation 

Regardless of chosen model structure, linear or non-linear models, estimating the 

unknown parameters in the 𝜃 vector is the same process. The aim of estimating the 

unknown parameters is to adapt a model as accurate as possible to known measured 

data. However, one risk when fitting models is overfitting. A model is overfitted when it 

also fits to the noise in the data. The risk of overfitting increases as models become 

more complicated with a large number of parameters. Hence, there is a principal to 

describe a model as simple as possible but no simpler [19]. 

The overall procedure is to find the unknown parameter vector 𝜃 that makes residuals 

𝜀(𝑡, 𝜃) = 𝑦(𝑡) − ŷ(𝑡|𝜃), errors between measured output (𝑦(𝑡)) and predicted output 

(ŷ(𝑡|𝜃)), as small as possible [40]. The 𝜃 vector can be found by the principle of the 

least squares method, meaning that the loss function  

𝑉(𝜃) = ∑𝜀(𝑡, 𝜃)2

𝑁

𝑡=1

= ∑(𝑦(𝑡) − ŷ(𝑡|𝜃))2

𝑁

𝑡=1

, (8) 

is to be minimized with respect to 𝜃. The 𝜃 that minimizes the loss function is denoted 

𝜃 and contains the estimated parameters that are adapted to the data [40]. A technique 

frequently used to find the solution of such a minimization problem is called gradient 

descent. In short, the gradient of the loss function (∇𝑉(𝜃)) is calculated to find the loss 

function’s minimum. The gradient show the direction in which the loss function 

decreases the most, and the gradient decent technique moves the estimated 𝜃 in that 

direction. As an iterative process, the gradient descent algorithm finds a local minimum 

of the loss function [36]. 

For linear, Box-Jenkins models the optimal one step prediction of the next coming 

output is given by 

�̂�(𝑡|𝜃) = [1 − 𝐻−1(𝑞, 𝜃)]𝑦(𝑡) + 𝐻−1(𝑞, 𝜃)𝐺(𝑞, 𝜃)𝑢(𝑡), (9) 

where �̂�(𝑡|𝜃) is the predicted output, 𝐻(𝑞, 𝜃) and 𝐺(𝑞, 𝜃) are the transfer functions 

containing the unknown sets of variables (𝑏𝑖, 𝑓𝑖, 𝑐𝑖 and 𝑑𝑖), 𝑦(𝑡) is the measured output 

and 𝑢(𝑡) is the measured input [19]. Hence, when adapting Box-Jenkins models to data, 

the set of variables 𝑏𝑖, 𝑓𝑖, 𝑐𝑖 and 𝑑𝑖 that minimises the loss function in (8) are sought to 

obtain. 
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Regarding NNs, the forecasted output �̂�(𝑡|𝜃) is determined by the output of all nodes 

that are connected in the network. As NNs can be large, interconnections between all 

nodes can become highly complex, entailing that the calculated output �̂�(𝑡|𝜃) is 

complicated to express with a general equation. However, as described in Section 2.2.2, 

it is all the weights and biases in the NNs that construct the unknown 𝜃 vector. Thus, 

when adapting NNs to fit data, it is desired to obtain the set of weights and biases that 

minimises the loss function. 

When unknown parameters in the chosen model has been estimated, by adapting the 

model to measured data, it is important to validate the model’s performance (‘Step 4’ in 

Figure 5). To adapt and thereafter validate a model, data can be divided in two datasets. 

A training dataset and one validation dataset. With two separated datasets, models are 

not validated on the same data they have been designed to fit to.   

2.2.4 Model Validation 

When validating a model, it is decided if gathered and processed data, as well as the 

choice of model structure, generated a model capable of describing the studied system. 

Validation of a model commonly consists of comparing the modelled output with the 

actual measured output, given in the validation dataset. The difference between the 

modelled and real output shows how accurately the model calculate future values, and 

this is called prediction error [19]. If the model is considered valid it can be used for 

forecasting. Otherwise, either the data gathering and data processing must be redone or 

another model structure must be tested. Hence, it is an iterative process to find an 

accurate model; this iterative process is seen as the loop in Figure 5. 

One subtle but important difference when modelling the output, is the difference 

between simulating versus predicting the output. Simulations are produced if input data 

only consist of other variables and not the output variable, whereas predictions are 

obtained if input also contain values of the modelled output at previous time steps [41].  

Apart from using the prediction error as validation, another essential part when 

validating linear models is to investigate the residuals. When creating a linear model it 

is generally assumed that the errors are independent, identically distributed random 

variables (i.i.d), coming from a normal distribution with zero mean and variance σ2 

[42]. This is the same properties as white noise have. Therefore, for residuals from a 

valid model the following should be considered. 

▪ No autocorrelation. Residuals should be independent from previous time steps 

and from input variables.  

▪ Residuals should follow a normal distribution. 

▪ The residuals’ variance should be constant over time. [42] 

Residuals fulfilling these properties are considered valid and can be accepted. On the 

other hand, residuals not fulfilling these properties imply that there might be some 
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behaviour in the studied system that has not been captured in the chosen model. In other 

words; residuals not looking like white noise pose that another model can describe the 

system better than currently tested model [19].  

2.3 Grid Loss Forecasting Models 

Previous research work in the field has approached grid loss forecasting in various 

ways. Key examples of the grid loss forecasting research, available in the literature, is 

presented in this section. 

Sulakov presents a solution to forecast hourly day-ahead losses in the Bulgarian 

transmission grid [16]. Based on a statistical approach it was investigated which 

parameters that correlate with grid losses. It was found that the amount of injected 

electricity in the grid correlated with resistive ohmic transmission losses. Further, 

hourly contracted net exports were detected to correlate linearly with transmission 

losses. Sulakov also identified that grid losses increased due to humid and icy weather 

conditions. Quadratic functions were found to describe the relation between weather 

conditions and corona losses. Quadratic functions were also found to describe the 

relation between grid losses and the amount of renewable energy production in the 

system, i.e. solar production and wind power production [16].  

Hence, the forecasting model took hourly load forecasts, daily patterns of net export, 

forecasted meteorological conditions, forecasted hourly wind power and forecasted 

hourly solar power production as input. The linear and quadratic functions describing 

how the variables related to the different types of technical grid losses were solved with 

regression functions [16]. That is the type of modelling described in Section 2.2.1.  

Another more recent study from 2020 by Dalal et al., used a machine learning technique 

to forecast grid losses for 24 hours the next day in a distribution network in Norway 

[17]. Historical measurements of grid losses, calendar features, temperature forecasts 

and load predictions were identified as key features when forecasting day-ahead grid 

losses. In the study four different algorithms were evaluated: 1) an FNN with five 

hidden layers, 2) a decision tree regressor, 3) a gradient boosting regressor from sci-kit 

learn2 and 4) CatBoost, an opensource tool for gradient boosting on decision trees. 

CatBoost with minimal hyperparameter tuning was chosen as the best model because it 

had the smallest MAE (Mean Absolute Error) [17].  

In another study from 2020 conducted by Tulensalo et al. a LSTM-RNN was suggested 

when forecasting losses in electricity grids [18]. Tulensalo et al. applied the LSTM-

RNN model to forecast transmission losses in the Finnish transmission grid with the 

purpose to predict losses in the intraday market. A NN approach was chosen due to the 

complexity of power systems, the increasing share of renewable power generation and 

 
2 A module in Python. 
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followingly the weather dependence and nonlinear correlations related to grid losses. 

Moreover, an LSTM-RNN was chosen since RNNs can capture non-linear time-variate 

dependencies. [18] 

Input data consisted of calendar data, which were indicators of weekdays, years and 

public holidays and a sinusoidal representation of the daily cycle. Historical weather 

data was another input, consisting of solar radiation, wind speed and outdoor air 

temperature. Historical electricity market data was also used as input, consisting of 

hourly wind power generation, electricity demand and power flows from other 

countries. Lastly, system-specific data of the Finnish power grid was used as input. The 

pre-processing of data made the input follow a uniform distribution on the interval [0, 1] 

and the output was scaled to have unit variance and zero mean [18]. This procedure 

belongs to the type of modelling described in Section 2.2.2.  

In addition to these grid loss studies, other projects have investigated which models to 

use when forecasting losses in power grid components or when forecasting power 

production and consumption. In 2013 Bouzerdoum et al. successfully forecasted hourly 

production of a photovoltaic power plant a few days ahead [43]. A hybrid SARIMA-

SVM3 model gave the most accurate predictions among the tested models [43]. A study 

from 2020 by QiheLou et al. showed a similar result, but with forecasting hourly power 

consumption day ahead. A hybrid SARIMA-SVR4 model was found to be the best 

performing model of the ones tested in the study [44]. 

It has also been found that NNs are useful in related fields. Saelee et al. [45] suggests a 

Hierarchy Neural Network (HNN) when predicting power losses in a 3-phase 

distribution transformer. In a project by Lopez-Martin et al. a NN was proposed for 

probabilistic short and medium term electric load forecasting [46]. Further, Hong and 

Fan point out that many types of NNs successfully have been used for electric load 

forecasting, and especially successful have been FNNs and RNNs [47]. Regarding 

RNNs, Hossen et al. found that the LSTM was more adequate than, the other popular 

RNN model, GRU when forecasting residential load day-ahead [48]. Lastly, Deb et al. 

have shown that hybrid models consisting of two or more model types, e.g. linear and 

non-linear models, are most effective at forecasting buildings energy consumption [49]. 

By using hybrid models the different model types compliments each other, 

strengthening the hybrid model’s advantages. For more examples of commonly used 

NNs, please read the article by Gamboa [50].   

