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Abstract 

Export of heat treated steel goods has an important impact on the Swedish economy which 

brings performance demands and expectations on production to keep a competitive market 

position. Sustainability and efficiency are two important aspects in meeting these demands. This 

thesis studies how a data driven approach can be used to increase efficiency in manufacturing 

of rods produced for the mining industry. 

 
The purpose of this thesis is to use a machine learning model suitable for classifying quality 
results for heat treated steel rods. This is done by comparing nine algorithms with the objective 
to tune and deploy the model best fitted while gaining insights in variables that have an impact 
on the quality output.  
  
This thesis outset is a heat treatment process at Epirocs facility in Fagersta. Interviews are 
conducted to gain domain knowledge about important features and an AI pipeline is 
implemented to demonstrate its suitability for predicting quality given production and weather 
data in the form of time series and product-unique data points. 
 
The result of the study shows that the machine learning algorithm random forest is indicated as 
most suitable among the analyzed. The study also shows that an AI pipeline with streaming 
data can be designed and efficiently implemented for quality improvement. Through this work, 
the authors have proved that machine learning can be used to improve the heat treatment 
process of rods, but the model still has room for improvement in feature selection and 
availability of larger and more detailed data at the facility.  
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Populärvetenskaplig Sammanfattning 

Användning av artificiell intelligens inom tillverkningsindustrin är ett relativt nytt 

fenomen då få företag har lyckats ta steget från konceptvalidering till produktionssättning. 

Det har dels att göra med att kunskapen om vilken data som är viktigt ännu inte fastställts 

då många tillverkningsprocesser är av hög komplexitet. Det innebär också att 

implementationen av en skalbar struktur inte haft ett investeringsbart underlag. Samtidigt 

genomgår Svensk industri en fjärde industriell revolution som strävar efter högre 

automationsgrad och utökad digitalisering. En utveckling som är vital för att möta global 

konkurrens. 

Tidigare forskning har visat på att tidsserier och processvariabler kan analyseras på andra 

sätt än att se dem visuellt i tabell, graf eller jämföra dem en och en. Avvikelser kan 

förekomma i mer komplexa mönster där flertalet variabler i viss kombination har 

inverkan eller att en viss sekvens av data är mer betydande än en datapunkt. Med hjälp av 

maskininlärning kan man finna komplicerade mönster i data som avslöjar sambandet 

mellan ingående variabler i processen och hur utfallet utspelar sig. Detta är samband som 

inte en människa kan uppfatta. Underliggande mönster kan upptäckas med 

maskininlärning under förutsättning att rätt variabler används som indata, vilket också 

visar på vikten av domänkunskap om den specifika processen som undersöks. 

I projekt som grundas på stora datamängder är bra orkestrering av arkitektur 

och datastruktur viktigt för att kunna utveckla, skala upp och produktionssätta modeller 

på ett effektivt sätt. Detta kan förverkligas genom en pipeline som kopplar ihop olika 

processteg och sparar en version av datats tillstånd mellan respektive steg. På så sätt kan 

en pipeline kontinuerligt matas med ny data till en maskininlärningsmode ll. För 

utveckling eller forskning kring andra produktionsområden kan samma pipeline användas 

genom att koppla på en ny pipeline från valfritt processteg utan att behöva processa datat 

från början. Därav finns det stora fördelar i att kunna nyttja en pipeline för tillverkning 

då ny data kontinuerligt genereras.  

Epiroc är ett verkstadsföretag som tillverkar utrustning för gruv- och 

infrastrukturindustrin. Denna utrustning innefattar bland annat borrkronor och stänger 

som fästs vid varandra och används under exempelvis malmbrytning. Genom att borra 

hål i berget ges plats åt dynamit som expanderar tomrummet. Dessa stålstänger tillverkas 

i Fagersta genom en mycket komplicerad process som ger stålet rätt egenskaper i form av 

seghet, hårdhet och kolhalt. Stängernas kärnhårdhet sätts i en värmebehandlingsprocess 

där stålet värms upp till cirka 1000 grader Celsius under en viss tidsperiod och kyls med 

hjälp av fläktar i en viss hastighet givet ett recept för den specifika produkten. Stängerna 

testas sedan av en kvalitétsavdelning som märker produkten som godkänd eller ej 

godkänd givet ett kvalitétsmått innan de skickas vidare till nästa operation eller kund. 

Idag tittar operatörer på avkylningskurvor i realtid som visas på en monitor för att se hur 

en värmebehandling ter sig. De kollar även på kvalitétsresultat och gör utifrån dessa en 

bedömning av hur produktrecept ska ändras för att optimera kvalitéten och minimera 



skrotade produkter. Företagets ingenjörer försöker på så vis manuellt optimera kvalité  

genom att testa olika recept för körningarna. I detta examensarbete utforskas möjligheten 

att nyttja en pipeline för att genom maskininlärning utforska variabler och prediktera 

kvalitetsutfall på värmebehandlade stålstänger. 

Resultatet visar på att pipelinen och de tjänster som nyttjas har möjliggjort värdeskapande 

insikter under kort implementationstid. Nio maskininlärningsalgoritmer har jämförts med 

sex olika prestandamått och detaljerade visualiseringar för respektive variabels inverkan 

på kvalitétprediktionen. Den slutgiltiga maskininlärningsalgoritmen uppvisade ett viktat 

AUC värde på 0.71 genom korsvalidering och predikterade 61 procent rätt vid test på 

osedd data. Modellen har utvecklingspotential om mer data med högre granularitet 

tillgängliggörs. Resultatet kan i huvudsyfte användas till att minska kostnader och 

effektivisera arbetet genom att minska antalet kvalitétstester. Den framtagna 

maskininlärningsmodellen visar också på att utomhustemperaturen, avkylningsfläkt och 

den totala värmeenergin i knippet av stänger är de viktigaste av de utvalda variablerna för 

att prediktera kvalitétsutfall. Det ger en intressant grund till vidare forskning och vilken 

typ av data som behövs för att kunna ta fram anpassade recept som minskar kassationer. 

Studien har även bekräftat att fläktar är individer som ger olika resultat på samma 

variabler, vilket medför att framtida forskning måste ta hänsyn till produktionspecif ika 

variabler och de maskiner som används för respektive produktionslinje. 

De slutsatser som tagits bidrar till en djupare förståelse för vilka faktorer som påverkar 

en värmebehandlingsprocess under blåshärdning och kan potentiellt bidra till en ökad 

produktivitet, högre kvalité och minskade kassationer. En effektivare produktionsmi ljö 

bidrar till större ekonomiskt värdeskapande samtidigt som energin som processen kräver 

kan minskas. Studien har även undersökt huruvida en pipeline för artificiell intelligens  

kan utvecklas och implementeras för att prediktera kvalitétsutfall. Studiens resultat pekar 

på att så delvis är fallet hos fallföretaget. Att dokumentera vilken data som bidrar till 

stängers hårdhet samt att utröna huruvida data kan användas för att fatta AI-drivna beslut 

stärker Sveriges position på världsmarknaden.  
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1. Introduction 

Sweden's manufacturing industry stands for roughly 40 percent of the country's total 

export [1] and around 16.3 million tons of CO2 emissions a year. This makes the sector 

one of the biggest players in the shift towards a more sustainable future [2]. Steel is a vital 

component in many of Sweden's production sites and the steel manufacturing industry is 

an important key player in reducing emissions. Many products are made of steel, for 

example aircraft components and car engines [3]. Machined steel often undergoes some 

kind of property refining process which aims to give the right characteristics to the steel 

through heat treatment and cooling. It is important to have control over all production 

steps to maintain high quality, reduce costs and deliver the steel goods on time [4]. A 

refined manufacturing process contributes to better resource utilization and lower 

emissions [5]. 

Today’s manufacturing industry is experiencing a rapid increase of available data. A vast 

amount of data is being collected through the whole production line from sensors, 

machines and other data collecting features [6]. Data related to quality output has 

potential to improve the monitoring of quality output [7]. According to the European 

commission, the “factories of the future” need to deal with a higher competition from 

global competitors and one strategy to do so is to incorporate new technologies, services 

and applications [8]. Extract, handle and analyze data are keys in this transformation. This 

means that not only the development of machine learning (ML) algorithms is important, 

but also implementing effective orchestration that handles the entire flow from raw 

process data to deployment of a model [9]. This orchestration is also called an artificial 

intelligence (AI) pipeline.  

ML can be a part in solving today's manufacturing challenges with big and complex data 

as the raw process data does not provide any information itself [10]. The ground for 

solving these challenges is to use qualitative and quantitative approaches by using suitable 

tools for ingestion, storage and processing of data that enables ML and new insights.  

According to Wuest et al. [11], data driven solutions can identify nonlinear relations by 

“Transforming raw data to feature spaces, so called models”. These models can then be 

applied to different problems within forecasting, regression, prediction, detection and 

classification. When manufacturing rock drilling equipment, the products undergo a 

certain predetermined process that immediately becomes complex. When the products are 

heat-treated, several variables are generated which become stochastic. 

Variables can be collected from a process over time as a time series of sensor 

measurements. In such cases, data models and tailored algorithms for time series can be 

helpful to find causes of rejection and predict quality [12]. These algorithms can be 

tailored to quality targets and compared to find the most appropriate algorithm for the 

purpose [13]. When working with time series a set of variables can be extracted, 

preferably based on domain knowledge [10], [14]. The variables can then be categorized 
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into classes with the help of ML [15] and ergo be detected as anomalies in the process 

with regards to the quality output. The research area is unexplored within rock drilling 

equipment and lacks a deeper understanding of ML applications.  

1.1 Purpose 

This thesis aims to solve an issue connected to heat treatment of steel part manufacturing 

and quality outcome for rock drilling tools. The purpose is to transform raw process data 

and find the optimal ML algorithm that is best suited for the heat treatment process. 

Several varieties of algorithms are tested to find patterns between the process and its 

outcome, meanwhile scoring the model to prove its correctness. 

Through this work, the authors want to prove that raw process data and quality results can 

be structured and combined in improving and predicting quality results through an AI 

pipeline. To do this, the right variables must be extracted from the time series in order to 

match other process data. The main goal is to first prove that ML can be used in a 

manufacturing environment and, if proven, use ML to indicate quality results and 

variables that have an impact on it.  

The goal of this project is to answer the following questions in production of heat 

treated steel rods for rock drilling: 

1) What data has an impact on hardness results from the cooling process? 

 

2) How can a tailored AI pipeline be used to predict quality output based on data 

related to the cooling process? 

1.2 Delimitations 

In this study, several delimitations have been made with the purpose of making it more 

direct and concrete. The focus is to prove the potential of AI in rock tool manufacturing 

through a case study. The study does not go into details about measuring equipment in 

the lab and sensors during each process step. The data used only comes from three 

sources: a quality lab, a production database, and external temperature data. Due to 

limitations in time, the study does not go into details about the entire production flow, 

that is, before and after the heating and cooling process. Thus, this study is selecting only 

data for a part of the process, to investigate whether it has an impact on the quality or not. 
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2. Background 

Section 2.1 gives a brief introduction to heat treatment of steel and mandatory process 

steps for steel to gain certain characteristics. This is followed by an introduction to ML 

and its potential in steel manufacturing procedures in Section 2.2 and how to utilize time 

series for anomaly detection in Section 2.3 and 2.4. The advantages of visualizing 

machine learning results are discussed in Section 2.5.  

