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Abstract 
This study models the energy used for heating in buildings by applying system identification 
methodology. The model development is grounded in physics to provide guidance and 
interpretability when evaluated. Time-series of heating demand, outdoor temperature, indoor 
temperature and solar irradiation are considered for the modelling purpose. Evaluation is done 
through simulation and relies on quantitative measures, residual analysis and visual inspection 
of model output. Through model development, the study seeks to extrapolate information of 
physical properties that drives heating demand in buildings. Seven buildings located in the 
same geographic area are studied. It is found that linear ARX-models can simulate heating 
demand with high precision but at times low accuracy. A common system model structure can 
be identified between buildings, indicating that physical properties shared between buildings 
can be identified through this methodology. A sensitivity analysis is conducted to derive the 
contributions from model constituents to simulation results. Two buildings were also modelled 
as OE-models. These models performed better than the respective ARX-models but were 
deemed more difficult to use for the purpose of this study. The study finds difficulties in 
implementing aggregated time-series of indoor temperature, which could be explored further in 
future studies for more detailed interpretations. An interpretation of the physical properties 
identified is proposed. 
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Svensk populärvetenskaplig sammanfattning 

Det finns ett stort behov av att minska energikonsumtionen i världen. Till stor del är 
behovet sprunget ur ett ohållbart resursanvändande och klimatgasutsläpp relaterat till 
energianvändningen. Energiförbrukningen i byggnader är stor och det går åt mycket 
energi för att värma upp byggnader. I världen, likaså Sverige, står uppvärmningen av 
byggnader för ungefär en fjärdedel av den totala energiförbrukningen. 

Uppvärmningsbehovet i en byggnad beror huvudsakligen av tre aspekter: dess 
konstruktion, dess användning och vädret som råder. Det sista är alla bekanta med: när 
det är kallt så värmer vi husen. Det föregående är de flesta också bekanta med: om du 
öppnar fönstret på vintern så blir det kallt. Men det är också en fråga om att mänsklig 
aktivitet, såsom kroppsvärme, datorer och lampor, avger värme och minskar 
uppvärmningsbehovet. Den första aspekten är däremot olika för alla byggnader och 
beror både på dess ursprungliga utformning samt dess nuvarande skick. Ett sätt att se på 
en byggnad är att den ska skydda oss ifrån vädrets yttre förhållanden, genom att till 
exempel hålla oss isolerade i värmen. Dessa tre aspekter kan sammantaget beskrivas 
med fysik som en balans av energiflöden.  

För att både effektivisera och minska uppvärmningsbehovet har modeller av olika slag 
utvecklats. Deras syften varierar från att designa byggnadens originalutformning, till att 
kontrollera uppvärmningssystemet på ett effektivt sätt. Det finns därför många olika 
typer av modeller som har utvecklats och olika lärdomar att dra. Den här studien syftar 
till att ta fram en modell som kan simulera uppvärmningsbehovet samt ge oss insikt i 
vad som driver det och hur. 

Grovt sätt så kan modeller delas in i två typer. Den ena typen utgår ifrån att modellen 
byggs helt på förståelse för ett system, en så kallad ”vitlåde”-modell. Till exempel kan 
fysikaliska lagar beskriva ett känt system. En sådan modell är även helt ”genomskinlig” 
och vi kan förstå allt som händer i modellen. Den andra typen utgår ifrån att en modell 
av system ska härledas ifrån observationer av det, så kallade ”svartlåde”-modeller. 
Dessa modeller bygger helt på våra observationer av ett system och är inte direkt 
relaterade till fysik eller någon annan förståelse för systemet. På så vis blir de unikt 
anpassade till systemet i fråga, men behöver inte alls beskriva ett liknande system väl. 

Det går att kombinera dessa två typer av modeller och få en så kallad ”grålåde”-modell. 
Dessa erbjuder förståelsen av en vitlåde-modell, samt den unika anpassningen av en 
svartlåde-modell. I den här studien utvecklas grålåde-modeller för sju olika byggnader. 
Modellerna tas fram genom att använda fysik för att utgöra en modellgrund och sedan 
tillämpa en maskininlärningsmetodik – systemidentifiering – för att anpassa modellerna 
för vardera byggnaden. På så vis utvecklas anpassade modeller som delar en gemensam 
och fysiskt tolkningsbar grund. En sådan modell kan möjligen i förlängningen lämpa sig 
för att undersöka vilken inverkan en energieffektiviserande renovering hade haft på just 
en specifik byggnad. 

De framtagna modellerna beskriver samspelet mellan byggnadens utformning och de 
yttre väderförhållandena genom att identifiera olika energiflöden och beteenden hos 
byggnadens uppvärmningssystem. Detta identifieras genom att analysera de framtagna 



  

modellerna med hjälp av vad fysik och vad som bör vara fallet. Därigenom beskriver de 
framtagna modellerna att energikonsumtionen från uppvärmningen drivs av  

§ en tröghet i uppvärmningssystemet, 
§ värmeförluster genom fönster och köldbryggor samt 
§ värmeförluster genom tunga byggnadsmaterial (till exempel väggar), 

men även att solens strålar påverkar uppvärmningsbehovet. De framtagna modellerna i 
studien ska ej ses som uteslutande och framtida forskning föreslås att både utveckla 
modellerna samt bekräfta de resultat som framställdes av denna studie.  

En undersökning av modellernas beståndsdelar kommer fram till att energibehovet 
stämmer överens dugligt med detaljerade energikartläggningar. Därigenom föreslås 
även en koppling mellan modellens olika delar och relevanta renoveringsmöjligheter för 
att minska uppvärmningsbehovet och energikonsumtionen. Därigenom förväntas denna 
studie att kunna bidra till en minskad energikonsumtion i världen.
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1. Introduction 
The introduction of this study begins with providing both an academic and practical 
context. These contexts will motivate the use for system identification modelling as a 
tool to decrease energy consumption. The purpose and goals of the study are presented. 
Some delimitations of the thesis are considered. Lastly, a literature review that 
summarizes relevant academic writings on system identification and modelling energy 
systems in buildings are presented. 