 
3 SVMs (Support Vector Machines) are a set of classification models. 
4 SVRs (Support Vector Regressions) are a set of regression models. 
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3. Data 

This section begins with a visualisation and explanation of the data used in this project, 

followed by a description of the data pre-processing procedure. All practical steps in 

this study were implemented by the open source programming tool Python. 

3.1 Available Data  

Data used in this project were supplied by Fortum and consisted of weather, electricity 

spot prices, power production plans and grid losses. Weather data consisted of real 

measured values, spot prices were the realised values published by Nord Pool, 

production data was the day ahead planned production by power plants and grid losses 

were historical data provided by Ellevio.  

To adapt and validate models, slightly more than six years of hourly data were available 

from 2016-01-01 at 00:00 to 2022-02-27 at 23:00. The first 5 ½ years were used for 

model adaptation and the last ½ year was used for validation. Grid loss forecasting was 

investigated in two grids; one in Dalarna5 (DAL) and the other in Värmland6 (VML), 

which correspond to 63% of the total annual grid losses in Fortum’s portfolio at the 

moment of writing this thesis.  

There are some distinctive differences between the DAL and VML grids. The DAL grid 

is characterised as a grid that distribute power and the VML grid is characterised as a 

grid that transmits power. In the DAL grid injected power is mainly local production, 

whereas in the VML grid the injected power is mostly imported power. Another 

difference is that withdrawn power from the DAL grid consists of both consumption 

and export, whereas withdrawn power from the VML grid foremost consists of exported 

power. That is, the main differences are that the DAL grid have local production and 

consumption, while the VML grid primarily works as a power transmitting 

infrastructure by importing and exporting power. 

Figure 10 and Figure 11 show the historical measured grid losses in DAL and VML 

grids from January 2016 to February 2022. Autocorrelation plots (Figure 12) showed 

that grid losses correlated with themselves at previous time steps. There was a 24 hour 

seasonality trend in autocorrelation for both DAL and VML losses. Furthermore, as a 

result of the autocorrelation, future losses were chosen to be predicted instead of 

simulated. As predictions, in comparison to simulations, use output at previous 

timesteps as input, and thereby should provide better forecasts compared to simulations. 

 
5 Geographically located in central Sweden, in north-western Svealand. The grid is in market area SE3. 
6 Geographically located in central Sweden, in western Svealand. The grid is in market area SE3 
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Figure 10: All historical data samples of DAL losses. Plotted data are normalised. 

 

Figure 11: All historical data samples of VML losses. Plotted data are normalised. 
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Figure 12: Top graph shows autocorrelation with 100 lags for DAL grid losses. Bottom 

figure shows autocorrelation with 100 lags for VML grid losses. 

3.2 Data Pre-Processing  

Data were first processed by removing the mean value from the time series. When 

removing the mean, the variance of the time series is modelled instead of the raw data. 

Mean values are removed to better deal with skewed data. Thereafter, outliers were 

removed and stationarity was checked.  

3.2.1 Removing Outliers 

Before using historical grid loss data in the modelling process outliers were detected 

and removed. It is important to identify outliers since including them, especially in 

parametric modelling, can cause faulty results leading to erroneous conclusions. One 

useful method to detect and remove outliers is the Interquartile Range method (IQR) 

[51]. When defining outliers, the method utilises the difference between the first and 

third sampled quartiles, 𝑄1 and 𝑄3. The method is based on inner fences 𝑓1 and 𝑓3 and 

outer fences 𝐹1 and 𝐹3, specified as:  

𝑓1 = 𝑄1 − 1.5(𝑄3 − 𝑄1),  

𝑓3 = 𝑄3 + 1.5(𝑄3 − 𝑄1),  

𝐹1 = 𝑄1 − 3(𝑄3 − 𝑄1),  

𝐹3 = 𝑄3 + 3(𝑄3 − 𝑄1).  
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Data outside inner fences 𝑓1 and 𝑓3 are considered mild outliers and data outside outer 

fences 𝐹1 and 𝐹3 are defined as extreme outliers [51]. Inner fences were applied in this 

project when identifying and removing outliers in grid loss data, since more samples are 

considered outliers when using inner fences. From DAL losses, 0.046 % of the data was 

removed and from VML, 0.014 % of the data were removed. Figure 13 illustrates 

detection and removal of outliers in DAL losses with the IQR method. The same 

approach was used when removing outliers in VML losses. 

  

Figure 13: An illustration of detected and removed outliers with the IQR method. The 

plot show grid loss data from the electricity grid in Dalarna. 

3.2.2 Stationary Data 

With outliers removed from data it was tested if the grid loss time series were 

stationary. Stationarity means that a time series has a constant mean and constant 

variance over time. If data is not stationary, a transformation should be applied. One 

common technique is data differentiation. To statistically test stationarity, the widely 

used test of Augmented Dickey-Fuller (ADF) was used [52], [53]. The null hypothesis 

of the ADF test is that time series are non-stationary. If the p-value from the test is less 

than the significance level 0.05, the null-hypothesis can be rejected, implying that data 

are stationary. That is, a p-value less than 0.05 is the desired result [54].  

The p-value for DAL losses was 2.30 ∗ 10−26, far less than 0.05 and the null hypothesis 

of non-stationarity was rejected. The p-value for VML losses was 1.60 ∗ 10−19, which 

also entails strong evidence against the null hypothesis of non-stationary data could be 

rejected. Therefore, the two time series of grid losses in DAL and VML did not have to 

be processed further to make them stationary.  

Outliers 
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4. Suitable Predictors & Models 

The processes of identifying predictors and model types of relevance, for grid loss 

forecasting in the two studied grids, are described in this section.  

4.1 Predictors 

By definition, grid losses are the difference of injected and withdrawn power from a 

grid, therefore, ideal predictors when forecasting losses ought to be the produced, 

imported, consumed and exported power as; 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 −  𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 +

 𝐼𝑚𝑝𝑜𝑟𝑡𝑠 −  𝐸𝑥𝑝𝑜𝑟𝑡𝑠 −  𝐿𝑜𝑠𝑠𝑒𝑠 =  0. However, the total production and consumption 

at grid level were unknown for this study, since several other utilities apart from 

Fortum, operate within each grid area. 

To generate day-ahead grid loss forecasts, grid loss predictors require to be available for 

the upcoming day. Therefore, predictors must first be generated based on other 

predictors. Among other variables, forecasted power production is based on forecasted 

spot prices and forecasted consumption is based on weather predictions. This means that 

spot prices and weather forecasts could be relevant predictors for grid loss forecasting. 

Figure 14 illustrates how consumption and production forecasts are related to other 

predictors and the chosen exogenous variables in this project are coloured in grey.  

 

Figure 14: A flow chart showing that grid losses can be modelled based on forecasted 

spot prices and weather conditions. Grey coloured variables are exogenous variables 

chosen for this thesis. 

In this thesis, historical data of weather (air temperature, solar radiation and wind speed) 

and spot prices (in the SE2 and SE3 price areas) were used together with day-ahead 

power production plans and historical grid losses in the training set. Due to 

consumption not only depending on weather, but also on consumption patterns over 

weekdays, weather data together with a day-type classification were treated as 

exogenous variables to predict consumption. Also, Tulensalo et al. used calendar day as 

an input variable as a way of day-type classification when forecasting grid losses [18]. 

Spot prices were used as exogenous variables to predict production, since these are key 

parameters to optimize hydro production. Additionally, day-ahead production plans for 
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key hydropower reservoirs located in the Dalälven and Värmland grids were included as 

predictors, since these capture other physical characteristics of the power system, 

hydrology water permits and market fundamentals, among others.  

Based on the literature review presented in Section 2.3, several studies also found that 

weather data, historical grid losses, power production and consumption are good 

predictors to forecast grid losses. Table 1 summarises the datasets used in this thesis 

project.  

Table 1: A summary of the datasets available as input for grid loss modelling and 

forecasting. 

Dataset Data used in 

training set 

Day Ahead forecasts 

available? 

Source 

Historical grid 

losses 

Historical data 

 

No  Ellevio 

  

Air temperature Measured data Yes Weather forecast 

provider 

Solar radiation Measured data Yes Weather forecast 

provider 

Wind speed Measured data Yes Weather forecast 

provider 

Power production Historical data Yes Fortum 

 

Spot prices Historical data Yes Nord Pool and 

Fortum 

 

Air temperature, wind speed and solar radiation were measured at the counties, 

Dalarna’s and Värmland’s, respective local weather stations. In Dalarna the weather 

station was located in Sala and in Värmland it was located in Sunne. Weekdays were 

implemented by constructing a variable ‘Weekday’, taking values 1-7, where 1 

represented Monday and 7 Sunday. With the weekday variable, all hourly grid losses 

were categorised by an integer as a day of the week. 

The most important hydropower producers in the DAL grid are the three hydropower 

plants of Trängslet (Trä), Gråda (Grå) and Mockfjärd (Mfj), all located in the Dalälven 

river network. In Värmland, power production is largely dominated by nine hydro 

plants: Röjdåfors (Rfs), Kymmen (Kmn), Gullspång (Gsg), Glava (Gla), Höljes (Hös), 

Tåsan (Tån), Letten (Ltn), Jössefors (Jfs) and Rottnen (Ron). Due to power plants in 

VML have stronger interdependences in production, a new variable ‘PROD_TOT’ was 

created by adding the production from the nine hydropower plants.   