2.1 Heat treatment of metal 

Heat treatment is a process that is defined by heating metal to a critical temperature and 

in most cases rapidly cool it by gas, air, oil, or water. The process transforms the internal 

structure in the material and mechanical characteristics. Hardening is one form of heat 

treatment which sets a material's hardness, wear resistance and hot-working ability. The 

process of heat treatment involves three steps to acquire the right characteristics. The 

metal must first be heated to a certain temperature and then kept in a certain range of 

temperature for a specified amount of time. Lastly the metal is carefully cooled at a 

specified rate to get a stabilized grain structure. This is a vital step in all heat treatment 

processes since unsuccessful cooling can cause cracks and chips in the material [16]. 

2.2 ML potential in manufacturing 

ML is an advanced way of processing data to get deeper insights. Various kinds of ML 

techniques can uncover non-linear and overly complex patterns in several types of data 

[11]. One general possibility of ML techniques is the ability of handling advanced 

problems that often occur in modern production environments [17]. These problems can 

be solved with troubleshooting, control and optimization where the ML models play a 

huge role in finding solutions [18]. ML is applicable in several perspectives of 

manufacturing which all play a significant role in daily business operations. It can result 

in a competitive position on the market, reducing production costs and limiting 

environmental impacts [18]], [[19]. Companies can innovate in manufacturing efficiency 

by more advanced process control and forecasting maintenance. By enabling better data 

insights through ML, industries can reduce waste, energy usage and carbon emissions. 

Products can also be more reliable manufactured and sold with increased quality [19]. 

To increase ML's potential in manufacturing, the flow of data can be orchestrated in an 

AI pipeline, which accelerates the process of taking raw data to tuned ML models. An AI 

pipeline automates the process to both save time, money and get more consistent and 

reliable models. The pipeline can be seen as a recurring cycle that begins with data 

ingestion, data validation and data preprocessing. The purpose of the ingestion is to 

transform the data into a uniform format that works with all following components in the 

process. The data is then validated by examining its statistics and distribution. This 

includes investigating any abnormal values or imbalance between class labels and 

applying suitable actions for it. The data preprocessing step is cleaning the data to be 
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ready for model training and tuning. After the model training, the AI pipeline cycle ends 

with model analysis and validation, model deployment and model feedback. Model 

analysis is when a data scientist carries out a deeper investigation of the model 

performance with different performance metrics to make sure that the model makes fair 

predictions. When the model is trained and tuned, it is deployed to be used on fresh and 

unseen data. The last step of the AI pipeline, model feedback, is meant to check the real 

effectiveness and performance of the model and add more data or update the model if 

improvements are needed. The advantage of an AI pipeline is that the entire pipeline can 

be automated except for the analysis and feedback step. This makes room for data 

scientists to focus on development instead of maintenance [9]. 

2.3 Feature extraction from time series data 

Time series is a common way of collecting data over time [20] and is a crucial part of 

production follow up and control. Time series has for example been used to improve 

manufacturing control system performances [21]. Using ML for quality improvement in 

manufacturing is a common way to utilize time series data. These techniques can be 

devoted to find the relations between the input parameters and outcome [22]. ML 

algorithms are divided into two kinds of groups, supervised and unsupervised [23]. If 

instances are given with known labels, the learning is supervised [24]. Supervised 

algorithms aim to create a model from a known dataset [25] which is used to improve 

production output and quality control [26].  

Supervised learning is used on classification problems, as the output is to be defined by a 

class label. When handling time series data, or any other type of classification data, 

feature extraction or feature selection is conducted to reduce the number of dimensions 

as a first step before modeling a classification algorithm. Feature extraction is the process 

of constructing new feature spaces out of the initial feature spaces to reduce 

dimensionality. Feature selection is selecting a subset of features that are of relevance for 

the analysis and minimizes redundancy. The feature selection is important as irrelevant 

features result in poor models when training the model [27]. 

Most literature that proposes time series classification is application dependent, which 

indicates that algorithms developed for the widespread use case also come with poorer 

performance. Thus, a few features extracted based on domain knowledge are preferred 

above hundreds of random features as it can cause overfitting on a small dataset. Time 

series are defined by a continuous series consisting of a contextual attribute, time, and a 

behavioral attribute which is the corresponding value at the given time. Time series data 

can either be classified by a specific time-instant or as a part of the whole series and both 

types of measures can be equally important in a classification model. Measurement errors 

can easily cause worse classification and although some algorithms take outliers or 

anomalies into account, they can still cause effects on accuracy. The effect of this must 

be considered when analyzing data from time series [15]. 
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2.4 Anomaly detection in time series 

For detection of anomalies in time series data, assumption must be made that the normal 

behavior of a process is stationary to find the occasions when the process generating data 

is abnormal. This means that the process must be stationary also in the future if prediction 

is going to be applied. For manufacturing, anomaly detection is of significant importance 

as anomalies need to be found at an early stage for expensive operations. Manufacturing 

industries have for a long time checked the quality by using algorithms for change 

detection from sensor data, which is considered a straightforward way of detecting 

anomalies. A lot of time series are generated from manufacturing processes, which makes 

it interesting to compare how they differ from each other instead of changes within each 

time series. Time series for the same type of process may also vary depending on what is 

produced and thus follow different target values [14]. 

Research on anomaly detection in time series has increased in the last decade for a diverse 

set of fields. Anomalies are commonly either a point anomaly or a structured anomaly. 

Point anomaly is when a single point deviates from the other in a series and thus becomes 

isolated. A structured anomaly is described by a set of points that differs in a comparison 

with another set of points and is often more complex to handle. It is important to reveal 

the data structure when solving structured anomaly problems and a lot of today's 

algorithms within the field are focusing on exactly that part for the analysis. One popular 

method is to use interval sets theory, meaning to divide the time series into segments 

according to upper and lower bounds for qualitative information analysis. Previous 

research has divided the time series into equal sized subsequences and then explored the 

bounds of each interval to extract distribution information from a single point. These 

points can then be used in finding the largest distances which are to be counted as 

anomalies [28]. Two other common ways of anomaly detection for multiple time series 

are point-to-point distances and variations over time. Point-to-point distances are 

comparing the distance of one point to the corresponding point in another time series. 

Variations over time take the gradient of a sequence into account, comparing the 

derivative for a certain time period with another time series. In this way many values can 

be generated from local gradients. Anomalies can occur in a specific sequence of a time 

series, or affect the whole process. Thus it is important to find the sequences that are of 

importance for the quality output [14]. 
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2.5 Interpretation of ML insights by visualizations 

A frequent problem with proof of scientific concepts is that they rarely make it to a 

production environment with the whole pipeline from data extraction to visualization. 

The visualizations are important to interpret scientific findings and explain the added 

value of the model [29]. Thus, visualizations are knowledge generators as it helps the user 

to find hypotheses about a ML model's output. The ML domain has three main purposes 

that characterize the benefits gained from visualizations. The first one is eventual 

incompleteness in understanding the problem itself. By using visualizations, data can be 

understood in a more holistic way and reveal other perspectives of a problem. The second 

one is the diagnosis of the result, which either corresponds to expectations or not. Through 

diagnosis of the result, the user can compare visualizations containing already gained 

knowledge. The third characteristic is refinement, by which better models can be 

designed. By understanding the output and compare it with the optimal output, the model 

can be iterated and become better [30]. 
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3. Related work 

This section gives a summary of related work and previous research within the area of 

heat treatment in combination with AI and quality improvement in manufacturing. 

Section 3.1 presents the results on the applicability of AI in steel manufacturing processes 

followed by examples of types of research done in the area for quality improvement in 

Section 3.2. Research that is closely related to this report's analytical outset is presented 

in Section 3.3 and ends with a discussion on how this report contributes to current 

research in the mining and manufacturing field in Section 3.4. 

3.1 AI in steel manufacturing 

The complexity of steelmaking and the multitude of production chains that generate 

process data makes the industry a perfect candidate for AI research and implementation 

gains [31]. The data in combination with the latest information technologies is the core 

part of future smart factories, thus a lot of research has been done in the fields of steel 

manufacturing and process improvements [10]. 

Wuest et al. [11] means that neither steelmaking nor the general manufacturing industry 

has yet embraced, and accepted architectures and applications based on cloud computing, 

partly because of difficulties to take it to a production state. Pellegrini et al. [10] 

conducted research based on implementation of a pipeline concept on different processes 

that are applicable for AI and the next generation of manufacturing. The research is based 

on a ML adoptable architecture that supports cloud modules to extract features from 

various sources of raw data and store them in a uniform format in a standardized way for 

horizontal and vertical scalability. The architecture also supports data mining and 

visualization for predictive and monitoring purposes. Throughout the research Pellegrini 

et al. presents three different use cases of the architecture to prove its value for steel 

manufacturing. First it is used as a decision support tool for operators based on binary 

classification prediction of clogging probability in continuous casting. It is also used to 

show real time steel temperature during a degassing process and lastly for detecting 

surface defects with deep learning for image recognition. As a conclusion, Pellegrini et 

al. concludes that one of the main advantages of the cloud-based architecture is that it 

supports heavy workloads of for example image processing and reduces the initial costs 

of hardware. The results show that the architecture has many more application areas and 

can give results that have an immediate impact on the industry in quality precision and 

operational costs.  

Cemernek et al. [32] has investigated current ML techniques for the continuous casting 

process of steel with a vast review of existing publications. The findings show that 

prediction of steel quality and defects needs consideration to the full process and that 

decision trees and neural networks make the ground for most applicable algorithms. 

When predicting quality, a more diverse set of target variables can be involved as quality 

is an umbrella term referring to distinctive characteristics such as hardness or tensile 
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strength. Due to this, quality prediction research is much more heterogenic in its models 

and applications as different variables are useful for different quality measures. The 

research concludes that supervised and active learning would be of beneficial use in the 

steel industry if new techniques are implemented to handle imbalanced data [32]. 

3.2 Quality improvement in steel manufacturing 

A lot of research has been done in the area of quality improvement and surface defects is 

one of the most common use cases of ML in the steel industry [10]. Published studies that 

research on AI for heat treatment processes mostly aim to develop systems that use AI in 

real time to simulate human behavior or develop decision support functions in processes 

that involve human interaction of detecting defects [34]. Many of these studies are based 

on images processing algorithms [39] while others are based on mathematical co-relations 

between ingoing parameters and known output quality parameters gathered in a 

knowledge base [34]. For example, Mitra et al. [34] investigates furnace temperature, 

material thickness, weight and steel grade to predict furnace temperature for optimal final 

carbon content, hardness, ductility, formability and tensile strength. Other research done 

by, for example Tsutsui et al. [42], Panda et al. [43] and DeCost et al. [44] are looking at 

the physical characteristics of the steel and using control parameters extracted from 

sensors such as images or processing data for temperature and time in the furnace. 

Previous studies take the materials composition and its predicted mechanical properties 

into account to find optimal recipes for the heat treatment process. Variables for these 

types of studies are thus not only based on collected process data, but also data that 

specifies how the characteristics of the steel should be worked with scientifically [42]. 