1.1 What is this study? 

Heating in commercial and residential buildings account for about a quarter of global 
energy demand (IEA, 2020a). The respective number in Sweden is similar and further, 
heating accounts for the majority of the energy consumed within the building sector 
(Boverket, 2021). According to the IEA (2020b), carbon emissions related to heating, 
ventilation and air conditioning (HVAC) systems must decrease in order to reach set 
goals for sustainable development. Further, the IEA states that heating in particular is 
“not on track” to reach said goals. As carbon emissions are related to the energy 
consumption of HVAC systems, there are two ways of decreasing them (IEA, 2020b). 
The first being to move away from using carbon-intensive energy sources, such as fossil 
fuels. The second way is to reduce the amount of energy used, which is the interest of 
this thesis. 

The energy consumed for heating is dependent on the type of heating system and 
heating demand. By retrofitting buildings with energy-efficient solutions, the heating 
demand can be decreased. Retrofitting solutions can be classified as either active or 
passive solutions. Active solutions depend on how the building is used, for example, 
heat scheduling or so-called smart systems. Passive solutions, on the other hand, relate 
to the building’s physical surroundings. These solutions depend on the design of the 
building and its physical properties, such as insulation, thermal bridges and window 
surfaces. Passive solutions are the main factors relevant in describing a building as an 
energy system with energy flows through the building envelope (Abel and Elmroth, 
2016). 

Buildings and HVAC systems are complex systems dependent on their use, internal 
design and external context (Abel and Elmroth, 2016). Understanding these systems for 
the purpose of identifying worthwhile investments that will contribute to energy 
efficiency can be difficult. It requires both an understanding of the measures invested in 
and the system they are deployed in, which is often complex. Therefore, modelling 
buildings as energy systems has been an active research field for decades (Drgoňa et al., 
2020). Different tools have been developed and designed for various modelling 
purposes. Popular software often makes use of comprehensive thermodynamics to 
model the buildings’ energy systems (e.g. EnergyPlus, Modellica and TRNSYS) 
(Coakley et al., 2014). However, these models are inherently both complex and difficult 
to apply as they require detailed knowledge of the specific building. 

Based on statistical modelling and machine learning, it possible to model a system 
through a methodology called system identification (Ljung and Glad, 2004). As 
machine learning has become more common, system identification has too. In essence, 
the methodology is to relate a set of samples corresponding to “inputs” and “outputs” of 
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a system through a mathematical description. Therefore, it is not necessary with detailed 
knowledge of a system’s inner workings to describe its behaviour (Ljung and Glad, 
2004). However, if the physics that govern the system is known, the mathematical 
description can be directly related to the real physical system. This type of model is 
called a grey-box model and has been used to model buildings’ energy systems 
(Coakley et al., 2014; Drgoňa et al., 2020). In general, the empirical data can be said to 
provide specificity and the integrated physics can be said to provide some 
generalisability between similar systems. Thus, grey-box modelling can be suitable for 
an overview assessment of the potential energy savings from retrofitting a building with 
passive solutions. 

The hindrance when attempting to apply system identification methodology to 
empirically model a system is often a lack of sample data (Ljung and Glad, 2004). The 
company Mestro AB specialises in collecting and organising data of energy usage in 
buildings and external meteorological conditions are available as open data sets. 
Therefore, data similar to what has been used by research like Hietaharju et al. (2018), 
Jiménez et al. (2008), Lowry and Lee (2004), and Wu and Sun (2012) to model and 
determine the thermal properties of buildings, is available from Mestro AB. However, 
in these datasets measured indoor temperature is seldom available. There is hence a 
possibility to model buildings’ heating demand by applying system identification. Such 
a model could then be used to develop a tool for analysing retrofit potential, 
generalisable to different buildings. 

1.2 Purpose and goals 

This thesis sets out to derive a grey-box model suitable for system identification of 
buildings’ heating demand. The derived model should be suitable for physical 
interpretation and to provide insight into the building energy system to which it would 
be applied to. The model should mainly make use of data available through a service 
like that which Mestro AB offers. 

The goals set by this thesis are thus to 

§ through physics develop a model framework suitable for system identification, 
§ extrapolate information about physical properties through analysis of the derived 

model, and 
§ identify the main contributions to heating demand through model simulation. 

This would allow for a generalisable systematic method to analyse the potential of 
retrofitting and passive solutions in a complex thermal system based on commonly 
available data. 

1.3 Delimitations 

This thesis has some delimitations with regards to the modelling. Firstly, it considers a 
set amount of input that have been used by previous studies, see Hietaharju et al. (2018) 
and Wu and Sun (2012). It is therefore not exhaustive in its modelling with regards to 
physics. Secondly, the modelling process makes no distinction between walls and other 
heavy construction, such as roofs. This a common modelling simplification (Verbeke 
and Audenaert, 2018). 
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1.4 Literature review 

The modelling of buildings’ energy systems has been an active field for a long time. 
Hence today, there are many publications applying different models and methods to 
serve different purposes and types of systems. Literature reviews have been published 
which summarise methods and results created for different purposes. Coakley et al. 
(2014) provide the most comprehensive review regarding energy simulations of whole 
buildings. The review focused on energy simulations with the purpose of designing and 
optimising building’s energy consumption. It concludes that accurate simulations for 
real-world building operation are difficult to achieve, however, they are improved by 
implementing measurements of the building in operation. Thus, motivating the use of 
what this thesis considers a grey-box methodology. As an extension, the paper provides 
an assessment of analytical and statistical methods that have been used by practitioners 
to develop a model both empirically and through physical insight. 