When investigating relations between grid losses and the other variables, correlation 

was measured with the Pearson’s correlation coefficient 𝑟, taking values between 0 and 

±1. Zero means no correlation, 1 implies a positive correlation and -1 a negative 

correlation [42]. Variables resulting in 𝑟 being close to 0 had low correlation and were 
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not considered important to include as input to the models. High correlation was 

considered for variables showing either highly positive or negative 𝑟 values, indicating 

that those variables could be necessary to include as predictors when constructing the 

models.  

In the model adaptation and validation step of the linear models, predictors were 

investigated further with a statistical analysis. The z-statistics was used to investigate if 

chosen exogenous variables, previously identified with the Pearson coefficients 𝑟, were 

statistically relevant to include in the models. The common significant level 0.05 was 

chosen, entailing that variables with p-values smaller than 0.05 were accepted and 

variables with p-values greater than 0.05 were removed as input to the models.  

4.1.1 Chosen Predictors 

Predictors identified with Pearson’s correlation test are shown in heatmaps, see Figure 

15 and Figure 16. Based on Figure 15 it was considered relevant to include temperature, 

weekday, production in TRÄ, GRÅ, MFJ and spot prices in SE2 and SE3 as exogenous 

variables, when modelling DAL losses. Based on Figure 16 relevant exogenous 

variables for VML losses were temperature, weekday, total production and spot prices 

in SE2 and SE3.  

All variables, apart from temperature and weekday, were chosen since they had highest 

positive correlation, as seen as lightest colours in the heatmaps. Temperature was 

chosen due to its negative correlation with grid losses, seen as a dark blue colour. Even 

though weekday neither showed high or low correlation it was tested if weekdays 

together with temperature gave more accurate forecasts, since the combination could 

correlated with power consumption.  

When adapting and validating models for both DAL and VML losses it was found from 

the z-test that temperature and weekday were not significant variables and smaller 

MAPE was not achieved when temperature and weekday were used as inputs. Instead, it 

was found that power production and spot prices were the most valuable predictors 

when modelling losses in the DAL and VML grids. The predictors for each grid and 

their explicit 𝑟 values are given in Table 2 and Table 3. 

Table 2: Predictors for DAL losses and Pearson’s correlation coefficient r. 

DAL  

predictors 

Pearson 

correlation r 

TRÄ 0.73 

GRÅ 0.38 

MFJ 0.14 

SE2 0.17 

SE3 0.24 
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Table 3: Predictors for VML losses and Pearson’s correlation coefficient r. 

 

 

 

 

 

 

Figure 15: Heatmap based on Pearson’s correlation for DAL losses and other possible 

variables affecting losses. Higher correlation is represented by a more yellow coloured 

tone. 

VML 

predictors 

Pearson 

correlation r 

PROD_TOT 0.41 

SE2  0.12 

SE3 0.27 
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Figure 16: Heatmap based on Pearson’s correlation for VML losses and other possible 

variables affecting losses. Higher correlation is represented by a more yellow coloured 

tone. 

4.2 Proposed Models  

Based on the literature review in Section 2.3, it was found that linear models are largely 

used in the literature and are suitable models for grid loss forecasting. Thereby, 

ARIMAX and SARIMAX models were considered relevant to test in this project. 

Moreover, as the nature of this data with a trend (moving average component) and an 

autoregressive component, as grid losses correlated with itself at previous time steps, it 

was appropriate to test models with a moving average and an autoregressive component. 

Hence, ARIMAX models were tested. The SARIMAX model structure was also 

suitable to test due to seasonality characteristics of the DAL and VML grid losses. 

Relevant predictors discussed in Section 4.1.1 were included as exogenous variables 

suitable to try. 

Due to the complexity of grid losses, it was suitable to also test more complex models 

than linear models. As the non-linear NNs can capture non-linearities and complicated 

interactions appearing in systems, NNs were also tested in this project. Feedforward 

neural networks (FNNs) and recursive neural networks (RNNs) were considered 

relevant to explore due to evidence in the academic literature where these show to be 

the most successful NNs in electric load forecasting [47]. Regarding RNNs, the LSTM 

technique was of most interest to test, by reasons of the literature review in Section 2.3. 

In the literature review it was found that LSTM models were more suitable for time 
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series forecasting of grid losses, and predictions in related fields e.g. power 

consumption, compared to the two other popular RNN techniques GRU and ERNN.  

Thus, the tested models were  

▪ Linear models – ARIMAX  

▪ Linear models – SARIMAX 

▪ Non-linear models – FNN  

▪ Non-linear models – LSTM 

 

To find the most accurate model, the various tested models’ forecasting performances 

had to be validated. 

4.2.1 Model Validation 

The models were validated based on the mean absolute percentage error (MAPE), a 

measurement of the difference between forecasted losses and actual losses, defined as 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

�̂�𝑖 − 𝑦𝑖

𝑦𝑖
|

𝑛

𝑖=1

, 

where n is the number of data points, �̂�𝑖 is forecasted values and 𝑦𝑖 is measured values 

[55].  

Based on the models’ purpose to make accurate predictions for the next coming day, the 

models made a 24 hour forecast for all days in the 6 months validation dataset. One 

hour at a time was forecasted during the 24 hour forecast. The Python method forecast() 

was used and input to the models were updated every 24 hour. That is, the input was 

updated but the models were not refitted to added available data for every new 24 hour 

forecast. This validation method is called backtesting without refitting and the concept 

is illustrated in Figure 17. Re-estimating models as more data become available is also 

an option, meaning that models are re-adapted to the latest available data before every 

new forecast [56]. This approach was not chosen as backtesting without refitting is a 

faster strategy when having large sets of data, as the models are fitted to data once. 

Additionally, since a forecast was generated for every day in the 6 month validation 

dataset (that is 180 days), the models had to be refitted 180 times with the re-estimating 

strategy instead of only once, which takes more time. 
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Figure 17: An illustration of the concept backtesting without refitting when more data 

become available. 

The MAPE was first calculated on the entire validation dataset of 6 months, to get an 

overall indication of the most accurate model. With this approach one single value was 

generated for each model, which made it easy to distinguish the model with smallest 

MAPE. However, since the models should be accurate at forecasting 24 hours day-

ahead, and not 6 months, the MAPE for every hour from 0-23 were relevant to examine. 

Based on all hours in the forecasted 6 months, the hourly MAPE was calculated and 

plotted. Thereby, the forecasting precision during each of the 24 hours in a day were 

presented. An hourly MAPE was only calculated for the models with smallest 6 month 

MAPE.  

Apart from evaluating the ARIMAX and SARIMAX models with MAPE, the linear 

models’ validity was investigated in terms of the analysis of residuals, to examine if 

these had white noise properties. The residual analysis consisted of four plots generated 

by the Python function plot_diagnostics(). If the plots showed that residuals resembled 

white noise the model was considered valid. The four plots were as follows. 

1. Standardised residuals over time – showing patterns, which were used for 

checking if variance was constant over time. 

2. Histogram of standardised residuals – showing normality.  

3. Normal Q-Q plot with normal reference line – showing normality.  

4. Correlogram (also known as ACF plot) – showing autocorrelation. 
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5. Modelling Procedure & Results 

The process of finding the most accurate model structure of each model type 

(ARIMAX, SARIMAX, FNN, LSTM) is described in this section. First the ARIMAX 

model is addressed, followed by the SARIMAX model and the two NNs (FNN and 

LSTM). Additionally a sensitivity test of the most accurate model structures, as well as 

a comparison with the forecasting tool used at Fortum, are also presented. Lastly, a final 

result is presented. Based on the models’ MAPE, sensitivity test and comparison with 

Fortum’s forecasts, it is concluded which model that is most accurate at forecasting 

DAL grid losses and which model that is best for VML grid losses. 

5.1 ARIMAX  

The linear ARIMAX model was explored first, as it is the most simple model type out 

of the tested models. To construct and fit linear models to data in Python, the statsmodel 

module in Python was utilised, specifically the class statsmodels.tsa.statespace.-

sarimax.SARIMAX. When fitting both ARIMAX and SARIMAX models to data, three 

input variables were needed:  

1. grid losses from the model fitting dataset, 

2. model orders (𝑛𝑎, 𝑑, 𝑛𝑐) respectively (𝑛𝑎, 𝑑, 𝑛𝑐, 𝑁𝐴, 𝐷,𝑁𝐶,𝑚) and 

3. exogenous variables from the model fitting dataset.  

Note that this Python class does not enable one to choose the order of the 𝐵(𝑞) 

polynomial, the polynomial is just equal to 1. This means that 𝑛 number of lags of the 

exogenous variables 𝑢(𝑡 − 𝑛) could not be used as input. Only the value 𝑢(𝑡) could be 

used at each time instant 𝑡. However, this was not an issue as the losses did not correlate 

to lagged exogenous variables. In Appendix A cross-correlation plots show that lagged 

values of the exogenous variables did not correlate more to grid losses in comparison to 

current values. 

To find out which ARIMAX model that gave most accurate predictions, different model 

orders of 𝑛𝑎 and 𝑛𝑐 were tested based on PACF and ACF plots (seen in Figure 18 and 

Figure 19). For both the DAL and VML models 𝑛𝑎 and 𝑛𝑐 were set to intervals and all 

combinations of the 𝑛𝑎 and 𝑛𝑐 values in the chosen intervals were tested. The lower 

bound of the intervals were 0 for both 𝑛𝑎 and 𝑛𝑐 in both DAL and VML models. The 

upper interval of 𝑛𝑎 was set to 2 and the upper limit of 𝑛𝑐 could take high values for 

both the DAL and VML models. Considering that one should not make models more 

complex than necessary, the upper limit of the 𝑛𝑐-interval was set to 4 for both DAL 

and VML models. The 𝑑 was set to 0 for both grid loss models, since DAL and VML 

grid loss data were stationary, as described in Section 3.2.2. Table 4 summarises the 

chosen intervals of the model orders. In all combinations a total of 15 ARIMAX models 

were explored for each grid.  
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Apart from testing polynomial orders based on PACF and ACF plots, the decision was 

complemented by a statistical analysis. The z-test was used to investigate if all 

parameters in the 𝑛𝑎 and 𝑛𝑐 polynomials were statistically significant. Polynomial 

parameters with a p-value less than 0.05 were accepted and parameters with p-values 

greater than 0.05 were rejected. Thereafter, the most accurate model was refitted on the 

entire dataset, to find the beforehand unknown parameters in the 𝜃 vector.  