3.3 Heat treatment analysis for quality improvement 

The common denominator of research focused on heat treatment is to use deep neural 

networks or linear regression to develop prediction models or methodologies for the 

general steel product [45]. One example is Carneiro et al. research which has, likewise 

this thesis, investigated how to predict quality outcomes to minimize production line 

bottlenecks such as quality tests. Carneiro et al. investigates steel tubes with neural 

network and tree ensemble methods on water quenched steel with an unsupervised 

approach. The research differs from previous research by examining a process that 

involves data from a quenching tank and looking at how the water flow and pressure 

impacts the quality. The results show that ML techniques must be investigated in 

conjunction with variable selection for each use case. This is because the different quality 

parameters such as tensile strength, hardness and yield strength are affected by different 

input parameters and are ultimately predicted by different algorithms [37]. 

Another study that predicts quality on yield strength and tensile strength is Xie et al. [48] 

who uses deep learning on raw steel parameters and process data from the reheat furnace 

process, rolling data and water-cooling data at a steel plant. The cooling data is from 

average cooling rate, start and finish cooling temperature out of which all measurements 
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between 200 and 900 degrees are included. The research includes 27 in parameters and 

the model reaches an accuracy of 0.907 with deep learning. The research results in an 

online deployment of the model at the industry site with a graphical user interface to help 

operators manage the hot roll process parameters through predictive analysis [48]. 

Hanza et al. [49] predicts total hardness after continuous cooling of steel based on 

Artificial Neural Networks. The research is investigating whether chemical composition 

can be replaced as input variables by the Jominy distance. The Jominy distance value is 

correlated to a materials composition and defines its ability to harden. Values can be 

calculated through a formula that determines the distance based on hardness of steel with 

a microstructure of 50 percent martensite. Two tests are conducted where one includes 

chemical compositions and the other the Jominy distance value. The research results in 

that input data for the heat treatment temperature, heating time, cooling time down to 500 

degrees Celcius and the Jominy distance gives almost as successful results predicting total 

hardness compared to the models with chemical composition included. Based on this, 

Hanza et al. draw the conclusion that only 4 input variables can predict the hardness which 

reduces the complexity of the model. 

3.4 Knowledge gap 

This study differs from existing publications in multiple ways. No studies are found 

within the area that also investigate the individual machines and variables that can be 

batch dependent, such as which cooler and furnace the product has passed in the 

production line. Focus lies on the process itself to prove how manufacturing industries 

can use ML to find flaws in their specific processes, but also investigate a subset of 

features and their impact on the quality. This study aims to classify results from air cooled 

steel rods for rock drilling, which has not been found in previous research. No previous 

studies have investigated the cooling process in terms of recipe dependent sequences from 

time series and the impact of the weather conditions on cooling. The focus for this thesis 

is on a specific part of the process to verify whether the chosen input parameters have an 

impact on certain product quality features or not. The research is delimited to mining and 

rock drill manufacturing's air-cooling process and more specifically to pit furnaces. No 

published research has investigated the correlation between input parameters and product 

quality with ML in the previously described way which indicates a scientific knowledge 

gap in the field. Thus, this is a contribution to the existing research of optimizing quality 

in heat treatment processes for the specific field of rock drilling manufacturing. Through 

this work a real-world application is found for the obtained model. The interest in 

understanding the process by using previously acquired knowledge in ML is tremendous 

in the research world. The question is not only how variables affect quality, but also how 

to implement solutions in a scalable way that supports further development efficiently. 

Through this work, the authors see a clear path to contribute to a deeper understanding in 

the area of rock drilling manufacturing and investigate the applicability of an AI pipeline 

to ease the work of gaining insights and putting them into production. 
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4. Methodology 

Section 4.1 accounts for the chosen methodology and why it will enable a critical 

examination of the final results and the study’s credibility. Section 4.1 will also describe 

how the research has been conducted to collect valid process data and assumptions about 

the case study and its process in Section 4.2. 

4.1 Research strategy 

The thesis aims to predict quality results for a specific heat treatment process by 

performing ML on production and quality data. Based on theories from time series and 

anomaly detection, feature extraction should be conducted in consideration to many 

factors. This pleads for the importance of domain knowledge to reach a result with a 

credible algorithm. With the right features from time series and knowledge about the 

process characteristics, one can get a total overview of the entire process from heat 

treatment to quality results and look at anomalies from a greater perspective.  

The authors consider a case study to be the most appropriate way to explore the right data 

and extract the right features. Furthermore, a qualitative approach is suggested as the 

theory and decisions in data analysis is built upon individuals' domain knowledge about 

the process [50]. This thesis will investigate a steel manufacturing company, Epiroc, and 

their heat treatment process. The main purpose of a qualitative approach is to get domain 

knowledge about the processes and machines which are locally designed in order to 

extract the right features and train an appropriate ML algorithm.  

To gain enough domain knowledge for making accurate decisions in data analysis, 

interviews are conducted on site. Semi-structured interviews are recommended by [50] to 

let the interview cover aspects and arguments that one might not have thought of 

beforehand. All selected respondents have a key relationship with the operative process 

of heat treatment or quality testing. The first interviews are focused on getting to know 

the production process by following the operators and obtaining an introduction to the 

characteristics of steel. Over time, interviews are more focused on the raw process data 

and possible variables to extract from it. See Appendix A for more information on the 

respondents.  

4.2 Assumptions 

It is both a strength and weakness that the choice of methodology is steered by the 

problem and specific process on site [51]. On one hand, conducting case studies comes 

with a risk of not getting to the depth of the problem due to secrecy or lack of trust from 

respondents. On the other hand, a complex and technical area that involves so many 

process steps and products require on site information to take as many aspects of the 

process into consideration as possible. In this thesis, assumptions are made that 

communication with stakeholders involved in the heat treatment process will be sufficient 
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to get enough understanding of the local heat treatment process for steel and the data 

collected to extract the most interesting features for the case study.  

Some general assumptions are made in the investigation of the heat treatment process at 

the company. This is because the process is knowledge intensive, and a correct use case 

is crucial. This implies that the company should have a deeper understanding of heat 

treatment and know this process better than the average heat treatment company that 

serves the mining business with rod products. This will ease the work to find interesting 

and valuable variables for the study. Assumptions are also made that the heat treatment 

process and its generated data is representative for the business area.  
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5. Theory 

This section presents relevant concepts and theories used for this project's 

implementation. In Section 5.1, nine ML algorithms for binary classification are defined 

followed by popular metrics in Section 5.2 for evaluating performance of models that are 

trained on imbalanced data. Section 5.2 also ends with two methods for visual model 

performance. Section 5.3 covers a discussion about imbalanced datasets and how to 

ensure fair partitions of train and test data.   

5.1 Binary classification algorithms in AutoML  

5.1.1 Bernoulli Naive Bayes 

Naive Bayes is an algorithm that uses a classification approach which adopts the 

principles of Bayes theorem 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 [52]. The theorem means that the 

presence of one variable does not affect the presence of another in the probability of an 

already given output. 𝑃(𝐵) is the probability of the evidence. 𝑃(𝐴) is the probability of 

hypothesis 𝐻 and is known as the prior probability. 𝑃(𝐴|𝐵) is the probability of the 

evidence given that the hypothesis is true. 𝑃(𝐵|𝐴) is the probability of the given 

hypothesis that the evidence is true. The Bernoulli version is an effective algorithm for 

binary values [53].  

5.1.2 Gradient boosting 

Gradient descent is a method that tries to find the minimum point by checking the gradient 

step by step. When the gradient stops being negative, the minimum point is found. 

Gradient boosting is a sequential ensemble method that based on the gradient descent 

method finds the minimum errors of the residuals. The sequential learning makes the 

model smarter by not repeating a mistake twice and the model gets boosted by combining 

all weak trained models into one strong one [54]. 

5.1.3 Stochastic Gradient Descent 

Stochastic Gradient Descent is a stochastic variant of the gradient descent model where a 

stochastic random variable is used to find the gradient's minimum point. The algorithm 

computes the gradient of the function with respect to each feature, then picking a random 

initial value for the parameters. The gradient function updates after inserting the 

parameter values and then adding parameters with respect to learning rate and step size 

repeatedly until the minimum value of the gradient is reached [55]. 

5.1.4 Linear support vector machine for binary classification 

Support vector machines for binary classification are explained by a hyperplane that 

linearly separates two classes. The algorithm is optimized in separating classes by finding 
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the maximum distance between the closest training points of both classes. The points 

closest to the separating line are called the support vectors [56].  

5.1.5 Decision Trees 

Decision Trees is a rule-based method that partition values in the columns into disjoint 

regions, or branches. Thus, a certain set of feature values leads to certain branches and 

finally to a leaf node in the tree, which tells the predicted output class. The regions are 

decided with respect to a Gini index, which indicates the split with lowest error. A Gini 

index close to 0 tells that there are no errors, while a Gini index 0.5 is no better than a 

random guess [54]. 

5.1.6 Random forest 

Random forest is an ensemble model that divides the training dataset into random subsets 

and fits a decision tree classifier on each part before aggregating them, which results in 

less overfitting and better accuracy for prediction [15]. Random forest effectively divides 

the input variables into multiple disjointed regions and give each one of them a set value 

for the prediction. The algorithm is a flexible supervised ML solution and used both for 

regression and classification [57].  

5.1.7  Extremely Randomized Trees  

Extremely randomized trees is similar to random forest, training trees on random subsets 

of features and forming a resulting ensemble [58]. However, it differs by drawing random 

thresholds for each feature and using the best as a splitting rule instead of the most 

discriminative threshold. One effect of using Extremely Randomized Trees instead of 

random forest is reduced variance and greater bias [59]. 

5.1.8 Extreme Gradient Boosting 

Extreme Gradient Boosting (XGBoost) is an ensemble method that builds on the decision 

trees and gradient boosting methodology. XGBoost iteratively learns from previous trees 

by optimizing the weight for an observation based on results from a previous 

classification tree. This is also called boosting, which differs from bagging techniques by 

taking previous trees into consideration [54]. 

5.1.9 Light Gradient Boosting Machine 

Light Gradient Boosting Machine (LightGBM) is a tree based algorithm that is used for 

fast gradient boosting. To reduce memory usage and computation costs that come with 

XGBoost, LightGBM uses histograms to gather continuous features into separate bins. 

LightGBM grows its trees leaf-wise, meaning that one entire branch is developed at a 

time instead of an entire level for multiple branches. This results in lower losses as it 

converges quicker [60]. 
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5.2 Evaluation metrics 

Looking at anomalies in real data domains, datasets are often imbalanced, meaning there 

are more occurrences of one class than another. When training classification models on 

imbalanced data, accuracy cannot be used as an indication of how well the model 

performs as the misclassification of positive instances is not as meaningful as for 

misclassification of negative ones. Also, models tend to give a robust prediction for the 

common class but overfit for the class with a smaller set of examples [15]. To evaluate 

performance of respective models, a vast amount of scoring models can be used and 

compared. The scoring output is a way to rank different algorithms to scientifically prove 

and compare the different algorithms. There are several ways of doing this, and it is 

usually correlated with what kind of ML approach is being used, the target of the 

investigation and how imbalanced the dataset is. 

5.2.1 Precision, Recall and Accuracy 

Precision is a performance measure that only takes the true positive (𝑇𝑃) predictions and 

false positive (𝐹𝑃) predictions into account. Precision measures the ratio of correctly 

positive observations out of the total predicted positive observations by 
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 . A high 

precision thus indicates few false positive ratings [61].  