Drgoňa et al. (2020) published a literature review regarding modelling buildings to 
implement active solutions, in particular, predictive control of HVAC systems, to 
reduce energy consumption. Prior to, and mentioned, in Drgoňa et al. (2020), Afram 
and Janabi-Sharifi (2014) reviewed modelling methods for HVAC systems. The 
reviewed literature seeks both to predict behaviour and to study the energy consumption 
of HVAC systems. Partly, this includes a review of the potential of different modelling 
techniques to accurately describe a system’s thermal behaviour and states. The reviewed 
literature in Drgoňa et al. (2020) and Afram and Janabi-Sharifi (2014) provide a 
foundation for modelling HVAC systems and thermal behaviour in buildings. 

Both Hietaharju et al. (2018) and Wu and Sun (2012) have published papers designing 
grey-box models to predict the indoor temperatures of buildings. The respective paper 
considers large buildings (such as schools, municipal buildings etc.) and office 
buildings. Their grey-box models are based on the thermodynamic energy balance 
through the building envelope, linearly incorporating time series of heating power, solar 
irradiation, outdoor and indoor temperature. Any energy sources or sinks not modelled 
are considered as noise. Both studies find that their model approaches are suited to be 
generalised and applied for long-term prediction of indoor temperature. In the case of 
Hietaharju et al. (2018), the original energy balance is developed further as an 
AutoRegressive-Moving-Average with eXogenous inputs (ARMAX)-model by using 
time delays and dynamic behaviours that have been documented in the literature 
previously. They implement physical properties and information from national building 
codes to base estimates of some relations and parameters in the model structure. Their 
study considers buildings located in Oulu and Jyväskylä, Finland, which are similar in 
climate to Sweden and the buildings studied in this thesis. Further, the paper finds that 
forecasted outdoor temperature was sufficient for accurate prediction models, it need 
not be measured on-site. Wu and Sun (2012) also developed their grey-box model as an 
ARMAX-model and relates to the thermodynamic energy balance. 

Jiménez et al. (2008) provided a study to determine thermal properties of buildings by 
applying system identification methodology. The study examines simplified buildings 
and provides a method to extract information of thermal properties from the developed 
model.  

Since data of indoor temperature is seldom available for individual buildings, an attempt 
to recreate the data as a system state was conducted during the project. The work is 
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excluded as a main part of the thesis but is included in Appendix A with a literature 
review available for future studies. 

2. Theory 
The theory chapter of this thesis begins with a discussion of the concept of and different 
approaches to modelling in science. The chapter then highlights the field of system 
identification. This is done by describing the process of model discretisation, 
development of common model structures and lastly the process of adjusting and 
validating models. Followingly, the chapter provides a discussion on data pre-
processing and dealing with a non-ideal reality. Finally, the chapter provides a 
description of the energy flows to create an interpretable model framework with. 

2.1 What are models and why are we interested in them? 

According to Coakley et al. (2014) buildings are considered complex systems and the 
thermal behaviour in a building is highly dependent on many external sources. Though 
complexity makes systems difficult to model accurately, that is simultaneously the 
purpose of modelling: to provide insight into a system that is too complex to understand 
in full (Ljung and Glad, 2004). As learnt from the literature review (see Afram and 
Janabi-Sharifi (2014), Coakley et al. (2014) or Drgoňa et al. (2020)), depending on the 
application and intended use of a model, it should be designed differently. Its design is 
governed by the complexity of the system, measurements available, linearity and 
intended use (for example, short term predictions for control or long-term simulations 
for design and analysis). It is therefore important to recognize that models are a 
representation of a real system, designed after a purpose and can highlight certain 
aspects or dependencies of a system; it is not the actual real system. Coakley et al. 
(2014) provides the view that modelling relies on the modeller’s knowledge, 
experience, statistical expertise, engineering judgement as well as an iterative process of 
trial and error. 

Models are never an exact representation of a physical reality, but a common idea is that 
an exact representation 

 !!"!(#) = !(#|'#) (1) 

can be achieved given the exact parametrisation '# and that the measured output 

 !(#) = !(#|'#) + )(#) (2) 

is subject to a stochastic noise )(#) (Ljung and Glad, 2004). Even though models are 
never exact, they can still represent system behaviour. Coakley et al. (2014) consider 
models based on physical laws to be useful to for predicting the behaviour of energy 
systems in complex buildings.  
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2.2 What different models are there? 

Models can be divided into three paradigms: white-, black- and grey-box models 
(Drgoňa et al., 2020). A white-box model predicts a system’s behaviour by applying a 
given set of physical laws (gravity, heat transfer, etc) acting under specific properties 
and conditions. A black-box model works oppositely. It is fully data-driven and infers 
the system properties solely from observations. A grey-box model is the result of 
combining the two paradigms. According to the reviews from Afram and Janabi-Sharifi 
(2014), Coakley et al. (2014) and Drgoňa et al. (2020), there are both benefits and 
challenges to each paradigm. 

A white-box model can allow for generalisability and great understanding of the system. 
However, the model risks becoming difficult to develop and demands great insight on 
behalf of the modeller. This means that highly detailed information of many different 
systems aspects is necessary for producing a white-box model that can recreate a 
system’s behaviour accurately. Information like such is seldom available and the white-
box model will be sub-par in its performance and inadequate for its purpose. Still, there 
is a generalisability to white-box models as they are based on laws, even though they 
can be lacking in accuracy for a specific system.  

A black-box model generally uses fewer parameters but is solely reliant on the 
observable input and output data. Thus, a pure black-box model can be accurate in the 
specific case but is not generalisable. This is the result of a black-box model being 
based purely on data from the specific system. 

A grey-box model bases its structure on laws and relationships thought to be important 
for the system’s behaviour, like a white-box model. The system’s properties are derived 
by inference through observable input and output data, like a black-box model. As such, 
a grey-box model to some extent allows for the generalisability of a white-box model 
and the accuracy of a black-box model (Afram and Janabi-Sharifi, 2014; Drgoňa et al., 
2020; Ljung and Glad, 2004). 