 

 

Figure 18: Top graph: ACF plot of DAL grid losses. Used for deciding highest relevant 

𝑛𝑐 to test. At least the first 4 lags were relevant to test. Bottom graph: PACF plot for 

DAL grid losses. Used for deciding highest relevant 𝑛𝑎 to test. No more than 𝑛𝑎 = 2 

was relevant to test. 
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Figure 19: Top graph: ACF plot of VML grid losses. Used for deciding highest relevant 

𝑛𝑐 to test. At least the first 4 lags are relevant. Bottom graph: PACF plot for VML grid 

losses. Used for deciding highest relevant 𝑛𝑎 to test. No more than 𝑛𝑎 = 2 was relevant 

to test. 

Table 4: Intervals for hyperparameters of adapted and validated ARIMAX models.  

Hyperparameters DAL VML 

𝒏𝒂 [0,1,2] [0,1,2] 

𝒅 [0] [0] 

𝒏𝒄 [0,1,2,3,4] [0,1,2,3,4] 

Number of ARIMAX 15 15 

 

All MAPE values for the 15 tested ARIMAX models, for both grids, are presented in 

Appendix B. Following two sections presents the most accurate ARIMAX model found 

for the DAL and VML grids. (A summary of the most accurate ARIMAX model for 

each grid is presented in Appendix C, including results from the z-statistics and 

estimated parameters in the beforehand unknown 𝜃 vector.)  

5.1.1 Most Accurate ARIMAX - DAL 

The best ARIMAX was ARIMAX(2,0,2), with MAPE=0.1808. From the z-statistics it 

was found that all p-values were less than 0.05, meaning that the (2,0,2) polynomial 

orders were significant.  

The residual analysis presented in Figure 20 shows that there are some yearly behaviour 

in the system that is not captured by the model. This is seen as the periodical pattern 
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with 6 fluctuations (6 years of data) in the top left graph. The histogram and Q-Q plot 

(top right and bottom left graphs) show that residuals are not exactly following, but are 

quite close to a normal distribution. The autocorrelation plot (bottom right graph) shows 

that residuals have no autocorrelation with lagged values, which is desired. Hence, it 

was considered that residuals had a sufficient resemblance to white noise and the 

ARIMAX(2,0,2) was acknowledged as the best structure. When fitting the model on all 

available data, the parameters in the 𝜃 vector were found and as an equation the model 

was described as 

𝑦(𝑡) = [1.1568𝑞−1 − 0.2127𝑞−2]𝑦(𝑡)

+ [0.0155 0.0149 0.0299   0.0121 0.0111]

[
 
 
 
 
𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)
𝑢4(𝑡)
𝑢5(𝑡)]

 
 
 
 

+ [1 −0.4473𝑞−1  − 0.0734𝑞−2]𝑒(𝑡),  

where 𝑦(𝑡) is grid losses, [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)] is [TRÄ, GRÅ, MFJ, SE2, 

SE3] and 𝑒(𝑡) is the prediction error. To illustrate the model, the fitted model and 

forecasted losses is presented in Figure 21. To enable visualisation of the model, five 

days of historical data and seven forecasted days are plotted. The seven days is the first 

week in the 6 month validation dataset. To widen the illustrated result, two plots of 

seven other forecasted days are presented in Appendix D. (This portion of visualised 

data holds for all presented models.)  

 

Figure 20: Residual analysis of ARIMAX(2,0,2) when modelling DAL losses.  
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Figure 21: Plot of  forecasted DAL losses with ARIMAX(2,0,2).  

5.1.2 Most Accurate ARIMAX - VML 

The model with smallest MAPE was ARIMAX(1,0,4) with MAPE=0.1839. However, 

the 4:th order q-polynomial was not significant. Instead, the model with smallest MAPE 

and significant polynomial orders was ARIMAX(1,0,0), with MAPE=0.1840. 

In Figure 22 the residual analysis show that all four plots except for the histogram and 

Q-Q plot resembles properties of white noise. No other model of the tested ARIMAX 

models had a smaller MAPE and showed better results on the residual analysis. 

Therefore, this model was chosen as the best one, even though the residuals did not 

follow a normal distribution closely. Thus, ARIMAX(1,0,0) was accepted as the most 

accurate model structure and the model was described as 

𝑦(𝑡) = 0.9559𝑞−1𝑦(𝑡) + [0.0149 0.0211 0.0099] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

], 

where 𝑦(𝑡) is grid losses and [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)] is [PROD_TOT, SE2, SE3]. To 

illustrate the model, the fitted model and the forecasted losses is presented in Figure 23.   
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Figure 22: Residual analysis of ARIMAX(1,0,0) when modelling VML losses. 

 

 

Figure 23: Plot of  forecasted VML losses with ARIMAX(1,0,0). 
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5.2 SARIMAX 

Regarding the 7 parameter SARIMAX model, fewer models than the ARIMAX were 

explored due to the model being more computationally demanding. The 𝑛𝑎 and 𝑛𝑐 were 

set to the 𝑛𝑎 and 𝑛𝑐 orders found from the best ARIMAX model. For the polynomial 

orders for DAL 𝑛𝑎 = 𝑛𝑐 = 2 and for VML 𝑛𝑎 = 1 and 𝑛𝑐 = 0. The differentiating 

terms 𝑑 and 𝐷 were set to 0 and 𝑁𝐴 and 𝑁𝐶 were either 0 or 1. No more than order 1 

was tested for the seasonal polynomials, because the models became time consuming to 

fit to data and validate for higher seasonal polynomial orders. As the computational 

demand and time was a constraint for this project, simplifications was a necessity. Thus, 

a total of three SARIMAX models were tested for each grid. For all SARIMAX models 

the seasonal term 𝑚 was set to 24 as data had a 24 hour periodic behaviour, mentioned 

in Section 3.1. Table 5 summarises the tested SARIMAX models.  

Additionally, the decision of polynomial orders was complemented by a statistical 

analysis. The z-test was used to investigate if all parameters in the 𝑛𝑎, 𝑛𝑐, 𝑁𝐴 and 𝑁𝐶 

polynomials were statistically significant to describe the forecasted losses or not. 

Table 5: Intervals for hyperparameters of adapted and validated SARIMAX models. 

Hyperparameters DAL VML 

𝒏𝒂 [2] [1] 

𝒅 [0] [0] 

𝒏𝒄 [2] [0] 

𝑵𝑨 [0,1] [0,1] 

𝑫 [0] [0] 

𝑵𝑪 [0,1] [0,1] 

𝒎 [24] [24] 

Number of SARIMAX 3 3 

 

The MAPE values for the 3 tested SARIMAX models, for both grids, are presented in 

Appendix B. Following two sections presents the most accurate SARIMAX model 

found for the DAL and VML grids. (A summary of the most accurate SARIMAX model 

for each grid is presented in Appendix C, including results from the z-statistics and 

estimated parameters in the beforehand unknown 𝜃 vector.)  

5.2.1 Most Accurate SARIMAX - DAL 

The best SARIMAX was SARIMAX(2,0,2)(1,0,1)[24], with MAPE=0.1927. All 

polynomial parameters were statistical significant. The residual analysis in Figure 24 

show notable similarities to the residual analysis of the ARIMAX model. A yearly 

pattern is not captured by the model, but a resemblance of a normal distribution and no 

autocorrelation is satisfactory. Thus, SARIMAX(2,0,2)(1,0,1)[24] was accepted as the 

best SARIMAX structure. The model is described by  
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𝑦(𝑡)

= [1.1332𝑞−1 −0.1976𝑞−2 0.7047𝑞−24 0.7906𝑞−25 −0.1392𝑞−26]𝑦(𝑡)

+ [0.0156 0.0095 0.0324   0.0081 0.0118]

[
 
 
 
 
𝑢1(𝑡)

𝑢2(𝑡)

𝑢3(𝑡)

𝑢4(𝑡)

𝑢5(𝑡)]
 
 
 
 

+ [1 −0.4618𝑞−1 −0.0857𝑞−2 −0.5891𝑞−24 0.2720𝑞−25 0.0504𝑞−26]𝑒(𝑡), 

where 𝑦(𝑡) is grid losses, [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)] is [TRÄ, GRÅ, MFJ, SE2, 

SE3] and 𝑒(𝑡) is the prediction error. The fitted model and forecasted losses is 

presented in Figure 25.  

 

Figure 24: Residual analysis of SARIMAX(2,0,2)(1,0,1)[24] when modelling DAL 

losses. 
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Figure 25: Plot of forecasted DAL losses with SARIMAX(2,0,2)(1,0,1)[24]. 