Recall is used to understand how complete the results are. The recall is defined by also 

including false negatives (𝐹𝑁) in the equation 
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
  where the number of true positives 

is divided by the predicted results. The recall score is a way of telling the percentage of 

all actual positive cases that the prediction predicted right [54]. 

Accuracy tells how close to reality the algorithm performs by computing the ratio of 

correctly predicted observations, true positive and true negative (𝑇𝑁), of the total number 

of observations following the equation 
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
 . Accuracy can also be computed for 

imbalanced datasets, called balanced accuracy score, which calculates each class recall 

value and returns the average of those [61]. 

Some of the previous mentioned methods can be extended with averaging methods such 

as macro, micro and weighted. Macro takes the unweighted average from the metrics that 

are calculated from each class while micro class independently calculates the true 

positives, false negatives, and false positives. The weighted metric takes the weighted 

average based on the class distribution. Both precision and recall have methods for macro 

and micro scoring [62]. 
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5.2.2 F1-score 

F1-score is based on a combination of precision and recall where 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
=  

𝑇𝑃

𝑇𝑃 + 
1

2
(𝐹𝑃+𝐹𝑁)

. 

The F1-score is particularly good for binary classification problems. F1-scoring is the 

weighted average of recall and precision and is preferred to use when precision and recall 

are equally important, and the datasets have imbalanced class distributions. F1-scoring 

can also be extended to other scenarios that not only focus on true positive predictions. 

Macro-averaged F1-score is used for tasks with a single label and multiple classes. It takes 

the unweighted average of the F1-score for each class, which gives all classes an equal 

contribution to the result no matter the ratio of each class. Weighted F1-score also 

calculates the F1-score for each class but takes the weighted average based on the class 

distribution ratio [63]. 

5.2.3 Matthews correlation 

Matthews’s correlation coefficient is a measure that can be applied on very imbalanced 

datasets to measure the quality of the classification [62]. It is used for binary classification 

problems and uses both true and false positives and negatives and is defined as 𝑀𝐶𝐶 =
𝑇𝑃∙𝑇𝑁−𝐹𝑁∙𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. Thus, it is able to calculate balanced performance 

measures as all predictions of classes are counted. Matthews’s correlation gives a value 

between -1 and +1, where 0 is an average random prediction and 1 a perfect prediction 

[64]. 

5.2.4 AUC and ROC 

The receiver operating characteristic (ROC) curve is a model for classifying how well an 

algorithm corresponds to reality. ROC is a probability curve. Area under the curve (AUC) 

represents the degree or measurement of separability. Separability is how good the model 

is at separating the distinctive features between the classes [15]. In other words, the AUC 

tells the proportion of correctly classified samples, which for imbalanced datasets can be 

very misleading [62]. The ROC curve plots the relationship between false positive rate 

and true positive rate as the threshold of the decision changes. The AUC describes the 

proportion of samples that are correctly classified. The curved shape indicates the relation 

between FP and TP as a function of the classification. Thus, a high AUC speaks for a 

better algorithm than a small AUC [15]. Weighted AUC may be interpreted as the 

weighted average of sensitivity with weights emphasizing the class distribution [65]. 

Macro AUC gives equal weight to each classified label and displays the study as a whole 

[15]. In other words, the difference of macro and weighted AUC is that the macro takes 

the unweighted average for each class independent of the class distribution while the 

weighted metric takes the class distribution into account. In case of an imbalanced dataset, 
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macro average is recommended as it can be more informative when including equal 

weight of the minority class [62]. 

5.2.5 Confusion matrix  

Confusion matrix is a visualization that shows the mislabeled samples for a classification 

model where one axis marks the predicted labels, and the other axis marks the actual true 

label. Thus, a perfect model has all samples along the diagonal of the matrix as it tells 

that the predicted label also is the true label. The confusion matrix is a good evaluation 

metric as it quickly gives a visual overview of the mislabeled amount for the minor class, 

which is a common scenario when predicting on imbalanced datasets [62]. 

5.3 Dealing with class imbalance 

There are many established procedures for how to deal with imbalanced data and typical 

use cases are implementing over- or under-sampling on the rare or common class label. 

An additional way is to use ensemble-based classifiers that handle the imbalances itself 

and do not require any preprocessing of the data [66]. Another method to handle 

imbalanced datasets for ML is to make sure that they are trained and validated fairly. As 

different subsets, or folds, of data are used to train, validate and test algorithms, the 

subsets should have representatives from all classes for a fair validation [67]. One method 

to prevent sampling bias for binary classification is stratified sampling [68]. Stratified 

sampling is a method that splits each class and then assigns one part to a fold together 

with a part from another class. In this way both classes are represented with the same ratio 

in all folds after the split as the ratio in the total dataset [15].  
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6. Case study 

Epiroc manufactures products for the mining and construction industry and is divided into 

several sub areas. Epirocs production site in Fagersta is in the tools and attachment 

division and is Sweden’s biggest manufacturer in terms of the amount of pit ovens and 

the throughput of heated goods that is cooled by air [Respondent 1]. This thesis is 

conducted in the rock drilling operative area within manufacturing of steel shank adapters, 

couplings, hex rods and drill bits. The analytical outset is the heat treatment process 

of long shank adapters or long drill rods that can be coupled to each other. These rods are 

called Male-Female (MF), visualized in Figure 1. Manufacturing of these products is  

challenging since several dependent processes are involved. This section describes how 

heat treatment is conducted at Epirocs site in Fagersta and how process data is collected. 

Interviewed respondent thoughts on important variables for quality output are also 

summarized to make a ground on important features that should be included in the 

research. 

 

Figure 1. Epiroc steel rods, also called MF rods. The male part can be coupled to 

another rod's female part. 

6.1 Heat treatment process on site 

The production of hardened steel is a complicated process with a plurality of operational 

steps. These steps are shown in Figure 2. The process starts with pre-process loading for 

which the rods are mounted on a plate together with one or several test pieces. The batch 

is lowered into a pit furnace with the right depth adapted to the length of the product  

[Respondent 1]. The pit furnaces have a carbon environment which hardens the surface 

of the steel [Respondent 2]. The batch is then transported to a cooler where the 

temperature of the rods is lowered by fans. At the post-process unload, the order is 

unloaded from the cooling tubes and moved to the next operation. At the same time as 

the order is on post-process unload, a sample is sent to the quality department for a deeper 
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examination of the material's characteristics. If the quality is approved, the order is 

released for the next operation [Respondent 3]. The process is exceedingly difficult to 

perform, and a small error can give a large negative quality outcome with a total batch 

rejection as a result [Respondent 1]. 

 

Figure 2. Process map of the heat treatment flow and quality testing which results in a 

rejected or approved batch. 

6.2 Quality process and data collection 

Each batch has either one or two test pieces or a product that is quality tested. Each control 

tests three quality parameters; hardness, case depth and carbon rate. If the measured result 

for one of the tests is outside the tolerance interval, a reassessment is done on another 

product from the batch. For borderline cases, the technicians discuss whether the order 

has the quality that the customer asks for to decide on a full batch rejection or not. The 

quality tests are always performed the same way for each product.  The point of 

measurement on the test piece depends on the product type. All results are manually 

documented in a physical form that is archived in files for each respective furnace. The 

same data is also manually filled in an Excel file where all test data are documented in 

the same sheet. Each batch has a status column that indicates whether the product is 

approved or not [Respondent 4].  

6.2.1 The flow between heat treatment and quality control  

Data is gathered in different systems and databases during the heat treatment process. 

Figure 3 gives an overview of the data collection from the different production steps. 

Manufacturing orders follow a certain routing of operations. The route is logged into an 

Enterprise Resource Planning (ERP) system that was implemented in October 2019. The 

heat treatment operation process is adapted with recipes for different products to gain the 

right characteristics of the steel. As the order is picked up by the heat treatment division, 

the appropriate recipe starts and data variables from the pit furnace and quenching process 

starts to log. Process data is stored in a control system in the format of a Manufacturing 

Execution Systems (MES) data lake in the heat treatment system [Respondent 3]. 
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Figure 3. The manufacturing order flow for heat treatment in pit furnaces. 

6.2.2 Process data 

Each heat treatment process follows a recipe that is predefined for the product. The 
desired values are plotted on a monitor during the process together with data for how the 

operation performs. Variables for the heat treatment process are logged real-time. 
[Respondent 5] Two automatic collections of data are performed during the furnace and 
cooling process. These are in form of time series data that measures the temperature every 
52 seconds [Respondent 1]. 

6.3 Domain knowledge of efficiency gaps 

If the heat treatment process for one product batch fails, it means that all previous 

processes for that batch have been in vain unless it can be reheated. Production failures 

in the heat treatment process are thus very expensive given time, material and resources 

as it affects the whole production chain [Respondent 6]. The connection between logged 

process data and the quality outcome is not fully documented and correlations between 

certain properties and hardening are not established [Respondent 3]. 

The pit furnaces have a constant temperature of almost 1000 degrees Celsius which is 

very expensive in terms of costs and environmental impact. The material needs to be 

streamlined with a low rejection rate in order to use the pit furnace to its full potential and 

minimize its impact on costs and environment [Respondent 2].  

There is a mutual understanding about the weak links in the manufacturing lines among 

the know-how people in production and quality testing [Respondent 1, Respondent 5, 

Respondent 7]. Firstly, the heat treatment process is broadly automatic, which minimizes 

the risk of rejections due to human error. The recipes for the pit furnaces are fixed and 

preselected, which makes manual involvement less frequent than 1 out of 1000 

operations. Secondly, compared to the pit furnaces, the cooling process is much less 

stable. The fans run on less generalized programs compared to the pit furnaces and take 

more consideration to weight, type of product and number of articles. The fan's 
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environment is also more insecure as the surrounding air in production fluctuates due to 

season changes.  

Another established fact is that both the furnaces and the cooling fans are individuals and 

behave differently for unknown reasons. Different fans have different quality output  

[Respondent 1]. A pre-study has been conducted by Epiroc to consolidate the idea of 

bottlenecks in the heat treatment process. The study resulted in an analysis of faulty 

products caused by specific process steps together with a recommendation of what areas 

in the heat treatment process to investigate further. A specific fan is overrepresented in 

causing rejections as well as a specific drill rod product which are rejected more 

frequently than other products [Respondent 3]. 
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7. Tools and architecture 

The project is using Microsoft Azure resources to test the applicability of implementing 

an AI pipeline to store, manage and perform ML on data from the heat treatment process. 

The pipeline in Figure 4 is optimized by Microsoft for Epiroc to enable data engineering 

pipelines and take ML to the production environment.  

Raw data is written to a binary large object (blob) storage which is used to store big 

amounts of unstructured data in an Azure cloud environment [69]. The unstructured data 

is used as input to a bronze, silver and gold architecture powered by Databricks which is 

further described in Section 7.1. The reason for using a bronze, silver and gold 

architecture is to save different states of data to be reused for other projects, reducing 

duplication of work and computation costs. Bronze silver and gold are destination sources 

for different levels of refined data. Bronze contains raw data in a uniform format, for 

example Parquet files. Silver is filtered, cleaned and augmented data. Gold contains 

business level aggregated data, ready to be used in visualizations and reports [70].  