System identification is a methodology used to infer system properties from input- and 
output data (Ljung and Glad, 2004). It has been used by researchers interested in 
simulations of building’s energy demand, see for example Hietaharju et al. (2018) and 
Wu and Sun (2012). The methodology is commonly deployed in situations where plenty 
of data is available for developing a black or grey-box model, and a detailed physics-
based model is deemed too costly and complex (Coakley et al., 2014; Ljung and Glad, 
2004). 

2.3 Continuous and discrete models 

Physical laws and systems are often described as continuous-time models. For example, 
Newton’s second law of motion * = + ∙ - or the first law of thermodynamics Δ/ =
0 −2. When data is measured, it is done at discrete points in time. It is therefore 
common to use discrete-time models in system identification (Ljung and Glad, 2004). 
Assuming that the sampling data is spaced out uniformly with sampling time 3, a point 
in time can be related as proportional to the sampling time 

 #$ = 43, (3) 
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where 4 is an integer. Uniform sampling allows for the use of the time-shift operator 

 67(43) = 78(4 + 1)3:;	6%&7(43) = 78(4 − 1)3: (4) 

(Ljung and Glad, 2004). Using the operator, polynomials can be used to relate terms of 
inputs and outputs at different points in time 

 =(6) = ># + >&6%& + >'6%' +⋯+ >(6%( (5) 

such that 

 =(6)7(#) = >#7(#) + >&7(# − 1) + >'7(# − 2) + ⋯+ >(7(# − A). (6) 

This enables the coherent use of statistical methods to estimate the parameters of the 
polynomial given any uniformly sampled dataset. The time-shift operator relates to the 
Z-transform such that it directly relates to the frequency-domain (Ljung and Glad, 
2004). This means that what time-delays are included in the polynomials dictate what 
frequency content is captured and recreated by the model. 

The transition from continuous to discrete representation has consequences for the 
information contained in the representation. For example, information of high frequency 
dynamics of the system may be lost in the sampling of data as it may be lost between 
sample points (Ljung and Glad, 2004). The extent to which the sampled data contains 
the information is dependent on the sampling time and specific system. Whether the 
sampled data is sufficient in information to describe the continuous system should be 
evaluated both before modelling as well as afterwards. A rule of thumb given by Ljung 
and Glad (2004) is that somewhere around 4 to 8 samples should be available to 
describe the slope of a system’s step response. However, a building is not an ideal 
system, and its energy consumption depends on many inputs which all have their 
separate step responses. Judging the step response of a not yet identified such system is 
therefore difficult. A good sampling time can instead be based on previous knowledge. 
Both Hietaharju et al. (2018) and Wu and Sun (2012) developed well-functioning long-
term prediction models using data with 1h sampling times. 

2.4 Black-box models 

Commonly occurring model structures within black-box system identification 
methodology stem from a family of models called Box-Jenkins models (Ljung and 
Glad, 2004). More specifically, the literature review found that AutoRegressive with 
eXternal-input (ARX)- and Output Error (OE)-model structures are commonly used to 
model buildings’ energy systems for simulation purposes. ARMAX-models also belong 
to the Box-Jenkins model family but are typically used for prediction-models (see for 
example Hietaharju et al. (2018) or Wu and Sun (2012)). All models in the Box-Jenkins 
family are linear and describe a system using measurements of inputs and outputs 
(Ljung and Glad, 2004). The term black-box model stems from the fact that the models 
do not consider what the actual system is, it only cares about relating time-series 
measurements of signals to the output.  

The equation for an ARX-model is written 
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 B(6)!(4) = C(6)7(4) + )(4), (7) 

where 

 B(6) = 1 + -&6%& + -'6%' +⋯+ -)!6
%(! (8) 

and 

 C(6) = D# + D&6%& + D'6%' +⋯+ D)"6
%(" , (9) 

where -( and D( are scalar parameters. In the special case that B(6) = 1 the structure is 
called a finite impulse response (FIR)-model. The model parameters, -( and D(, are 
collectively denoted as ' and can be estimated through least-square estimates  

 
'E = -FG	+HA

*
I 8!(H) − !J(H|'):

'
(

+,-./	((!,(",(#)

= -FG	+HA
*

	K('), (10) 

where the cost function K is minimised with respect to the parameters ' and !J is the 
model output as expressed in (11). 

The ARX-model can be described as linear regression 

 !J(4) = L4(4)'E, (11) 

where L is the information vector (Ljung and Glad, 2004). The information vector 
should be considered as a column vector where each element corresponds to either an 
input or output sample such that the multiplication describes the structure in (7). Since 
the ARX-model can be described as linear regression it also means that, given a dataset, 
the parameters at the global minimum of the cost function K can be found through the 
normal equation 

 'E = (M4M)%&M4N, (12) 

where  

 

N = O

!(1)
!(2)
⋮

!(A)

Q	 (13) 

and  

 

M =

⎣
⎢
⎢
⎡L

4(1)
L4(2)
⋮

L4(A)⎦
⎥
⎥
⎤
, (14) 

where A is the number of samples available in the training dataset (Ljung and Glad, 
2004). 
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OE-models are structured differently to ARX-models and are special in the Box-Jenkins 
family as the noise is not modelled (Ljung and Glad, 2004). This means that the 
difference between the measured and undisturbed output signal is modelled as just the 
noise source. The equation for an OE-model is 

 
!(4) =

C(6)
*(6)

7(4) + )(4), (15) 

where C(6) is eq. (9) and 

 *(6) = 1 + X&6%& + X'6%' +⋯+ X(#6
%(# . (16) 

The model parameters are estimated through least squares estimates, see (10). However, 
the OE-model structure is not linear with regards to the parameters and cannot be 
described as linear regression. The normal equation can therefore not be used to 
estimate the parameters. Iterative gradient-based methods such as Newton-Raphson 
(described in Ljung and Glad (2004)) are used instead. These methods risk converging 
towards local minimum of the cost function K. Software designed for system 
identification, such as MATLAB’s System Identification Toolbox, include methods to 
avoid local minimums. 