 

5.2.2 Most Accurate SARIMAX - VML 

It was found that SARIMAX(1,0,0)(0,0,1)[24] had smallest MAPE, MAPE=0.1736, and 

all parameters were significant. The residual analysis in Figure 26 show that the 

variance and autocorrelation follow the properties of white noise. As the histogram and 

Q-Q plot show, residuals are not exactly following a normal distribution. Nevertheless, 

the distribution resembled a normal distribution to a slightly larger extent compared to 

the ARIMAX model and was therefore considered valid. The model was described by 

𝑦(𝑡) = [0.9467𝑞−1]𝑦(𝑡) + [0.0.0136 0.0186 0.0092] [

𝑢1(𝑡)
𝑢2(𝑡)
𝑢3(𝑡)

]

+ [1 0.1652𝑞−24]𝑒(𝑡), 

where 𝑦(𝑡) is grid losses, [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡)] is [PROD_TOT,  SE2,  SE3] and 𝑒(𝑡) is 

the prediction error. The fitted model and forecasted losses is presented in Figure 27. 
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Figure 26: Residual analysis of SARIMAX(1,0,0)(1,0,1)[24] when modelling VML 

losses. 

 

Figure 27: Plot of forecasted VML losses with SARIMAX(1,0,0)(0,0,1)[24].  
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5.3 Neural Networks 

After testing linear models, the neural networks FNN and LSTM models were explored. 

When using NNs for time series forecasting, both input and output variables were 

scaled to take values between 0 and 1 before the NNs were adapted to data. Since all 

data were transformed by normalisation it was not necessary to remove the mean values 

from the data, as it was done for the linear models. 

To build NNs, the activation functions, batch size, number of epochs, number of layers 

and neurons were chosen. Activation functions used for hidden layers were sigmoid, 

ReLu and tanh. According to a study by Brownlee, different activation functions are 

used depending on the type of NN [57]. FNNs should have ReLu as activation function 

for hidden layers and RNNs should have sigmoid or tanh. Thereby, ReLu was chosen 

for FNNs and both sigmoid and tanh were tested for LSTM models. Activation function 

for the output layer was determined based on the purpose of the NN. In this case of time 

series forecasting it is suggested by Brownlee that the activation function should be 

linear for the output layer [57]. Thus, a linear activation function was chosen for both 

FNNs’ and LSTMs’ output layer. 

Common batch sizes that has been used in previous studies are 32, 64 or 128 samples 

and 100, 500, 1000 or a larger number of epochs are commonly tested [58]. Therefore, 

when training NNs, batch sizes of 32, 64 and 128 samples and 100, 500 and 1000 

number of epochs were tested. There is no systematic approach to tune the number of 

layers and neurons, and therefore the testing included some randomness. Considering 

losses correlated most to losses at one lag and to exogenous variables at lag 0, grid 

losses at 𝑡 − 1 and exogenous variables at time 𝑡 was chosen as input. That is, the NNs 

were trained to predict grid losses one timestep ahead (at time 𝑡) based on grid losses at 

𝑡 − 1 and exogenous variables at time 𝑡.  

To forecast a 24 hour period, the NNs forecasted one hour at a time in a for-loop. 

Thereby, all forecasts except for the first, were based on a forecasted grid loss value at 

𝑡 − 1, calculated in the previous iteration in the for-loop. The models found to have the 

smallest difference between modelled losses and actual losses (smallest MAPE) were 

considered the best FNN respectively LSTM model. Approximately 50 FNNs and 50 

LSTMs were explored by varying the number of epochs, batch sizes, number of layers, 

nodes and input variables. Following two sections presents the most accurate FNN and 

LSTM models for the DAL and VML grids.  

5.3.1 Most Accurate FNN & LSTM - DAL 

The model with smallest MAPE was a 3 layered FNN with 35 neurons in each layer. It 

was found that a number of 100 epochs and a batch size of 32 samples gave the most 

accurate forecasts, with MAPE=0.2010. The trained model and forecasted values is 

plotted in Figure 28. 
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Figure 28: Plot of  forecasted DAL losses with the best FNN model found. 

Regarding the LSTM, it was found that the LSTM with smallest MAPE was a 4 layered 

network with 10 neurons in the first two layers and 15 neurons in the last two layers, 

100 number of epochs, a batch size of 32 and tanh as activation function. MAPE was 

0.1886. The trained model and forecasted values is presented in Figure 29.  

 

Figure 29: Plot of  forecasted DAL losses with the best LSTM model found. 
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5.3.2 Most Accurate FNN & LSTM - VML 

The model with smallest MAPE was a 3 layered FNN with 10 neurons in each layer. It 

was found that a number of 100 epochs and a batch size of 64 samples gave the most 

accurate results, which was MAPE=0.2328. The trained model and forecasted losses is 

presented in Figure 30. 

 

Figure 30: Plot of  forecasted VML losses with the best FNN model found. 

The best LSTM model was a 4 layered network with 5 neurons in each layer. It was 

found that 100 number of epochs, a batch size of 32 and sigmoid as activation function 

gave the LSTM model with smallest MAPE, MAPE=0.2202. The trained model and 

forecasted values from the LSTM is presented in Figure 31. 
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Figure 31: Plot of  forecasted VML losses with the best LSTM model found. 

5.4 Summary of ARIMAX, SARIMAX, FNN & LSTM - MAPE 

In Table 6, the MAPE for all four tested models are presented for the DAL and VML 

grids. The MAPE being presented is calculated on the entire validation dataset of ½ year 

of data. For the DAL grid, ARIMAX had smallest MAPE, meaning that it is the most 

accurate model, and the FNN had highest MAPE, making it the least accurate model. 

Regarding the VML grid, SARIMAX had smallest MAPE and the FNN had highest. 

Hence, the SARIMAX model was most accurate and the FNN was least accurate at 

forecasting VML grid losses. However, it was not only smallest MAPE that was of 

relevance when investigating which model that was most useful for day-ahead grid loss 

forecasting. Broadening the model evaluation by exploring how sensitive the models 

were to changes in input was also of great importance. 

Table 6: The MAPE for the most accurate models found in the four tested model types. 

Model MAPE validation 

DAL VML 

ARIMAX 0.1808 0.1840 

SARIMAX 0.1927 0.1736 

FNN 0.2010 0.2328 

LSTM 0.1886 0.2202 
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5.5 Testing Sensitivity  

An essential part when evaluating the models was to test the models’ sensitivity to 

changes in input. In the training dataset, spot prices and weather conditions were 

historical measured values. However, only forecasted prices and weather conditions are 

available when predicting grid losses in reality, meaning that the input variables may 

differ compared to the measured values. Nonetheless, inaccurate input should, for a 

robust model, not affect the grid loss forecasting accuracy to a large extent. Testing 

robustness was done by first varying spot prices and weather conditions ±10 %, ±15 % 

and ±20 %. Thereafter, the models robustness was tested by changing input ±100 % and 

±200 %, to investigate how the models would react to outliers or erroneous data. 

Consequently, by investigating robustness a more thoroughly result was obtained of the 

models’ actual usefulness, since it simulated forecasted spot prices and weather 

conditions. It was not necessary to vary production in this way since production data 

already consisted of planned production. 

5.5.1 Sensitivity Test - DAL 

From the sensitivity test it was found that all four models were robust when changing 

SE2 and SE3 with ±10 %, ±15 % and ±20 %. Considering all models the change in 

MAPE was between 1.2-6.4 %, which is smaller than the 10-20 % change in input. 

When changing SE2 and SE3 with ±100 % and ±200 %, all models change in MAPE 

was between 4.5-109 %. Most robust model was the FNN, with an average of 2.3 % 

change in MAPE when varying input 10-20 % and an average of 18% when changing 

input 100-200 %. Least robust model was SARIMAX, with an average of 4.6 % change 

in MAPE when varying input 10-20 % and 49 % change in MAPE when varying input 

100-200 %. All models’ MAPE and percental changes when varying the input is 

summarised in Table 7 and Table 8. 

Table 7: Summary of the sensitivity test for all DAL models. The MAPE is presented 

and in parenthesis is the percental change in MAPE for DAL models when varying SE2 

and SE3 ±10, 15 and 20 %. 

Model 

DAL 

MAPE (change in %) 

Validation -10 % +10 % -15 % +15 % -20 % +20 % 

ARIMAX 0.1808 0.1760 

(2.7) 

0.1863 

(3.0) 

0.1739 

(3.8) 

0.1892 

(4.6) 

0.1720 

(4.9) 

0.1923 

(6.4) 

SARIMAX 0.1927 0.1868 

(3.1) 

0.1997 

(3.6) 

0.1842 

(4.4) 

0.2033 

(5.5) 

0.1818 

(5.7) 

0.2072 

(5.2) 

FNN 0.2010 0.1976 

(1.7) 

0.2034 

(1.2) 

0.1958 

(2.6) 

0.2050 

(2.0) 

0.1942 

(3.4) 

0.2067 

(2.8) 

LSTM 0.1886 0.1852 

(1.8) 

0.1938 

(2.6) 

0.1848 

(2.0) 

0.1967 

(4.3) 

0.1853 

(1.7) 

0.1998 

(5.9) 
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Table 8: Summary of the sensitivity test for all DAL models. The MAPE is presented 

and in parenthesis is the percental change in MAPE for DAL models when varying SE2 

and SE3 ±100 and 200 %. 