The process that is conducted in between the destinations bronze, silver and gold is the 

extract, transform and load (ETL) work and it is always conducted in the same order of 

steps. First, data is extracted from a source, then transformed, and lastly loaded into a 

destination source [71]. The gold state of data is used to find a suitable ML model for the 

problem. For this project Azure Machine Learning, which is further described in Section 

7.2, is used for the modeling and the results are visualized in Power BI, described in 

Section 7.3. 

 

Figure 4. AI pipeline that takes raw process data to the cloud, cleans it, extracts 

features, performs ML and visualizes the results for people to gain insights of the 

process. 
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7.1 Databricks 

Databricks is a cloud platform providing workspaces for notebooks, datasets, storage and 

compute clusters. Apache Spark is pre-imported in Databricks, and is a parallel 

processing framework for big data and scalable cluster computing [69]. It supports 

multiple programming languages and offers libraries to handle SQL, dataframes and ML. 

PySpark is a Python API based on the Apache Spark framework and enables the user to 

work across different programming models such as SparkSQL and Pandas [72]. In this 

project, Databricks platform is used running an Apache Spark cluster with 3 worker 

nodes. PySpark and Python are chosen as programming languages for all types of 

transformation of the data as it supports SQL-like commands, dataframes and relevant 

libraries for data modeling [73]. 

7.2 Azure Machine Learning 

Azure ML is a tool to collaborate on notebooks, share compute resources and trace 

changes while accelerating, automating and deploying ML models. The automated ML 

service is called AutoML and makes it possible to featurize and train algorithms on data 

using Python Software Development Kit (SDK) [74]. AutoML trains and tunes models 

for classification, regression and forecasting through Python SDK which provides open 

source code and functions easily accessible for the user to train models.  

When training, AutoML trains models given features and one or several ML algorithms 

in parallel through a set of pipelines [75]. The user specifies parameters such as number 

of iterations, algorithms, dataset, source format, computational target and type of problem 

to be solved. Each iteration results in a trained model, a training score and a ranking based 

on the score seen in the leaderboard to the right in Figure 5. AutoML also enables 

automatic featurization and hyperparameter tuning. The featurization is scaling or 

normalizing the data with methods found in Scikit-learn libraries. Automatic 

hyperparameter tuning means that AutoML automates the process of configuring the 

optimal set of hyperparameters that gives the best performance [76]. Thus, each iteration 

has its own unique set of parameters which are automatically tuned for each iteration 

based on previous ones. The type of hyperparameters depends on the algorithm trained.  

The algorithms are trained on the training sets of the data and evaluated by using cross-

validation that takes a part of the training data for each iteration as validation of the 

algorithm. The variation of features, algorithm and parameters are resulting in a training 

score which can be presented in a range of different metrics, discussed in Section 5.2. The 

test set is used when the best-performing model has been tuned to conduct a final 

evaluation of the model on unseen data [77]. 
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Figure 5. The automated ML flow when using AzureML. Each iteration results in a 

training score given the user input and the best models get ranked in a leaderboard.1 

To make calculations more robust, a Data Science Virtual Linux Machine is used in this 

project, which retrieves the finished gold data set and coordinates the calculations against 

a calculation cluster in Microsoft Azure Machine Learning studio. The cluster type is a 

Standard_D14 with 16 cores, 112 GB RAM and 800 GB disk that is optimized for 

memory usage. The amount of compute nodes varies between one and four depending on 

what algorithm is being used. 

7.3 Power BI 

Power BI is a set of tools used for business intelligence operations. One of the tools is 

used to visualize results for analysis and discovery from data achieved in models. 

Visualizations can be used for both batch and real-time analysis and shared with all 

stakeholders involved. When a model has been deployed, for example through AzureML, 

Power BI can automatically update the data in the model and display the latest findings 

[78]. 

  

                                                             
1 Figure from https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml 

https://docs.microsoft.com/en-us/azure/machine-learning/concept-automated-ml
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8. Experimental Procedure 

Data quality is crucial when analyzing data. The data process described in this section 

tells where the data comes from and why it is chosen. Section 8.1 and 8.2 describes how 

and where data is retrieved. Section 8.3 describes how the tables are joined and how the 

data is processed to features that will be used for the ML. The datasets used for training 

and testing the model are described in Section 8.2 and 8.3 and the methodology on how 

to select and validate the ML model is described in Section 8.5. 

8.1 Data sources 

Production data is mainly gathered from a production MES. The production MES is a 

system that is developed for controlling heating and cooling processes and is crucial for 

the operation stages to work. Data is gathered under the processes and is being stored in 

a HeidiSQL database. All process data that is used in the project is fetched from 

HeidiSQL except from the recipe data that is fetched directly from the MES, recipe by 

recipe, and manually translated into separate CSV files. Temperature data is pulled from 

a site with local measurements [79] and quality data is obtained from an Excel file directly 

from the quality test lab.  

8.2 Data selection 

To get a dataset that is valid and reliable for the ML algorithm, some delimitations and 

selections in data are required. Time series data is gathered from the cooling stage as it is 

a known difficult process to control and causes many of the rejections in comparison to 

furnaces. The temperature data is also represented by time series. Only data from MF rods 

are included, as they are the hardest products to cool, which contributes to a less 

imbalanced dataset with a higher rate of rejected products. In October 2019, a new 

business system was implemented that forces the research study to add a historical time 

limitation. To only investigate a stationary process, data points after that event are 

selected.  

Rehardened products and those products that have not passed the pit furnaces are 

excluded to get as similar production lines for all batches as possible. Recipes are every 

now and then updated. The MES only shows the last version of each recipe, which means 

that time series from the time before the recipe was updated latest, are not relevant for the 

study and would result in misleading values from the feature extraction. Thus all batches 

that are run before the latest update for the corresponding recipe, are excluded from the 

study. 
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8.3 Data preprocessing 

In order to get the right data at the ML stage, the data is pre-processed. This step is 

conducted in close collaboration with domain expertise that provides recommendations 

on what kind of data is important and can create value with a higher reliability. Obvious 

errors are handled on the authors own initiative.  

8.3.1 Raw ingestion 

MES data from October 2019 to October 2021 is extracted in a CSV file from HeidiSQL 

and the Excel file with quality data is converted into CSV format. As the project is 

considered to be in a research and development phase and only a few years of stationary 

data is going to be analyzed, raw data files from the MES, quality data and external files 

are manually loaded to a blob container in an Azure Storage account instead of being 

extracted from a Data Factory [Respondent 8]. First, a raw ingestion is performed by 

extracting data from the blob container. All column names are lower-cased, stripped to 

not contain any Swedish characters and special signs are dropped. The data frames are 

then flattened out into a column oriented data storage format called Parquet and loaded 

to bronze state.  

8.3.2 Joining data 

The data lake consists of a collection of different data sources. These come from external 

variables such as weather data with associated temperature as well as more detailed 

descriptions of different sub-production steps and processes. The tables in the entity 

relation diagram in Figure 6 are describing, among other things, different types of 

production data with regards to purpose and detail. The A_value table describes the 

measured temperature one meter below the top of the bars with the associated unit of time 

in seconds. A_value also links this value to a specific fan. A_id describes which operation 

is performed between which times and B_wp describes the type of operation being 

performed. A_cont_pos is used to link quality data and operation data as well as the 

number of products in a batch and its unit weight.  

Figure 6. Entity relationship diagram of the datasets used. 
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The quality data contains various measured variables linked to the properties of the steel. 

It has also a status field telling whether it was approved or not. The table Temperature 

contains temperature data in degrees Celsius in the near area of the production site and 

the temperature is keyed and divided by A_id to get the right mean temperature for each 

batch. The recipe used for the product differs according to what production line it passes 

and is determined by the table Line. The recipe names are stored in the table 

A_ld_id_head and are keyed with A_id and its id. More detailed recipe steps are stored 

in the table Recipes. The tables A_id and A_value are keyed on multiple columns, using 

both time_start and time_end to key all event_time for each operation. The same type of 

scenario occurs when joining tables A_ld_tmt_head to Recipe and Line, as both columns 

for b_wp_id and name must respectively match each recipe.  

8.3.3 Data cleaning 

Cleaning of the production data is performed on each of the tables separately before it is 

merged with the quality data. First, all irrelevant columns for the analysis or keying of 

the tables are dropped. All files go through several cleaning procedures to make the data 

easy to handle. For example, all time columns have a Unix timestamp, which needs to be 

converted into DateTime format. The original data sets are filtered and the columns that 

are kept are shown in the entity relationship diagram in Figure 6. The most common 

operations in the cleaning process on row-level are summarized in Figure 7. Also external 

data, such as weather data, are cleaned by for example backfilling NaN temperatures. 

Recipes are not filtered or cleaned before the joining stage. 

 

Figure 7. Flowchart of some of the data preprocessing steps for the different sources of 

data. 
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8.3.4 Feature Extraction 

Figure 8 gives an example of a typical cooling curve. The x axis represents the time and 

the y axis represents the air temperature one meter underneath the batch. Point 1 marks 

where the recipe starts as the temperature has passed 65 degrees. That is also why the 

temperature starts to decrease as the recipe starts with fans cooling down the product. 

Point 2 marks where the fans let the material rest, which is indicated by the rising 

temperature. Point 3 marks the maximum temperature, from where the most important 

part of the cooling process begins. Between point 3 and 4, most of the characteristics of 

the steel is set. At point 4, the fans are in full effect again to cool down the material as 

quickly as possible to make room for new batches and transport the current batch to the 

next operation. The curves vary depending on the recipe. 

 

 

Figure 8. Example of a time series from the cooling process with marked points of 

interest. 
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Variables calculated for each time series are described in Table 1. All features have been 

summoned and extracted according to local recommendations. 

Table 1. Features extracted from each time series. 

Feature Explanation 
Data 
type 

Max The maximum temperature measurement of the entire process, 
at Point 3. 
 

Float 

Knee The temperature of the knee, located at Point 4, is calculated by 
looping over a window which filters on temperature, group by 
TO number and order by event time based on the recipe time 
for Point 4. 

 

Float 

Difference The time difference in seconds from the max value Point 3 to 
Point 4. 
 

Long 

Integral The integral of the curve is calculated using the composite 
trapezoidal rule from the SciPy library. [80] Trapezoidal rule 
integrates over each time event and upcoming temperature 
value. The result gives the area under the curve. Two integrals 

with different time intervals are calculated. The first one is 
based on the recipe from Point 3 to Point 4, from the maximum 
point to the knee. The other one is calculated on all temperature 
measurements above 100 degrees. The second integral is 

calculated as an extra security measure, as recipes and real 
output are not always consistent. 
 

Float 

Standard 

deviation 

The standard temperature deviation from start of recipe until 

event time for Point 4 is calculated with Pandas .std() function.  
 

Float 

Hypotenuse The length of the hypotenuse between the temperature 
measurement for Point 3 and Point 4 is calculated using 

Pyspark .hypot() function. 
 

Float 

Slope The slope from the maximum until the transformation of the 
steel has ended. Two slopes are calculated. One using the Point 

3 and Point 4 values together with their time difference. The 
other one is using Point 3 and a temperature measurement 15 
minutes after the max point in time. The second slope is also 
calculated as an extra security measure, as recipes and real 

output are not always consistent. 

Float 

   

 

  



29 
 

There are some features extracted from other variables that are believed to have an impact 

on the product quality which are described in Table 2. 