2.5 Model simulation 

To simulate a model is to give it inputs and calculate the outputs (Ljung and Glad, 
2004). A model that represents the real system’s dynamics can therefore be used to 
simulate system behaviour given some inputs. The output of an ARX-model is 
simulated as 

 !J!+5(4) = 81 − B(6):!J!+5(4) + C(6)7(4) (17) 

and an OE-model as  

 
!J!+5(4) =

C(6)
*(6)

7(4). (18) 

Note that simulation of  both model types exclude any noise-terms present in (7) and 
(15). 

2.6 How do you validate a model? 

2.6.1 What makes a model valid? 

A model simulation can be compared to measured data. This allows for the modeller to 
determine the model’s performance. A valid model can, to some extent, be summarised 
as a simulation that is accurate to the measured output. If the modeller was able to 
design the model well, then the measured data and model output should appear similar. 
This raises the question of what can be considered similar. Therefore, the process of 
validation is important to model development. 
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To begin, it is important to consider that a model is a representation of reality (see 
chapters 2.1-2.3) and the simulation mirrors what is represented. It is therefore 
important to consider what dynamics that the model incorporates. A remark regarding 
model validation, given by Ljung and Glad (2004), is that sample data and model 
validity should consider operating conditions. Non-linearities often impact the 
behaviour of the real system, which renders both the data and identified system 
inadequate to describe the system under different operating conditions. Inadequate 
operating conditions will not be overcome by the process of model validation as the 
problem is inherent to the sampled data used to design the model. It may however be 
counteracted by developing models with knowledge of operating conditions in mind. 

According to Saltelli et al. (2008), science and researchers involved with mathematics 
and physics may have become accustomed to being able to describe nature and 
phenomena accurately and unambiguously. The descriptions present themselves as 
inherent beauty and self-evident truths. Validating a correct model therefore becomes to 
validate reality (Saltelli et al., 2008). However, the more complex a system is, the more 
difficult it is to validate. As grey-box models consist of simplified or aggregated 
relationships fitted to observed data, the aim is not to validate an exact model of reality. 
Instead, it is to validate whether the model is good or not for its purpose. In accordance 
with this contrasting perspective, Saltelli et al. (2008, pp. 3) states that “… practitioners 
of modelling have come to live with the rather unpleasant reality that more than one 
model may be compatible with the same set of data or evidence”. Further, the methods 
and criteria for validation vary depending on the purpose of the model. This view 
appears widely accepted within the current landscape of modelling buildings’ energy 
systems (Afram and Janabi-Sharifi, 2014; Drgoňa et al., 2020). In the end, to validate a 
model is to examine whether it can be accepted and serves the purpose it was designed 
for. For this thesis, the stated purpose is to develop a model that is suitable for physical 
interpretation and that can provide insight into a building’s energy system. 

Through the process of validation, the model can be adjusted such that it serves its 
purpose best. Adjusting a model to well represent the system that it is designed after has 
been found to be an iterative process of trial and error based on a combination of 
knowledge, experience, expertise and engineering judgement (Drgoňa et al., 2020; 
Ljung and Glad, 2004). The process of validation includes to evaluate measurements 
and indicators which can provide insight into how best to adjust a model. In chapters 
Fel! Hittar inte referenskälla.-2.6.6 some relevant measurements used in system 
identification are presented. 

2.6.2 Cross-validation and overfitting 

In general, it is good practice to validate the model on a different dataset than that of 
which it has been fitted to (Ljung and Glad, 2004). To divide data into training and 
validation data is called cross-validation, see illustration in Figure 1. Dividing up data 
can help reveal an overfit to measured data by comparing the model to data it has not 
been directly fitted to.  
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Figure 1. Illustration of division of a dataset into training and validation data. 

It is possible to overfit a model that is too complex (Ljung and Glad, 2004). This may 
mean that the model has been fitted to data that was in actuality noise. Even a model of 
a complex system can still be too complex and overfit. An overfitted model is illustrated 
in Figure 2, alongside an underfitted and a well-fitting model. Figure 2 further shows 
how cross-validation can reveal the overfitted model. 

 
Figure 2. Illustration of an overfitted (brown), underfitted (green) and well-fitting (blue) 
model. The yellow box illustrates how an overfit model is detected by cross-validation. 

To counteract overfitting a model, parsimony is considered as a desirable feature 
(Saltelli et al., 2008). This is also known as the principle of parsimony (or Occam’s 
razor) and states that a model should always be developed to be as simple as possible 
whilst encapsulating sought after dynamics. In practice, this means that if two models 
are equal in performance, the simpler one should be chosen. 

In order to decrease the risk of overfitting to a specific data set and operating conditions, 
a folding method can be applied. The method was previously used by Hietaharju et al. 
(2018) and entails that the dataset is divided into “folds”. A fold is dedicated as 
validation data and the others are used for fitting the model. The folds are then rotated, 
such that a different fold is used as validation data. This method reduces reliance on a 
specific set of data. If the model development is evaluated on all folds, it allows the 
modeller to consider the full data set and consider the system during multiple operating 
conditions. The folding method is illustrated in Figure 3.  

 
Figure 3. Illustration of the folding method. 

Validation dataTraining data

Dataset

Fold 1 Fold 2 Fold 3 Fold 4

Training data

Validation data
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2.6.3 Residual error and analysis 

The residual error for a model at time # 

 Z8#|'E: = !(#) − !J8#|'E:	 (19) 

is defined as the difference between the measured output based on the true system ! and 
predicted output of the modelled system !J (Ljung and Glad, 2004). The residual error is 
the foundational measurement upon which many validation methods are based on. 