Model 

DAL 

MAPE (change in %) 

Validation -100 % +100 % -200 % +200 % 

ARIMAX 0.1808 0.1726 (4.5) 

 

0.2547 (40) 0.2393 (32) 0.3537 (96) 

SARIMAX 0.1927 0.1835 (5.0) 

 

0.2841 (47) 0.2622 (36) 0.4032 (109) 

FNN 0.2010 0.1796 (11) 

 

0.2403 (20) 0.2201 (9.5) 0.2644 (32) 

LSTM 0.1886 0.2232 (18) 0.2565 (36) 0.3387 (80) 0.3070 (63) 

 

 

5.5.2 Sensitivity Test - VML 

From the sensitivity test it was found that all four models were robust when changing 

SE2 and SE3 with ±10 %, ±15 % and ±20 %. Considering all models, the absolute 

change in MAPE was 0.2-3.6 %, which is considerably smaller than the 10-20 % 

change in input. When changing SE2 and SE3 with ±100 % and ±200 %, all models 

change in MAPE was between 0.9-49 %. Most robust model was SARIMAX, with a 

mean of 0.3 % change in MAPE when varying input 10-20 % and an average of 13 % 

when changing input 100-200 %. Least robust model was the LSTM, with a mean of 2.1 

% change in MAPE when varying input 10-20 % and an average of 25 % when 

changing input 100-200 %. All models’ MAPE and percental changes when varying the 

input is summarised in Table 9 and Table 10.  

Table 9: Summary of the sensitivity test for all VML models. The MAPE is presented 

and in parenthesis is the percental change in MAPE for VML models when varying SE2 

and SE3 ±10, 15 and 20 %. 

Model  

VML 

MAPE (change in %) 

Validation -10 % +10 % -15 % +15 % -20 % +20 % 

ARIMAX 0.1840 0.1836 

(0.2) 

0.1853 

(0.7) 

0.1835 

(0.3) 

0.1860 

(1.2) 

0.1835 

(0.3) 

0.1867 

(1.5) 

SARIMAX 0.1736 0.1737 

(0.1) 

0.1742 

(0.3) 

0.1737 

(0.1) 

0.1745 

(0.5) 

0.1738 

(0.1) 

0.1749 

(0.7) 

FNN 0.2328 0.2297 

(1.3) 

0.2350 

(0.9) 

0.2280 

(2.1) 

0.2361 

(1.4) 

0.2263 

(2.8) 

0.2371 

(1.8) 

LSTM 0.2202 0.2192 

(0.5) 

0.2250 

(2.2) 

0.2247 

(2.0) 

0.2266 

(2.9) 

0.2167 

(1.6) 

0.2282 

(3.6) 
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Table 10: Summary of the sensitivity test for all VML models. The MAPE is presented 

and in parenthesis is the percental change in MAPE for VML models when varying SE2 

and SE3 ±100 and 200 %. 

Model  

VML 

MAPE (change in %) 

Validation -100 % +100 % -200 % +200 % 

ARIMAX 0.1840 0.1930 (4.9) 

 

0.2063 (12) 0.2210 (20) 0.2453 (33) 

SARIMAX 0.1736 0.1808 (4.1) 

 

0.1873 (7.9) 0.2011 (16) 0.2153 (24) 

FNN 0.2328 0.2248 (3.4) 

 

0.2623 (13) 0.2486 (6.8) 0.3132 (35) 

LSTM 0.2202 0.2221 (0.9) 

 

0.2558 (16) 0.3280 (49) 0.2907 (32) 

 

5.6 Comparing Models with Fortum 

The models in this project were compared to the forecasting model used at Fortum. It 

was investigated if suggested models performed better – in terms of smaller MAPE – 

compared to the forecasting technique that is in use at the moment of writing this thesis. 

The hourly MAPE graphs were compared, since the forecasting performance over 24 

hours was the most relevant accuracy to examine. 

At Fortum, grid loss forecasts are calculated with the forecasting tool Aiolos from the 

software provider Vitec. Aiolos generates weekly forecasts for the day ahead every day, 

being one day ahead forecast used for the daily bids. In principle, this is the same 

forecasting horizon (1 day ahead) as for the models in this thesis. Therefore, comparison 

of the models was possible. However, Aiolos use weather data, calendar data and 

historical grid losses as model inputs, which are less variables used as input compared 

to this thesis. Further, the model structure used by Aiolos was not known, which made a 

truly objective comparison of the models impossible. Nonetheless, the comparison 

could indicate and suggest if the tested models with predictors could perform better than 

the modelling method and predictors currently used by Aiolos.  

5.6.1 Comparison with Aiolos - DAL 

The hourly MAPE for all four models and Aiolos is plotted and presented in Figure 32. 

Note that the Aiolos graph is not following the same behaviour as the tested models. 

This is a result of Aiolos being a different model, using another method for grid loss 

forecasting (for a complete model description the reader my refer to Vitec’s Aiolos 

documentation). All four tested models have an upward going trend over the 24 hours, 

meaning that the first forecasted hour is most accurate and the last is the least accurate. 

This is the expected pattern since all models use previous hourly losses as input and 

have been validated by backtesting – only using real measured values when forecasting 

the first hour and previous forecasted hours when forecasting the 23 coming hours. 
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Hence, the model comparison cannot solidly state if the tested models are better or 

worse than Aiolos based on the hourly MAPE graph. However, graphs lower than the 

Aiolos graph indicate that tested models accuracy could be better and graphs above the 

Aiolos graph indicate that tested models could be worse than Aiolos. Likewise, this 

holds for the hourly MAPE comparison when modelling VML losses. 

 

Figure 32: Model comparison with hourly MAPE when forecasting DAL losses. 

As seen in Figure 32 all tested models have comparable hourly MAPEs until forecasted 

hour 20, seen as overlapping graphs starting below 0.15 and increasing to around 0.2. 

At hour 20 and onward to hour 24 all models MAPE increase, but for the NNs the 

increase is substantially higher. In other words, ARIMAX and SARIMAX are more 

stable at a 24 hour prediction compared to the FNN and LSTM which are more 

unstable. Compared to Aiolos, there is a clear indication that ARIMAX and SARIMAX 

could be better than Aiolos and the FNN and LSTM might be better. 

5.6.2 Comparison with Aiolos - VML 

The hourly MAPE for all four models and Aiolos is plotted and presented in Figure 33. 

SARIMAX had smallest hourly MAPE of all tested models and the FNN had highest. 

However, both ARIMAX and SARIMAX generated notably more stable forecasts 

compared to the NNs. Unstable forecasts by the NNs is seen as the rapid increase of the 

MAPE for the FNN and LSTM at hour 20-24. Compared to Aiolos, there is only a clear 

indication of ARIMAX and SARIMAX being more accurate than Aiolos. As a result of 

the FNN and LSTM being close to, and occasionally overlapping, the Aiolos curve 

there is no clear indication of them being more adequate than Aiolos. 
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Figure 33: Model comparison with hourly MAPE when forecasting VML losses. 

5.7 Total Results - Best Models for DAL and VML 

By summing up the results from the calculated MAPE, sensitivity test and Aiolos 

comparison, the most suitable model for forecasting grid losses day-ahead in the DAL 

and VML grids were acknowledge. 

5.7.1 Dalarna  

Considering that ARIMAX had the smallest MAPE on the entire validation dataset, was 

robust to changes in input, and had stable and smallest hourly MAPE, ARIMAX(2,0,2) 

was considered to be the most accurate model for day-ahead grid loss forecasting of 

DAL losses. Compared to Aiolos the hourly MAPE was well below Aiolo’s during all 

24 hours, indicating that more accurate day-ahead forecasts are very likely to be 

achieved with the ARIMAX model, and by implementing the predictors, spot prices, 

power production plans and previous grid losses, when forecasting DAL losses day-

ahead. 

5.7.2 Värmland 

Considering that SARIMAX had the smallest MAPE on the entire validation dataset, 

was most robust to changes in input, had the smallest hourly MAPE and a stable hourly 

MAPE, SARIMAX(1,0,0)(0,0,1)[24] was chosen as the most accurate model for day-

ahead grid loss forecasting of VML losses. Compared to Aiolos SARIMAX’s hourly 

MAPE was below Aiolo’s during all 24 hours, indicating that more accurate day-ahead 

forecasts could be achieved with the SARIMAX model and predictors chosen in this 

project.   
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6. Discussion 

The discussion is structured by addressing predictors, model structures and model 

validation in three separate sections. Each section relates to one of the three aims.  

6.1 Identified Predictors 

Aim 1. Identify predictors that are of importance when forecasting grid losses. 

As grid losses are the difference of injected and withdrawn power from an electrical 

grid, predictors for modelling losses ought to relate to injected and withdrawn power. It 

was found that withdrawn power, in terms of consumption, was not the most crucial 

predictor to generate grid loss forecasts in neither the DAL nor the VML grid. This was 

found as temperature and weekday were not significant predictors. Additionally, when 

including them as input, higher MAPE was obtained compared to when excluding them 

from the input. Thus, consumption as an exogenous variable was not needed, as was 

hypothesised prior the modelling phase of the project. 

On the other hand, it was found that injected power in terms of production and spot 

prices were significant predictors for losses in both grids. Spot prices in SE3 had higher 

correlation for both grids, which is reasonable considering both grids are geographically 

located in SE3. However, a distinct difference between the DAL and VML losses was 

that production had a much higher correlation with DAL losses compared to VML 

losses. This means that power production was a better predictor for DAL losses, than it 

was for VML losses. Considering that the VML grid is characterised as a grid that 

transmits power, with injected power mostly consisting of imported power and not 

produced power, it is reasonable that production was not an equally applicable predictor 

for VML losses as it was for DAL losses. However, how could imported and exported 

power, as predictors, contribute to forecast the VML losses?  

As the residual analysis shows, there is no pattern in residuals for the VML regression 

models. Residuals follow a normal distribution quite accurately and they have no 

autocorrelation. Consequently, there is nothing major the models cannot capture, 

indicating that nothing seems to be absent in the VML models. Thus, imported and 

exported power as input would possibly not be needed to generate more adequate 

forecasts of VML losses. On the other hand, seeing to the residual analysis of the DAL 

losses, there is a clear yearly pattern in the residuals. This shows that something in the 

DAL losses is not entirely captured by the tested models. Another predictor, with yearly 

periodicity, might be needed as input to consider this yearly behaviour in the DAL 

losses.  