Table 2. Features calculated from the raw data. 

Feature Explanation 
Data 
type 

Total 
weight 

The total batch weight is calculated by multiplying the 
amount of goods with the individual product weight. 
 

Float 

Length The final length of the products is given in the product name.  
 

Double 

Mean 
temperature 

The mean temperature of the outdoor weather during the 
operation. The outdoor temperature is generated as a time 

series by a sensor placed in Fagersta. 

Float 

   

 

The remaining variables, described in Table 3, are already given in the dataset. 

Table 3. Features accessible in the raw data. 

Feature Explanation Data type 

Amount The amount of goods in the batch. 

 

Integer 

Weight The weight of each rod in the batch. 

 

Float 

Furnace id The name of the furnace that the batch has passed. 

 

String 

Recipe name Name of the cooling recipe. 
 

String 

Fan Name of the fan that the batch has passed. 

 

String 

   

 

The Status of the product, approved or rejected, is the label that will be predicted. The 

Status label is received from the quality output file and is described in Table 4. 

Table 4. Label from the quality results that tells the status output of the batch. 

Label Explanation Data type 

Status The status, or result, from the quality testing that is either 
rejected or approved. 0 is rejected and 1 is approved. 

 

N ∈  [0, 1] 
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8.3.5 Silver to gold data 

The process of joining silver tables and extracting the features needed for the gold table 

are summarized in the flow in Appendix B. As the rows of all summarized data are 

increasing fast with more unique batch numbers (TO_numbers), the flow is divided into 

three paths to minimize computational costs. After joining workplace data (B_wp) to the 

dataset, the data follows two different paths. In one path, the data is joined with time 

series data, from which time series features are to be extracted. The other path is joined 

with temperature to extract features that are not connected to the time series data. After 

all features are extracted, they are joined with the initial dataset that was used as input to 

the two paths. Together, it forms the gold dataset that contains one row per TO_number 

and one column for each feature and label. The gold data that is created when joining the 

silver datasets consist of seventeen different columns containing extracted features, 

process information and the status label that tells whether the batch is rejected or not. The 

total number of rows is 410, making the dataset quite small in terms of ML analysis.   

In this project, the specific use case and the degree of rejection makes it possible to 

balance the data. The imbalanced data is easily adjusted by further tightening the 

tolerance level which generates more non-approved batches. As a lot of the results from 

quality tests lie on the very margin of approval, no drastic changes need to be done to 

balance the data. However, tightening the tolerance level will also mean that there will be 

no or very small distinction between rejected and approved products which can be hard 

for a model to interpret given the small amount of total data and uncertainty in correlation 

to extracted features. As a compromise to both of these issues, the dataset will have a 

somewhat tightened tolerance level, where the most optimal hardness measures will pass, 

like visualized in Figure 9. In addition, ensemble algorithms are included in the set of 

algorithms that will be trained and evaluation metrics that are adopted for imbalanced 

data are used to evaluate the best algorithms. 

 

Figure 9. The tolerance level used is narrowed to only pass the best batches. 
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8.4 Data limitations 

The data and heat treatment process has limitations that are important to be aware of for 

the limitations of the study. As there are no logs on past recipes, only the most recent 

recipe and the batches that have passed that program version can be included in the 

research. Unfortunately, this means that the majority of all batch data must be excluded 

from the analysis, and that only a few programs from 2020 are included. This can cause 

imbalance also in the labels and there are no possibilities to look closer at a specific 

product catalog or recipe without getting a too small dataset. The limitation in the amount 

of data might result in more biased data and less well-grounded results. 

Other errors in the data, such as products that get another product's cooling program, may 

cause poorer performance in the ML models. These errors are hard to make a generalized 

solution for, thus only a part of them are found and marked. The obvious errors result in 

null values and are in this research replaced with a 0 and the recipe name is renamed to 

“Wrong recipe”. Given that the dataset already is limited in size, this can have a severe 

impact on how well the ML model performs and interprets the other features for those 

rows. 

Balancing the dataset also means that the focus of the investigation shifts from finding 

the extreme anomalies, to finding those who have less perfect results. The extreme 

anomalies do not get the same weight in the more balanced dataset which might lead to 

greater difficulties finding the significant connection between input and quality.   

The authors, accompanied by local engineers with extensive domain knowledge, suspect 

the material itself being an important cause of different quality results. The materials in 

the steel products are different and originate from two different main suppliers. The thesis 

is not aiming to analyze the differences of the steel manufacturers but rather focusing on 

Epirocs internal processes; thus the steel itself is handled as one single constant and the 

differences are treated as such.   

8.5 Model selection 

The different ML algorithms described in Section 5.1 are compared to get good 

candidates for a future model promotion. When comparing the nine algorithms, the best 

performing model determines which type of algorithm is promoted to be optimized by 

feature selection and lastly parameter tuning. The tuning is increasing the algorithms 

correctness and accuracy to get a better classification result. This section defines how the 

models will be trained, selected and tuned. 

8.5.1 Train and test datasets 

Stratified Shuffle Split is an object provided by scikit-learn that is used to stratify 

sampling in this project. The Stratified Shuffle Split preserves the percentage of samples 

for each class as it splits datasets into stratified and randomized folds [81]. Stratified 
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Shuffle Split will be used with 80 percent of the data for training, 10 percent for validation 

and 10 percent for testing. Validation will be performed with cross-validation due to the 

restricted amount of samples. Thus the validation set will not be used in this research 

investigation, but for upcoming experiments when more data is available. The gold 

dataset consists of 410 rows, out of which 39.8 percent are rejected. This results in the 

same proportion for the train, validation and test set, specified in Table 5.   

Table 5. Distribution of class labels across gold, train, validation and test set. 

 

8.5.2 Evaluate models 

Accuracy is an inappropriate scoring method to use for imbalanced data as it will give a 

high accuracy score given the true positives of the majority class. Thus, it is not a 

preferred measure for this case study [54], [82]. Even though different measures are good 

for different purposes, depending on what is important to predict from the data, averaging 

methods are generally most suitable to use for class imbalance as the minority class gets 

the same weight as the majority class [62]. Matthews correlation coefficient is said to be 

able to give an equitable validation even if the dataset has some severe imbalance 

although studies have proved the opposite, concluding that it is just as accurate as F1-

scoring [83]. 

As this thesis aims for a balance in classifying true positives and true negatives, evaluation 

metrics that take class imbalance into account are used to verify the most appropriate 

algorithm [15]. There are multiple metrics that are valid candidates for the study, and 

there is no measure that is given to be the best one, as it depends on the studys character. 

The goal for this study is to foremost choose an algorithm that can separate the class labels 

as well as possible. No matter the distribution, each class should have an equal weight. 

This motivates metrics adapted for imbalanced datasets and using such metrics given the 

class imbalance presented in Table 5. Both Debón et al. [84] and El-Bannas [85] has 

researched on AUC as a measure for binary classification in metal manufacturing. Both 

investigations proved AUC to be useful in comparing models for the industry. This is also 

confirmed in a research by Starovoitov et al. [86] that proves AUC being the best 

estimation function on both balanced and imbalanced datasets. 

As AUC has been used and proved to be at least equally accurate as other measures in 

previously presented research, its macro metric is used as the primary metric when 

selecting an algorithm and parameter tuning it. To support the AUC, five other metrics 

 Gold Train Validate Test 

 Total 410 328 41 41 

Rejected 163 130 17 16 

 Approved 247 198 24 25 
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for imbalanced datasets will also be considered to both validate and back up the macro 

AUC score. Along with the macro AUC is Matthews correlation coefficient macro F1, 

weighted AUC, macro recall and balanced accuracy score investigated. The ROC curve 

and confusion matrix are also plotted to better visualize how well the model separates the 

classes.  

An overview of the process in choosing the best algorithm is seen in Figure 10. First, nine 

algorithms are trained, out of which the algorithm for the model that performs the best 

considering its performance metrics will be chosen for feature selection. Only one 

algorithm is considered for the feature selection. The feature selection is based on the 

ranked feature importance of the best performing model in the first round. This tells how 

each feature and label influences the model prediction. The algorithm is trained with 

different subsets of the most important features and performance metrics are compared to 

find the optimal set of features. The different subsets of features that are chosen for each 

run are presented in Appendix C. As there are two similar measures for integral and slope, 

only the most important feature of each will be included in some of the runs. Lastly, the 

algorithm chosen in the first round and the optimal subset of features are going to be 

hyper parameter tuned with a longer threshold time to get a final model to deploy to Power 

BI.  

 

Figure 10. Overview of methodology used when choosing an algorithm, selecting 

features and tuning a final model. 

Some of the parameters for the model are set before each algorithm is trained. For the 

first and second round, in algorithm and feature selection, the threshold is set to one hour. 

Each model is trained with 300 iterations and validated with five fold cross-validation. 

Early stopping is also enabled, which terminates the training if the latest twenty iterations 

have not converged. For the last round the algorithm is trained with 300 iterations and a 

threshold of one or five hours. 
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9. Result 

This section presents the results for the models trained based on the algorithms presented 

in Section 5.1 and the metrics described in Section 5.2. First, all the compared algorithms 

are presented in Table 6. More details on the feature selection can be found in Appendix 

C. This is followed by the result from feature selection for the best performing algorithm. 

The section ends with parameter tuning where the number of folds, run time and iterations 

are adjusted. The best resulting model is visualized in Power BI, seen in Figure 28. The 

featurization and hyperparameters used in the final model are presented in Appendix D. 

9.1 Best models for each algorithm 

The resulting metrics from the best trained model of each type of ML algorithm are shown 

in Table 6. Random Forest reaches the best macro AUC score, which is the primary 

metric. Each algorithm has several iterations and only the iteration with the highest macro 

AUC score is presented in the table.  

Table 6. Metrics for the models with highest macro AUC score for each algorithm 

Algorithm 
Matthews 
correlation 
coefficient 

F1 

macro 

AUC 

weighted 

AUC 

macro 

Recall 

macro 

Balanced 

accuracy 

Light GBM 0.291 0.637 0.701 0.701 0.64 0.64 

Random forest 0.284 0.626 0.713 0.713 0.63 0.63 

XGBoost Classifier 0.276 0.631 0.688 0.688 0.632 0.632 

Stochastic Gradient 
Descent 

0.093 0.472 0.607 0.607 0.539 0.539 

Linear Support 

Vector Machine 

0.109 0.437 0.604 0.604 0.527 0.527 

Gradient boosting 0.3 0.646 0.675 0.675 0.646 0.646 

Decision Tree 0.248 0.62 0.642 0.642 0.624 0.624 

Extremely 
Randomized Trees 

0.291 0.643 0.704 0.704 0.646 0.646 

Bernoulli Naïve 
Bayes 

0.175 0.573 0.566 0.566 0.579 0.579 
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9.2 Best performing algorithm 

The feature importance for the random forest model with highest macro AUC score is 

presented in Figure 11. The features are sorted by their model importance for the random 

forest algorithm. Total weight is the most important feature followed by the average 

outside temperature during the operation, the integral above 100 degrees Celsius and the 

fan that the batch has passed. 

 
 

Figure 11. The seventeen features sorted by their model importance for the random 

forest model with highest macro AUC score. 