It is possible to conduct a residual analysis in order to evaluate their relation to the 
developed model (Ljung and Glad, 2004). This analysis is conducted by looking at two 
aspects. Firstly, the residual error and the input signals should be independent. If they 
are not, there are likely system dynamics which have not been described and 
incorporated into the model. Independence can be analysed by estimating the covariance 

 
[E67(\) =

1
]
IZ8# + \|'E:7(#)
8

9,&

,			|\| ≤ _ (20) 

of the input signals and residuals. The covariance should be close to, and ideally be, 
zero. If the covariance is non-zero for a value \# it is an indication that the model should 
include the term 7(# − \#) (Ljung and Glad, 2004). Secondly, if the noise signal has 
been integrated as a part of the model, the autocovariance  

 
[E6(\) =

1
]
IZ8# + \|'E:Z8#|'E:

8

9,&

 (21) 

of the residuals should be analysed. The residuals should also be independent of 
themselves. 

2.6.4 Bias, variance and mean square error 

Bias and variance error are two prevalent measures of error based on the residual error 
within modelling of buildings’ energy systems (Afram and Janabi-Sharifi, 2014). The 
bias error 

 
_C` =	

1
]
IZ8#|'E:

8

9,&

 (22) 

is the mean residual error and represents a model’s accuracy (Afram and Janabi-Sharifi, 
2014; Kuhn and Johnson, 2013). It can loosely be described as a systematic error due to 
the model being too simple or trained on data insufficient to describe the real system. 
The variance error, or residual variance, 

 
a-FH-Ab) = 	` cy8#|'E: − ` ey8#|'E:fg

'
 (23) 
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represents a model’s precision (Afram and Janabi-Sharifi, 2014; Kuhn and Johnson, 
2013). A model that is too complex and overfits to training data will suffer a larger 
variance error when evaluated on validation data. 

Both errors relate to the mean square error (MSE) as 

 _h` = 	`Z'8#|'E: = i' +_C`' + a-FH-Ab), (24) 

where i' is an error termed “irreducible noise” and can never be reduced through 
modelling (Afram and Janabi-Sharifi, 2014; Kuhn and Johnson, 2013). Minimizing the 
MSE entails finding a balance between the bias and variance errors. Analysing the MSE 
and bias error therefore allows for the model’s accuracy and total error to be evaluated. 

2.6.5 Absolute error 

The absolute error of a model 

 _B` = 	`|Z8#|'E:| (25) 

is similar to the bias error, except it is measured by the absolute value of the residual. 
The absolute error provides an indication of the error compared to each sample point 
(Afram and Janabi-Sharifi, 2014). 

2.6.6 Correlation coefficient 

The correlation coefficient is a measurement of how strongly associated the model 
output and the actual measurements are (Afram and Janabi-Sharifi, 2014). The 
correlation coefficient 

 
jj = 	

bka8!(#), !J(#):
i"i":

 (26) 

is calculated from the covariance and standard deviations of the measured output i" and 
the model output i":  and ranges from 1 to -1. The correlation will be close to 1 if the 
model and the real system are closely positively correlated, -1 if closely negatively 
correlated, and near 0 if the model and real system are not correlated. Hietaharju et al. 
(2018) used the correlation coefficient to determine how well the dynamics of the real 
system have been captured. 

2.7 Pre-processing data 

This subchapter provides theoretical background and discussion of pre-processing data, 
as data often differs from the ideal case. The theory is largely based on the work of two 
authors (Ljung and Glad, 2004) which have been influential to the field of system 
identification. The pre-processing of data is seldom described in the publications 
mentioned in this thesis. It therefore assumed that these publications share a common 
theoretical framework that relates to pre-processing data. 
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2.7.1 Missing samples 

Due to various reasons, data samples can be missing in both input and output signals. 
Ljung and Glad's (2004) primary recommendation is to use sections of data with as few 
missing datapoints as possible. However, in the case that there still are missing data 
points prevalent, it is recommended that the modeller fills in the missing values using 
either a predicted or an interpolated value. The best choice for filling in missing values 
is dependent on the characteristics of the data, which in turn impacts the effects of 
filling in missing values. Both the method of filling in missing values and the effect of 
doing so is dependent on context and the modeller’s judgement. 

2.7.2 Pre-filtering 

The sampled data may be subject to high-frequency noise which hides the actual 
system’s behaviour (Ljung and Glad, 2004). There may also be frequencies of larger 
importance for the described system which should be emphasized in the sampled data. 
Methods for removing high-frequency noise includes smoothing or filtering the data 
through a low-pass filter. The process of removing the high-frequency noise is reliant 
on engineering judgement. If a low-frequency drift appears prevalent it can be 
appropriate to apply a high-pass filter to the data. Engineering judgement should be 
applied in an analogous manner to a low-pass filter. 

Any filtering to remove noise will inevitably also remove detailed information and 
removing a drift may remove a system behaviour from the data. Thus, pre-filtering is a 
weigh-off between removing noise and retaining details. The modeller’s judgement also 
needs to determine what is to be deemed noise and what frequencies should be 
addressed to filter out the noise. As a continuous system is discretised this means that 
naturally some frequencies are emphasized over others as frequency content is limited 
by sampling-time (see chapter 2.3). Ljung and Glad (2004) reasons that modelling a 
non-linear system may benefit from not only applying a low- or high-pass filter, but a 
band-pass filter. That is because it allows the informational content of the data to focus 
on a range of frequencies deemed to be relevant for describing the behaviour of the non-
linear system. 