In conclusion, the results show that differences between electrical grid types affect 

which predictors are more suitable, and which are not, when modelling grid losses. 

Therefore, testing many different variables and evaluate their contribution to describe 

losses is a necessary part of a grid loss forecasting process. This has proven to be extra 
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important since not all beforehand hypothesised predictors were statistically significant 

to describe grid losses in this project. In more general terms this means that an analysis 

of possible predictors should be conducted for every new studied grid. Predictors found 

to be important to model grid losses in one grid does not imply that the same predictors 

are suitable for another grid. Nonetheless, as power production, spot prices and grid 

losses at previous timesteps were significant predictors for the different grids, DAL and 

VML, these three variables could preferably be tested for future grid loss forecasting in 

other grids as well.   

Additionally, finding suitable predictors is important to avoid overfitting of models and 

thereby erroneous results. As this project has shown, more adequate predictors tends to 

lead to more accurate predictions. However, at one stage more variables will not 

improve the forecasting accuracy to a large extent, as the dataset is descriptive enough 

to define the system. Hence, one of the challenges when modelling systems lies in the 

process of deciding when enough data has been gathered.  

6.2 Model Structures 

Aim 2. Distinguish suitable model structures for grid loss forecasting. 

The most accurate model at forecasting DAL losses day-ahead was ARIMAX(2,0,2) 

and the best model at forecasting VML losses was SARIMAX(1,0,0)(0,0,1)[24]. By 

considering the properties of the electrical grids and features of the ARIMAX and 

SARIMAX model structures, these are not surprising results. This thesis period of 24 

hours meant that losses 24 hours ago were included in the SARIMAX models. The 

autocorrelation for DAL losses at lag 24 was approximately 0.55, seen in the ACF plot. 

Compared to other exogenous variables, this was not the highest correlation. For 

instance, production in TRÄ had the highest correlation of 0.7, suggesting that 24 hour 

lagged losses should not need to be included to obtain better forecasts. Thus, the result 

of ARIMAX being a better model structure for DAL losses, compared to the 

SARIMAX model, is highly reasonable.  

On the contrary, when forecasting VML losses a SARIMAX model performed best. 

VML losses at lag 24 had a high autocorrelation, around 0.8 as seen in the ACF plot. 

Thus, it is plausible that inclusion of losses at 24 hour lag would result in better models 

compared to models not including losses 24 hours earlier. Furthermore, all other 

exogenous variables for VML losses had notably lower correlation than 0.8. 

PROD_TOT had highest correlation of all exogenous variables and it was 0.4, meaning 

that lagged losses was the most important variable to describe current losses. Hence, the 

result of SARIMAX being a better model structure for VML losses, compared to the 

ARIMAX model, is reasonable. 

For both grids the NNs were approximately equally good as the ARIMAX and 

SARIMAX models. Although, the NNs did not outperform the linear models when 

comparing the MAPE. Considering previous studies that found NNs to be exceptionally 
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more adequate models, this is a slightly deviating result. One possible explanation 

comes from the fact that there is no systematic testing of NNs. NNs found to be most 

accurate in this project does probably not have optimised hyperparameters, meaning that 

their performances could most likely have been better if more time had been available 

for hyperparameter tuning.  

That is, the model structure that produce most accurate forecasts depend on the type of 

grid losses that is being modelled. Therefore, distinguishing adequate model types and 

model structures is an equally important part of modelling as identifying suitable 

predictors.  

6.3 Model Validation  

Aim 3. Validate tested models and compare the forecasting accuracy with the 

forecasting tool used at Fortum. 

For the DAL losses, ARIMAX had the smallest MAPE over the entire 6 months and 

was most stable at forecasting all 24 hours day-ahead. However, the sensitivity test 

showed that the FNN was most robust to changes in input and the LSTM second most 

robust, not ARIMAX or SARIMAX. Furthermore, the hourly MAPE graph for the NNs 

were similar or below ARIMAX’s during forecasted hours 0-20. This suggests that the 

NNs’ hyperparameters possibly were quite adequately tuned for grid loss forecasting, 

even if they were not optimised. 

The exception for this suggestion is the rapid increase seen in the last 4 hours in the 

hourly MAPE, which moreover ought to have worsen the total 6 month MAPE. 

Nonetheless, the 6 month MAPE for the NNs were close to the linear models’ MAPE. 

In fact, the LSTM had lower MAPE than SARIMAX. Hence, it is arguable that the NNs 

were quite accurate since their total MAPE, despite the rapid increase in hourly MAPE, 

were close to the accuracy of the ARIMAX and SARIMAX models.  

Regarding the VML losses, SARIMAX was the model with smallest MAPE. 

SARIMAX was also most robust, had lowest hourly MAPE graph and was most stable. 

The fact that SARIMAX had smallest MAPE has been discussed in terms of the 

model’s structure, addressed in the previous Section 6.2. The SARIMAX model being 

most robust might be explained by the relevantly added 24 hour lagged grid losses. 

With more grid losses as input to the model, it is possible that the extra variables made 

the model more robust to changes in two of the other variables. 

Intuitively, this reasoning should hold for the DAL losses as well, but it does not. The 

NNs were most robust when forecasting DAL losses, and SARIMAX was least robust. 

One possible explanation could be the fact that SARIMAX was not an equally adequate 

model for DAL losses, as it was for VML losses. Another potential explanation is that 

better NNs were found for DAL losses, than for VML losses. The MAPE for the NNs 

were in the same range as the linear models’ MAPE, both in terms of the entire 6 month 
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MAPE and by looking at the hourly MAPE graph from hour 0-20. Further, the NNs 

were the most robust models when modelling DAL losses. 

The NNs for the VML losses had higher 6 month MAPE compared to the linear models, 

they were the least robust models and had hourly MAPE graphs well above the linear 

models. Both NNs’ hourly MAPE graphs were grouped on a higher level and the linear 

models followed each other at a lower level. This is a distinct difference compared to 

the NNs for the DAL losses, which suggests that NN-hyperparameters for DAL losses 

were more adequate than the hyperparameters found for the models describing VML 

losses.  

As of the MAPE graphs, they showed that all models were most accurate at forecasting 

few hours ahead compared to forecasting many hours ahead. This is reasonable due to 

the forecasts being based on previous forecasts. However, there was a rapid increase in 

MAPE during the last 4 hours, especially for the two NNs. This pattern was seen both 

for the DAL and VML models. A suggestion is that hours 20-24 could be much more 

difficult to forecast. Alternately, the forecasting error could have been aggregated for 

the last 4 forecasted hours, due to the forecasts being based on previous forecasts. 

By comparing the DAL and VML models’ accuracy, VML models had generally 

slightly lower MAPE and were marginally more robust. However, note that plotted 

forecasts with VML models did not follow the validation dataset as accurate as DAL 

models (seen in the plots illustrating the models with seven forecasted days in Sections 

5.1, 5.2 & 5.3). By solely studying the plots of seven days forecasted losses, 

considerably more accurate models seems to have been obtained for DAL losses. This 

result is counterintuitive to the MAPE results. One explanation for this contradiction 

could simply be that the particular seven plotted days happened to be easier to model for 

all DAL models and more difficult for all VML models. However, this coincidence is 

highly unlikely since forecasted DAL losses also followed actual losses at other time 

periods (seen in Appendix D). 

A more probable explanation is that the yearly behaviour in DAL losses lowered the 

accuracy in terms of a higher MAPE, since the DAL models could not entirely consider 

that behaviour. Nonetheless, the non-modelled yearly behaviour in DAL losses was 

presumably not noticeable on the daily basis accuracy, illustrated in the plots.  

6.3.1 Aiolos Comparison 

The model comparison with Aiolos indicated that more accurate grid loss forecast could 

be obtained with the suggested models in this thesis. However, model structure as a 

reason for this result cannot fully be analysed, since the model structure of Aiolos was 

unknown.  

Another contributing factor, which can be discussed, originate from the fact that 

different variables were used as input to the models. Forecasts made by Aiolos used 
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weather predictions and historical grid losses as input. As found from the correlation 

analysis, weather variables did not have as high correlation to losses as power 

production and spot prices. Since the suggested models in this project included 

production and spot prices as input, it is very likely that production and spot prices as 

exogenous variable was needed to generate more accurate forecasts.  

By observing the hourly MAPE graphs of the DAL and VML models against each 

other, DAL models were lowered from Aiolos’s graph to a greater extend compared to 

the VML models. Consequently, it is expected that most improvement in grid loss 

forecasting accuracy at Fortum comes from implementing the DAL models, rather than 

the VML models, in place of Aiolos’s forecasts. However, the cause of this result 

cannot be definitely stated. Either, Aiolos generated better forecasts for VML losses and 

worse for DAL losses, making it reasonable that the most accurate models found in this 

project would have greatest improvement for DAL losses. Alternatively, Aiolos 

generated equivalently accurate forecasts for both grids, and instead, the greater 

improvement in DAL losses originated from the fact that DAL losses were easier to 

model with the chosen predictors and model structures, compared to VML losses. 
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7. Conclusions 

To conclude the findings from this thesis, three conclusions are stated below, each one 

answering one of the project’s three aims (presented in Section 1.2). 

Conclusion 1. – important predictors 

Predictors identified as important exogenous variables to include when forecasting grid 

losses were power production and spot prices. These predictors were important for the 

grid in Dalarna and for the grid in Värmland. Furthermore, grid losses at previous time 

steps were also found to be important to include as input to the models.  