The ROC curve for the random forest model is presented in Figure 12. True positive rate 

is on the y-axis and false positive rate on the x-axis. The dark blue line shows the macro 

average and the light blue the weighted average. The spotted dark purple line is the ideal 

line. If the average follows the diagonal light purple line, the classifier is as good as a 

random guess. The average weighted and macro have a similar line and have an AUC 

greater than 0.5, with other words better than the randomized diagonal line. 
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Figure 12. ROC curve for the random forest model with highest macro AUC score after 

first iteration. 

The confusion matrix for the first iteration of random forest with the highest macro AUC 

score is presented in Figure 13. False negative is 73, false positive is 36, True negative is 

57 and true positive is 162. The confusion matrix is based on cross-validation on the 

training dataset and tells that the model is better at classifying approved batches, 81 

percent, than it is at predicting rejected batches, 43 percent. 

Figure 13. Confusion matrix of the random forest model performance in classifying 

batches within the given interval. 
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9.3 Feature selection 

Table 7 presents the scoring of random forest with different sets of features which are 

prioritized based on the feature importance given in Figure 11. Appendix C gives a 

specification on feature subsets included in each run. Feature subset 1 in Table 7 is the 

same run as for the first iteration, where random forest got the highest macro AUC score. 

The scoring for the different feature subsets shows that random forest keeps having the 

highest macro AUC and weighted AUC. However, feature subset 10 outperform feature 

subset 1 in all other metrics at the same time as it gets the second best macro AUC.  

Table 7. The metrics for Random forest with different subsets of features.  

 

  

Feature subset 
Matthews 
correlation 
coefficient 

F1 

macro 

AUC 

weighted 

AUC 

macro 

Recall 

macro 

Balanced 

accuracy 

1 0.284 0.626 0.713 0.713 0.63 0.63 

2 0.287 0.641 0.703 0.703 0.642 0.642 

3 0.289 0.643 0.696 0.696 0.644 0.644 

4 0.224 0.61 0.648 0.648 0.614 0.614 

5 0.227 0.612 0.674 0.674 0.614 0.614 

6 0.227 0.593 0.674 0.674 0.601 0.601 

7 0.225 0.611 0.675 0.675 0.611 0.634 

8 0.301 0.638 0.682 0.682 0.39 0.639 

9 0.324 0.66 0.696 0.696 0.661 0.661 

10 0.327 0.662 0.705 0.705 0.663 0.663 

11 0.334 0.662 0.704 0.704 0.663 0.663 
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9.4 Best model with feature subset 10 

The feature subset 10, in Table 7 is trained with the features displayed in Figure 14. The 

most important feature for the model is the integral of the time series calculated for all 

values greater than 100 degrees. Second most important is the fan that the batch passes 

followed by weight, average temperature outdoor, integral, total weight and lastly seconds 

from Point 3 to Point 4.   

Figure 14. Feature importance for the model with best performing feature subset 10 for 

random forest algorithm. 

The ROC curve for the second iteration of random forest with the best feature subset is 

presented in Figure 15. The macro and weighted average follows a similar line in between 

the ideal and random line.   
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Figure 15. The ROC curve for feature subset 10 showing that the average performs 

better than random. 

The confusion matrix for the second iteration for random forest with the best feature 

subset is presented in Figure 16. False negative is 54, false positive is 52, True negative 

is 76 and true positive is 146. The confusion matrix tells that the model is getting better 

at classifying rejected batches and that it to a majority classifies the approved and rejected 

batches right. 

 

Figure 16. Confusion matrix for the random forest model with an optimal set of 

features. 
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9.5 Parameter tuning 

Random forest with feature subset 10, is trained with 300 iterations during one or five 

hours with five folds for cross-validation. The number of iterations is not changed as the 

training in all previous runs has stopped before reaching 300. The summary of how the 

model performs is presented in Table 8. The 2nd run receives higher scoring for 

Matthews’s correlation coefficient, recall macro and balanced accuracy and close to 

macro and weighted AUC score for the 1st run. 

Table 8. The metrics of final tuning of random forest with feature subset 10. 

 

  

Run Time 
Matthews 
correlation 
coefficient 

F1 
macro 

AUC 
weighted 

AUC 
macro 

Recall 
macro 

Balanced 
accuracy 

1st 1h 0.327 0.662 0.705 0.705 0.663 0.663 

2nd  5h 0.346 0.669 0.71 0.71 0.671 0.671 
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9.6 Final model 

9.6.1 Feature importance 

The 2nd run in Table 8’s feature importance is presented in Figure 17. The 3 most 

important features are the same as for the feature for run 10 in Figure 14 and the rest are 

on a similar level as before. 

Figure 17. Feature importance for the model from 3rd round with best performing 

feature subset given features, time and folds for cross-validation. 

The AUC in the ROC curve for the 2nd run can be seen in Figure 18. The macro and 

weighted lines are in between the random and ideal lines, just like the ROC curves in 

Figure 12 and Figure 15. 
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Figure 18. The ROC curve for the 2rd run showing that the average performs better 

than random. 

The confusion matrix for the 2nd run in Figure 19 have similar results as previous trained 

model with feature subset 10 in Figure 16. The 2nd run is better at predicting approved 

batches which has increased from 146 to 154. It is also somewhat worse in predicting 

rejected batches which has decreased from 76 to 73. Overall, the model predicts the 

majority of all test batches correctly. 

 

Figure 19. Confusion matrix for the random forest model with an optimal set of 

features. 
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9.6.2 Feature impact on predicted quality 

Figure 20-26 shows the separate feature impact on the model prediction. The scale goes 

from -1 to 1. The closer -1 the points are, the greater importance it has for the model to 

predict an approved batch. The closer to 1 the points are, the more likely the model is 

going to predict a rejected batch. The feature importance for the integral of cooling 

measures above 100 degrees Celsius in Figure 20 shows that an integral below 300 000 

area units is more likely to be approved. An integral between 322 000 and 480 000 area 

units makes more batches rejected. Area units above 600 000 have less impact on the 

quality output. 

 

Figure 20. The impact of the cooling curves integral above the temperature 100 degrees 

Celsius, where the integral between 322 000 and 480 000 area units have a larger 

rejection importance. 
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The feature importance of which fan the batch passes can be seen in Figure 21. Fan 2, in 

the second column, has an important impact on predicting rejected batches. Fan 7 clearly 

has more approved. Fan 4, 6 and 8 are just under the line and indicate a small acceptance 

rate. The rest of the fans have a neutral impact on the hardness. 

 

Figure 21. The importance of what fan the batches pass. Fan two has a larger impact 

on the quality output where the rejection probability is higher. 

The average temperature model importance is shown in Figure 22. The temperature 

outdoors during the operation has an important model impact with a break around +6 

degrees. Batches that are run when the outdoor temperature is below +6 degree Celsius 

are more likely to be rejected.   

 

Figure 22. The average temperature and its quality importance where an outdoor 

temperature below +6 degrees has a negative impact on the quality output. 
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The recipe dependent integral for each cooling curve is visualized in Figure 23. There are 

two outstanding areas where an integral below 200 000 area units is more probable to 

result in rejection and an area in between 200 and 300 000 results in an approved batch.  

 

Figure 23. The integral of the cooling curve and its importance on the quality output. 

The batches have an impact cluster wise. 

The individual piece weights model importance are shown in Figure 24 and tells that 

pieces with a weight above 20 kg are more likely to result in a rejected batch while pieces 

less than 22 generally result in approved bathes. 

 

Figure 24. The individual piece weight and its importance of quality output, where in 

general a smaller weight gives a better quality output. 
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The feature importance for total batch weight is seen in Figure 25. A batch weight less 
than 900 kg is more likely to return products that will not reach the quality standards.   
 

 
Figure 25. The importance of the total batch weight in kg where a smaller weight has a 

negative impact on the quality. 

Figure 26 visualizes the feature importance for the difference in seconds when the 

material rests between point 3 to point 4 in Figure 8. When the difference is less than 300 

seconds, the material has either not rested long enough or the wrong recipe has been used 

for the specific fan, which causes rejection. A clear trend is seen from 400 to 1300 seconds 

for which batches in the interval between 754 and 1157 seconds are more likely to be 

rejected. For longer differences, the probability of rejection is unclear. 

 

Figure 26. The importance of the difference in seconds from point 3 to 4. A clear trend 

is seen in the interval between 400 and 1300 seconds. 
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9.6.3 Testing the model 

The final model is tested with the test dataset and the results can be seen in Figure 27. 

The test results show that out of the 25 approved batches, 20 are correctly classified, 

which corresponds to a marksmanship of 80 percent. The model is not as good in 

predicting the rejected batches, which are correctly classified in 5 out of 16 samples which 

corresponds to 31 percent. In total the models predict 61 percent correctly classified 

quality results.   

 

Figure 27. Confusion matrix for the random forest model with an optimal set of 

features, tested with test data, which the model has never seen before. The y axis is the 

true label and the x axis is the predicted label. 
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9.7 Visualization on a BI platform 

The model output that performs the best is deployed to the project data lake. The test 

results dataset is then fed to Power BI desktop which enables interactive visualization of 

the new data. The visualizations are structured in a report with plots to ease interpretation 

of data. The platform can be reached on the facility's premises on the local intranet and is 

visualizing the predicted quality for the validate dataset and its feature values for each 

individual batch. Figure 28 shows a page in the Power BI report. There are five slicers on 

the top left for recipe, fan, product code, predicted quality and batch weight. The top left 

visualization is a bar chart visualizing the ratio of each fan and predicted label. The top 

right visualization is a line chart visualizing the mean integral above 100 degree Celsius 

for each batch weight for approved and rejected batches. The pie chart to the bottom left 

visualizes the amount of batches that have passed each fan. The bottom table is the 

summary of all features and predicted status. The predicted data is coupled with the raw 

process data for traceability of batch number, weight and physical measure results. 

 

Figure 28. Power BI page with visualizations of variable measures divided in predicted, 

approved and rejected batches. 
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10. Discussion 

This section will discuss the results from the AI pipeline which is divided into two parts 

discussing each of the research questions. Section 10.1 discusses the first research 

question; data and related features that are important for the quality output. Section 10.2 

will discuss the second research question; the AI-pipeline and the use of its 

implementation. Lastly, Section 10.3 will clearly state how the result answers each of the 

research questions.    

10.1 Feature impact on quality prediction 

In the investigation of which data has an impact on core hardness, domain knowledge 

from Respondent 1, 3, 5 and 7 are consistent with the result for feature importance in 

Figure 17. Heat energy in the fan, outdoor temperature, total and unit weight have been 

shown to be important while factors such as length, oven ID and recipe name have less 

impact. This is in line with the theory from [15], that anomalies can be distinguished from 

raw data points, but also sequences of data. As [14] describes, time series data can be 

used to find anomalies in an industrial process. From the examined data, insights have 

been gained based on calculations and sequences of the time series from the cooling 

process together with information about the batch itself. Thus, both process-external 

information and calculated values from time series are important factors in addition to 

raw process data when predicting quality results in heat treatment of steel rods for rock 

drilling.  