2.8 Linear time-invariant systems 

The literature and theory for analysing a linear time-invariant (LTI) system is well 
established (Ljung and Glad, 2004; Oppenheim et al., 2013). As the name suggests, an 
LTI system is both linear and time-invariant. A linear system has properties of 
additivity and homogeneity. This means that if inputs are added or scaled, an analogous 
output is produced. This is written in a single statement as 

 -7&(4) + D7'(4) → -!&(4) + D!'(4). (27) 

That a system is time-invariant means that its behaviour is not dependent on the 
absolute moment in time (Oppenheim et al., 2013). This means that a time-shift of the 
input signal 7(4 − m) directly corresponds to a time-shifted output !(4 − m). Consider 
the input signals 7&(4) and 7'(4). Let  

 7'(4) = 7&(4 − m) (28) 
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and the output of a system be defined as 

 7&(4) → !&(4). (29) 

If the system is time-invariant, then the output should be independent on the point in 
time 4 such that 

 7'(4) → !'(4) = !&(4 − m). (30) 

If this is not true, then the system is time-variant. In a time-variant system a time-shifted 
input signal 7(# − m) does not directly correspond to a !(# − m). The output is 
dependent on the point in time 4 such that 

 7'(4) → !'(4) ≠ !&(4 − m). (31) 

A nonlinear time-variant system is more difficult to analyse since the well-established 
literature and theory regarding LTI systems are not fully applicable (Ljung and Glad, 
2004; Oppenheim et al., 2013). According to Ljung (2001), LTI systems are ideal 
systems and do not exist in the real world. But many systems can be approximated to 
be, allowing for valuable insight by applying a theoretical understanding of LTI 
systems. This demands that care is given to choosing operating conditions, since the 
system may change with time (Ljung and Glad, 2004). 

With regards to time-variance, operational conditions can be considered (Ljung and 
Glad, 2004). It may be known that the system o is dependent on the point time 4 in 
such a way that the system is approximately an LTI systems for sets of time. This is 
expressed as 

 
o(4) = p

o&(4), 4 ∈ 4&
o'(4), 4 ∈ 4'

, (32) 

where the system o dependent on if the time 4 is a part of set 4& or 4'. The sample data 
can be divided and used to identify the system as o& or o' dependent on the sample 
time 4. Doing so allows for the use of methods for time-invariant systems. Having this 
knowledge of a system is not guaranteed, and especially if little is known about the 
system. Another approach is to evaluate the model on different data-sets, which can 
highlight the system’s overall behaviour. Hietaharju et al. (2018) applies a folding 
method to avoid overly accommodating a small dataset and by extension system 
behaviour (see subchapter 2.6.2). 

2.9 The physical laws that govern a building’s heating system 

Physical laws relate to the complex behaviour of buildings’ thermal systems (Coakley et 
al., 2014). These laws include thermodynamic and heat transfer laws, which relate to the 
thermal behaviour of a building. The laws can be used to develop aggregated model 
frameworks for different purposes. Hietaharju et al. (2018) and Wu and Sun (2012) 
developed long-term prediction models and Jiménez et al. (2008) developed models for 
identifying thermal characteristics. Related laws have also been applied in less 
aggregated models that focus on detailed aspects of HVAC systems, documented by 
Afram and Janabi-Sharifi (2014) and Drgoňa et al. (2020). 
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The physical laws are ideal and will not describe a complex system perfectly. In 
modelling buildings’ thermal energy systems, including time-delays have improved 
models and understanding based on physical laws, see (Hietaharju et al., 2018; Jiménez 
et al., 2008; Wu and Sun, 2012). Identifying these can increase the physical 
interpretability of later identified models. 

2.9.1 The energy balance 

A building is an open system where energy can both enter and exit. The system 
boundary is commonly defined as the building envelope. Based on the first law of 
thermodynamics, which state that energy can neither be created or destroyed, the flow 
of energy through a building’s envelope can be described as a balance equation. This 
results in the energy balance 

 r`4$!(#) = =;<=9(#) + =>=??(#) + =>@(#) + =!7((#) + =A9;<B(#), (33) 

stating the change in the building’s internal energy ∂`4$! results from an energy flow 
from heating =;<=9, convective heat transfer via walls =>=?? and windows	=>@, solar 
heat radiation  =!7(, and any additional heat sources, transfers or sinks =A9;<B. 
Expanding on each term allows for insight into the physical relationships that dictate the 
energy balance. Additional heat transfers not included in (33) will not be considered. 

2.9.2 Internal energy 

The air inside of a building is considered an ideal gas under atmospheric pressure and 
constant volume (no work is being done). Therefore, the change of internal energy is 
expressed as being proportional to the change in indoor air temperature ∂3+= 

 r`4$!(#) = t+jCur3+=(#) (34) 

dependent on the properties of indoor air density t+, volume-specific heat capacity jC, 
and the volume of air indoors. The density and heat capacity are well documented 
physical constants (tabulated in for example, Physics Handbook by Nordling and 
Österman (2013)) and considered generalisable under stable conditions. The volume of 
air is dependent on the size of the building. t+jCu will be aggregated and written as v 
from now on. 

2.9.3 Heat transfer through walls 

The convective heat transfer via the building’s walls 

 =>=??(#) = 	ℎ>=??$h>=?? e3>=??$(#) − 3+=(#)f (35) 

is proportional to the difference in indoor temperature 3+= and the temperature of the 
wall’s inside surface 3>=??$, where ℎ>=??$ is the convective heat coefficient of the 
surface of the wall’s inside and h>=?? is the surface area of the wall. Through further 
analysis of conductive and convective heat transfer, Wu and Sun (2012) relates the 
surface temperature to the outdoor temperature. The temperature at any point inside the 
wall is given by 
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3>=??(#) =

3>=??%(#) − 3>=??$(#)

x>=??
y>=?? + 3>=??$(#) (36) 

where 3>=??% is the temperature on the outside of the wall, x>=?? is the wall’s thickness, 
and y>=?? is the coordinate point inside the wall. During stable conditions, the heat 
convection on both sides of the wall is equal to the heat conduction through the wall. 
The outside air temperature 3A= is then related to the indoor air temperature via 

 
−4>=??

r3>=??
ry>=??

= ℎ>=??$ e3+=(#) − 3>=??$(#)f

= ℎ>=??% e3>=??$(#) − 3A=(#)f, 
(37) 

where 4>=?? is the thermal conductivity coefficient of the wall. The surface temperature 
can then be described through a linear relationship as 

 3>=??$(#) = =&3+=(#) + ='3A=(#) (38) 

and thus, the heat transfer through the wall (35) can be rewritten as 

 =>=??(#) = ℎ>=??$h>=??8='3A=(#) − (1 − =&)3+=(#):. (39) 

(1 − =&) from now on will just be written as =& for increased readability. 