Conclusion 2. – suitable model structures 

The model structure found to be most accurate at forecasting grid losses day-ahead in a 

grid in Dalarna, was ARIMAX(2,0,2). The model found to be the most accurate at 

forecasting grid losses in a grid in Värmland, was SARIMAX(1,0,0)(0,0,1)[24].  

Conclusion 3. – compared forecasting accuracy 

The results indicate that more accurate forecasts can be achieved with the two models 

found in this thesis, compared to the forecasting tool that is in use at Fortum at the time 

of writing this thesis. Most likely is that the ARIMAX(2,0,2) will improve forecasting 

accuracy in Dalarna more than SARIMAX(1,0,0)(0,0,1)[24] will in Värmland, if 

implemented and used instead of the currently used forecasting method at Fortum. 

By putting this thesis findings into a broader perspective of grid loss forecasting, the 

following can be concluded. As the two studied grids in this thesis had different 

characteristics, but still had the same predictors, the results suggest that power 

production, spot prices and grid losses at previous time steps are of interest to consider 

as possibly important predictors for other grid losses as well. However, the level of 

importance of the predictors were slightly different for the two grids, which implies that 

a data analysis, to find suitable predictors, always is necessary before modelling and 

forecasting grid losses. That is, power production, spot prices and grid losses at 

previous time steps are likely to be important predictors for other grids as well, 

considering that those predictors were important for the two different grids studied in 

this thesis. However, there is no guarantee that those predictors will be important for all 

other grids, which makes a data analysis crucial to find important predictors for other 

grids.  

Furthermore, different model structures were found as the best model at forecasting grid 

losses for the two grids, which is a result of the grid losses relating to the characteristics 

of the grids. In accordance to previous studies, which have studied different types of 

grids, different models and predictors have been found to be the most accurate model 

for grid loss forecasting. Consequently, when forecasting grid losses it is essential to 

explore different predictors and model structures to find an adequate model for the 
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particular grid losses being studied. No universal model is adequate at forecasting all 

types of grid losses. Hence, a throughout analysis, concerning the particular grid and 

grid losses, is of great necessity to find a valid and useful model for all day-ahead grid 

loss forecasting.  

Nevertheless, both linear models and NNs performed better than the forecasting method 

that the models were compared to in this project. This means that these two model types 

could be of interest to consider when forecasting grid losses day-ahead in other grids as 

well. However, it cannot be concluded that suggested models in this project definitely 

can improve forecasting accuracy for other grids. This is because potential improvement 

in forecasting accuracy depends on the method that the models are compared to. 

Forecasting methods may be substantially different between different electrical 

companies, conducting day-ahead grid loss forecasts. Therefore, it cannot be concluded 

if the models explored in this thesis could increase, or decrease, forecasting accuracy in 

other grids in general. 

7.1 Future Work 

For future work, backtesting with refitting could be tested when validating the models. 

In this project, backtesting without refitting was implemented due to the method being 

faster. However, by refitting, models are adapted to data every time more data become 

available and new predictions are generated. This is a more real-world-like scenario, 

refitting models every now and again, instead of using the same model for 6 months (as 

in this thesis’s validation phase). The models’ forecasting accuracy after refitting would 

be an interesting result to compare to Aiolos’s forecasts, and to the forecasts generated 

with this thesis’s models. 

Another proposal regarding validation, originates from current operations at Fortum. At 

Fortum, data is quarantined for about a week when doing forecasts, meaning that there 

is one week of data less in the training dataset. This was not directly tested. As all 

weeks in the validation dataset was forecasted based on the same training dataset, it was 

not completely applicable to regard the one week of missing training data. However, if 

backtesting with refitting is tested, one week less data in the training dataset can be 

implemented in future work to evaluate accuracy. 

A suggestion for future work regarding NNs, consists of testing more NNs to optimise 

hyperparameters. It would be of great interest to examine the forecasting accuracy of the 

NNs if the hyperparameters are more adequately configurated before training the 

models. 

Another possibility would be to explore hybrid models, instead of testing one model at a 

time as done in this thesis. Testing many different hybrid models and investigate their 

day-ahead forecasting accuracy is of significance, since research work in the literature 

suggest that hybrid models can be more accurate at time series forecasting compared to 

using one model.  
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The final suggestion is to test other variables as predictors. Especially relevant is to 

identify a variable with yearly behaviour in the grid in Dalarna. Due to a yearly pattern 

in the residual analysis, tested models and predictors for losses in the Dalarna grid could 

not capture all yearly behaviour in the grid losses. Therefore, a highly attractive 

research question constitutes of investigating how another, additional exogenous 

variable affects the MAPE, as the finding possibly could lower the DAL MAPE even 

further.  
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Appendix A 

Cross-correlation plots Dalarna. 

The 5 pots below show that historical values of exogenous variables u(t-n) does not 

correlate as much as the current value u(t), at lag 0. Hence, it was not necessary to 

include previous values of the exogenous variables and a  B(q) polynomial equal to 1 

was reasonable for DAL losses. 
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Cross-correlation plots Värmland. 

The 12 pots below show that historical values of exogenous variables u(t-n) does not 

correlate as much as the current value u(t), at lag 0. Hence, it was not necessary to 

include previous values of the exogenous variables and a  B(q) polynomial equal to 1 

was reasonable for VML losses. 
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Appendix B 

Tables present all tested ARIMAX and SARIMAX models.  

Table 11 and Table 12 regard DAL losses.  

Table 13 and Table 14 regard VML losses. 

Table 11: ARIMAX models with TRÄ, GRÅ, MFJ, SE2 and SE3 as input. Model with 

smallest MAPE is bolded. 

Model – DAL  MAPE 

ARIMA(0,0,0) 0.2244 

ARIMA(0,0,1) 0.2554 

ARIMA(0,0,2) 0.2731 

ARIMA(0,0,3) 0.2708 

ARIMA(0,0,4) 0.2668 

ARIMA(1,0,0) 0.2379 

ARIMA(1,0,1) 0.2209 

ARIMA(1,0,2) 0.2134 

ARIMA(1,0,3) 0.2063 

ARIMA(1,0,4) 0.1973 

ARIMA(2,0,0) 0.2266 

ARIMA(2,0,1) 0.1935 

ARIMA(2,0,2) 0.1808 

ARIMA(2,0,3) 0.2148 

ARIMA(2,0,4) 0.2035 

 

Table 12: SARIMAX models with TRÄ, GRÅ, MFJ, SE2 and SE3 as input. Model with 

smallest MAPE is bolded. 

Model – DAL  MAPE 

SARIMA(2,0,2)(1,0,0)[24] 0.1988 

SARIMA(2,0,2)(0,0,1)[24] 0.2108 

SARIMA(2,0,2)(1,0,1)[24] 0.1927 
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Table 13: ARIMAX models with PROD_TOT, SE2 and SE3 as input. Model with 

smallest MAPE is bolded.  

Model – VML  MAPE 

ARIMA(0,0,0)  0.3092 

ARIMA(0,0,1)  0.2907 

ARIMA(0,0,2)  0.2699 

ARIMA(0,0,3)  0.2583 

ARIMA(0,0,4)  0.2536 

ARIMA(1,0,0)  0.1840 

ARIMA(1,0,1)  0.1871 

ARIMA(1,0,2)  0.1865 

ARIMA(1,0,3)  0.1882 

ARIMA(1,0,4)  0.1839 

ARIMA(2,0,0)  0.1872 

ARIMA(2,0,1)  0.1858 

ARIMA(2,0,2)  0.1865 

ARIMA(2,0,3)  0.1880 

ARIMA(2,0,4)  0.1877 

 

Table 14:  SARIMAX models with PROD_TOT, SE2, SE3 and TEMP as input. Model 

with smallest MAPE is bolded. 

Model – VML  MAPE 

SARIMA(1,0,0)(1,0,0)[24] 0.1748 

SARIMA(1,0,0)(0,0,1)[24] 0.1736 

SARIMA(1,0,0)(1,0,1)[24] 0.1950 
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Appendix C 

Figures summarising the ARIMAX and SARIMAX models. The left most column 

contain all independent variables used to calculate the DAL and VML losses. In the 

same column a variable ‘sigma2’ is given, which is the variance of the residuals. The 

coef column give the fitted parameters in the 𝜃-vector and the P>|z| column show p-

values from the z-statistics. That is, P>|z| less than 0.05 entails that the null hypothesis 

of non-significant parameters can be rejected, meaning that the variables should be used 

in the model. 

Figure 34 and Figure 35 regard DAL losses. 

Figure 36 and Figure 37 regard VML losses. 

 

Figure 34: Summary of ARIMAX(2,0,2), modelling DAL losses. 
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Figure 35: Summary of SARIMAX(2,0,2)(1,0,1)[24], modelling DAL losses. 

 

 

Figure 36: Summary of ARIMAX(1,0,0), modelling VML losses. 
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Figure 37: Summary of SARIMAX(1,0,0)(0,0,1)[24], modelling VML losses. 
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Appendix D 

Forecasted losses - Dalarna 

Seven days forecasted DAL losses. Left column: one week in the middle of the 

validation dataset. Right column: last week in validation dataset.  

ARIMAX 

 

SARIMAX 

 

FNN 
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LSTM 

 

Forecasted losses - Värmland 

Seven days forecasted VML losses. Left column: one week in the middle of the 

validation dataset. Right column: last week in validation dataset. 

ARIMAX 

 

SARIMAX 
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FNN 

  

LSTM 

 