The integral of the cooling curve above the temperature 100 degrees Celsius is the most 

important model feature of all variables. This is plausible as the integral represents the 

heat energy in each heat-treated batch. According to [28], data points extracted from time 

series represented by a given interval, may be the foundation of finding anomalies, which 

the results of this report demonstrates. The fan that the batch passes is, according to the 

model, the second most important model feature. As Respondent 1 stated, the fans are 

individuals and the quality output is behaving as such. From the results, a clear pattern 

can be seen which tells that one fan has a higher rejection rate than others, which confirms 

the outcome of the pre-study. The mean outdoor temperature for each batch seems to have 

a relation to the core hardness. The temperature has a clear limit at +6 degrees Celsius, 

below which, the different batches tend to have a large probability of being discarded. 

This is in line with what Respondent 1 mentioned about unverified seasonality. The 

integral of the cooling curves between points 3 and 4, in Figure 23, generates a clear 

difference between the integral below 200 000 area units and above. An integral below 

this impacts the model by promoting poor quality outcomes. The two subsequent clusters 

that are mostly below the y-axis give a positive quality outcome. The result from this 

feature indicates that the optimal integral is above 200 000 and below 420 000 area units. 

The individual piece weight is the fifth most important feature for the model. A piece 

weight of less than 20 kg gives a good quality result and the cooling process for these 

seems to generate a high degree of approval. Given recommendations from Respondent 
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1, these rods are easier to produce. Thus, the model's interpretation of the individual piece 

weight matches the expectations. Larger unit weight gives a wider outcome. The total 

batch weight has an impact on the predicted quality outcome, which also was confirmed 

by Respondent 1. Total batch weights below 600 kg tend to result in rejections while 

heavier batch weights more likely result in approved batches. This can be a result of 

unfilled batches where a smaller amount of rods are heat treated than usual and the 

standard recipe for each product is only intended for a certain amount of rods. The result 

obtained from the difference in seconds between Point 3 and 4 indicates that there are two 

optimal time intervals for the model to approve a batch. 

10.2 The ML process and pipeline 

10.2.1 Choosing the best ML algorithm 

The results in Table 6 shows that there are several trained algorithms that are candidates 

for predicting hardness. Light GBD, extremely randomized trees and random forest 

receive similar scoring. However, random trees receive the highest macro AUC and get 

high scores also on other metrics, which makes it the strongest candidate to look further 

into for feature selection and parameter tuning. In the confusion matrix for random forest 

in Figure 13, there are more falsely classified positives than correctly classified negatives. 

However, it can classify most of the positives correctly. The ROC curve in Figure 15 also 

implies that the algorithm has found patterns from the features that have an impact on the 

data, as the AUC is greater than 70 percent and thus forecast better than a random guess. 

Based on these facts, the random forest algorithm is selected as a starting point in finding 

the optimal set of features and parameter tuning. 

A similar approach is used to decide the optimal set of features for the algorithm. Based 

on the results in Table 7, feature subset 10 receives second highest scoring on macro AUC 

and significantly higher scoring on the other performance metrics. The features for 10 

and their order of importance makes sense as Respondent 1 suspected the difference in 

the fans, the impact of outdoor temperature and amount of energy in the cooling process 

which is measured by the integral of the curve. Because of the realistic feature 

importance, overall high scoring and improved results from the confusion matrix, feature 

subset 10 is chosen to go forward with for the tuning. As [27] stated, the ML model got a 

better score for a specific set of the features while irrelevant features resulted in a poorer 

model during the training process.    

The final tuning of random forest with the feature subset 10 trained in one and five hours 

respectively is shown in Table 8. The 2nd run shows a strong performance improvement 

for all metrics. The confusion matrix for the second run in Figure 19 is better at classifying 

the approved batches and predicts a few more falsely approved batches than for the 

previous confusion matrix in Figure 19. Overall, the 2nd run is preferred as it is superior 

in performance metrics and capacity of predicting approved batches. 
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10.2.2 Test results of the model 

Training the model on unseen data from the test dataset, seen in confusion matrix in 

Figure 27, gives a realistic result. The previous confusion matrix on the test data has 

hinted that the model is better at predicting approved batches than rejected ones. Due to 

the limited amount of data and delimited research area, the model is predicting as good 

can be expected. The model needs overall further improvement, especially in detecting 

rejected batches. In a production point of view a falsely classified approved batch would 

lead to greater harm, as the predicted rejected ones probably would be prioritized for extra 

quality checks. The results shows that the model is not yet ready to be put in production, 

but rather be seen as a good starting point regarding what type of data, features and 

algorithms that can be used in both understanding the cooling process scientifically and 

streamline further research. A model trained on more granular data, such as the 

temperature of the air in production, or more samples of data would make an even better 

basis for pointing out batches that do not need to be tested. In a perfect scenario, only 

batches on the border of the quality tolerance interval would need to be tested, which 

would increase effectiveness and reduce lead times at the quality department.  

10.2.3 The AI pipeline 

The AI pipeline that has been built for the project has shown to be useful in predicting 

quality output. Fetching data from cloud, cleaning and extracting features from bronze to 

silver and joining them to gold has been useful in analyzing the problem with ML given 

the important insights presented in the previous section. The pipeline saves a lot of time 

and effort, as data is easily accessible in any of the pipeline steps. If any of the steps need 

to be updated with data, the following steps in the pipeline do not need to be rewritten. 

This makes the pipeline very easy to use for further development and scaling out the 

research with more data or variables. The architecture simply reduces the distance of 

taking a research proof of concept to an integrated operationalized state.  

This thesis has been able to use the AI pipeline to predict quality output based on data 

related to the cooling process. As [19] stated, ML can in this case be used for advanced 

process control and innovation in manufacturing efficiency. Creating a model to improve 

production and quality control, as [25] describes, has also shown to be a suitable strategy 

for use cases within heat treatment of rods. A full AI pipeline has been implemented. Raw 

process data has been transformed to valuable output within the project time which 

includes training a great number of hyperparameters to answer the research questions. 

This proves the AI pipelines value in decreasing time and effort in predicting quality 

output for the cooling process of heat treated rods. 
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10.2.4 Visualized prediction 

The use of a business intelligence tool to visualize the predicted status of each batch is 

found to be a crucial part of understanding the ML predicted test result. Just like [29] 

stated, a visualization platform is important in order to interpret scientific findings and to 

explain the added value of the model. Vellido [30] states that the visualization itself is a 

knowledge generator and is a crucial part in finding incompleteness, diagnosis of the 

result and the ML model refinement. In this thesis the plots of the ML output have been 

important in these three cases. Power BI can be used in an AI pipeline to fill a 

visualization gap and help the end user to interpret the model output.  

10.3 Answering research questions 

The first research question, given the previous discussion in Section 10.1, is answered by 

concluding that three types of data are important. Single data points about the process, 

external variables about the weather and process time series have been shown to have an 

impact on the quality. The total heat energy in the oven, characteristics of the fan and the 

temperature of the air that it cools the material with has a greater impact on the final 

model compared to other investigated variables. This is also applicable to the size of the 

rod and the total amount of rods in the batch.  

The second research question is answered by the extent of work that has been conducted 

during a five months’ time and the resulting value for the heat treatment and cooling of 

rods that the AI pipeline has made possible. An AI pipeline is applicable for the rock 

drilling tool manufacturing industry and can be efficient with the services used in this 

research for further development, scalability and deployment for production. 
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11. Conclusion 

This study aims to find and test variables that can have an impact on hardness quality 

results of heat treated steel rods in mining manufacturing. Concurrently, an AI pipeline's 

applicability and ability to speed up the process is tested in finding interrelated variables 

affecting the quality. Previous studies investigating the general applicability of AI in the 

steel manufacturing industry show that the area is a perfect candidate due to its complex 

interrelations of steel composition and process steps. A lot of different chemical steel 

components and process variables have been used in combination with deep learning for 

unsupervised problems while less studies have been conducted to deeply investigate the 

cooling process to classify output quality with a clustering approach.  

As no studies have been found for air cooled steel rods manufactured for mining, or even 

the steel industry, this thesis fills a knowledge gap both as proof of using an AI pipeline 

and testing new variables from cooling to improve quality or rods. The heat treatment 

process is expensive and consumes a lot of energy. The process of manufacturing perfect 

quality is not fully understood due to its complexity. Thus, this investigation is needed 

for minimization of resource use, streamline production and find the right variables and 

models to be industrialized.   

The investigation is based on a case study where knowledge from interviews builds the 

ground for feature extraction. The AI pipeline is powered by Microsoft services through 

which raw process data is collected, cleaned, feature engineered, predicted on and 

visualized. Through the experimental procedure nine algorithms are compared, out of 

which the best performing algorithm is trained with 11 different feature subsets. The best 

performing subset is hyperparameter tuned to get a model as good as possible. Six 

performance metrics are used to evaluate the models, out of which macro AUC is the 

primary one. 

In summary, the random forest algorithm is a suitable algorithm to predict quality results 

from the cooling process in manufacturing of rods for the mining industry. This report 

also shows that creating an AI pipeline has been efficient in the designed way that has 

been adopted for this use case. Data can be stored and fetched in a cloud instance using 

the Databricks platform to engineer data for use in ML. The tuned model can be deployed 

and utilized for further insights on a business intelligence platform like Power BI. Process, 

weather and production time series data have been found to make a good ground in 

finding correlations between the heat treatment process and quality output. Domain 

knowledge about the process and steel characteristics is crucial when finding the right 

features to choose an algorithm. The amount of features has an effect on the model 

performance and can be optimized in order to improve the algorithm. 

As a concluding remark, the authors have proved that ML can be used to improve the 

quality output from heat treatment rods and that an AI pipeline can be used although 

improvement can be made in feature selection and availability of larger and more detailed 

data on site. 
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12. Future work 

Based on the results in this report, further work can be done to improve industrial 

processes in mining industry manufacturing. We see potential for further implementation 

of AI in several areas on site, such as sintering of cemented carbide and carbonization 

during hardening of steel. We also see that other potential data sources and features can 

be added to the existing AI pipeline, such as composition of the steel, other products and 

routes between ovens and fans. Given that temperature and its seasonality have an impact 

on quality, additional weather data such as humidity and air pressure would be interesting 

to add. There is great potential for further research in the field in combination with ML 

that is unexplored which gives many possible outlines for future projects. 
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Appendix  

A: Respondents 

 

 

 

  

Respondent Role Time 

1 Technician 1 h 

2 R&D Materials Manager 2 h 

3 Digital Innovation Manager 2 h  

4 Quality technician 2 h 

5 Operator 2 h 

6 Heat treatment researcher 1 h 

7 Quality Engineer 30 min + 45 min 

8 Microsoft advisory consultant 1 h 
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B: Joining datasets and feature extraction 
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C: Feature subset selection for random forest  

  

Feature 1 2 3 4 5 6 7 8 9 10 11 

TotalWeight 
x x x x x x x x x x x 

avg_temp x x x x x x x x x x x 

integral_above_temp_100 x x x x x x x x x x x 

blas x x x x x x x x x x x 

weight 
x x x x x x x x x x x 

integral x x       x x  

DiffInSeconds_point3to4 x x x x x x x x x x x 

slope_max_15 x x x x x x x x x  x 

ugn_id 
x x x  x x x x x  x 

max_value_f x x x  x x x x x  x 

slope x  x        x 

length_dm x  x  x x x x   x 

std_f 
x  x   x x x   x 

point4_value_f x     x x     

recipe_name x      x     

amount x      x     

hypotenuse 
x           
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D: Hyperparameters for random forest 

 

 

 