According to a review by Verbeke and Audenaert (2018) the heat transfer through walls 
display a time-delay due to the mass and material of the walls. The delay can be circa 12 
hours and is an effect of thermal inertia. The thermal inertia also contributes to a 
dampening effect of the heat transfer. Tsilingiris (2004) finds that the time-constant 
ranges from a single hour to dozens, depending on both material and construction, 
indicating that the effects from thermal inertia is dependent on the building in question. 

2.9.4 Heat transfer through windows 

The convective heat transfer via the building’s windows 

 =>@(#) = 	ℎ>@$h>@ e3>@$(#) − 3+=(#)f (40) 

is proportional to the difference in indoor temperature 3+= and the temperature of the 
windows’ inside surface 3>@$, ℎ>@$ is the convective heat coefficient of the surface of 
the windows’ inside and h>@ is the surface area of the windows. Analogous to the heat 
transfer through walls, Wu and Sun (2012) suggests that the heat transfer through the 
windows (40) can be rewritten as  

 =>@(#) = ℎ>@$h>@8=D3A=(#) − (1 − =E)3+=(#): (41) 

where (1 − =E) from now on will just be written as =E. 

As windows do not consist of massive materials as a building’s walls, there should not 
be a time-delayed heat transfer associated as there will be through walls. 
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2.9.5 Solar irradiation 

The solar irradiation of heat 

 =!7((#) = z{(#) (42) 

is proportional to the solar irradiation { via the coefficient z. The solar irradiation 
effects the energy balance in two ways. One being by direct insolation through 
windows, which heats the inside air (Wu and Sun, 2012). Direct insolation should have 
an instantaneous and quick response. The other way is via heating building materials as 
an intermediary medium which heats the inside air via conduction and convection, and 
depends on the material’s solar energy transmittance (Jiménez et al., 2008). Due to 
thermal inertia, this heat transfer should be associated with a delayed response. 

2.9.6 Additional heat sources and sinks 

The heat sources and sinks dependent on human activity also impact the heating 
demand in a building (Abel and Elmroth, 2016; Coakley et al., 2014). For example, the 
increased use of computers and printers, but also occupants opening windows and etc. 
Human activity is, however, difficult to predict through a law-based model because it is 
not possible to describe it through physical laws.  

Different approaches could potentially be used to relate human activity to the energy 
usage. Yarbrough et al. (2015) applied a statistical analysis to determine a coincidence 
factor. Lowry and Lee (2004) proposed to use time-series of electricity consumption as 
a proxy for human activity. However, these approaches require additional modelling 
and is beyond the scope of this thesis. Hence, these heat sources and sinks will be 
treated as stochastic noise. 

2.9.7 Discretised energy balance 

The energy balance (33) can be rewritten as  

 v ∂3+= = =;<=9(#) + ℎ>=??$h>=??8='3A=(#) − =&3+=(#):
+ ℎ>@$h>@8=D3A=(#) − =E3+=(#): + z{(#) + =A9;<B(#) 

(43) 

and be discretised as 

 v83+=(4) − 3+=(k − 1):
= =;<=9(4) + ℎ>=??$h>=??8='3A=(4) − =&3+=(4):
+ ℎ>@$h>@8=D3A=(4) − =E3+=(4): + z{(4) + =A9;<B(4). 

(44) 

3. Study objects and data pre-processing 
In this chapter, the studied buildings are presented firstly. The pre-processing of the data 
is presented in the following subchapter. Lastly, a visual inspection which guides 
removal of outliers and division of data into folds is shown. 
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3.1 Study objects 

Seven different buildings are considered. All studied buildings analysed are located in a 
coastal city in the southern part of Sweden. The buildings are all old, but the property 
manager has implemented energy efficient retrofitting solutions in the last 20 years. 
Building #3 was certified as energy efficient, less than 15 years ago, for consuming 
25% less energy than the current norms. All buildings are constructed with heavy 
building materials of some kind (e.g. stone, brick, cement, etc.). All objects studied are 
used as offices and some have extra functionality as well. Building sizes can be seen as 
larger or smaller. Buildings #1, #4 and #7 are larger, between 4400m2 to 5700m2. 
Buildings #2, #3, #5 and #6 are smaller, between 1200m2 to 1800m2. The building 
information is summarised in Table 1. 

Table 1. Building specifications and usage based on information from the landlord 
company. 

Building Decennia of 
construction 

Energy efficiency 
certification 

Area 
[m2] 

Usage 

#1 1880 No 5700 Offices and 
exhibits 

#2 1880 No 1500 Offices 
#3 1880 Yes 1600 Offices 
#4 1880 No 4500 Offices 
#5 1920 No 1200 Offices and 

garage 
#6 1880 No 1800 Offices and 

restaurant 
#7 1920 No 4400 Offices 

3.2 Pre-processing 

The data used for system identification are series of measured outdoor temperature, 
solar irradiation, indoor temperature and heating power. The raw data goes through pre-
processing to be used for modelling. The process is founded in the theoretical 
considerations presented in chapter 2.7. Finally, the data is evaluated and divided into 
folds for training and validation data sets prior to being used for system identification. 

3.2.1 Meteorological data 

Since all studied buildings are located in the same geographic area, the same 
meteorological dataset was be used for all models. All meteorological data comes from 
the Swedish Meteorological and Hydrological Institute (2021) open data. All 
measurements prior to the 11th of December 2020 have been validated by the same 
institution. The data that had yet to be validated is still thought to be accurate given that 
Hietaharju et al. (2018) used forecasted meteorological data. 

Outdoor temperature data had very good coverage, except for a period during the month 
of December 2020, where the sampling frequency was only every 6th hour. Outdoor 
temperature is considered to be predictable intra-day. Therefore, interpolated values are 
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deemed accurate enough for the purpose as they still convey the change in outdoor 
temperature intra-day. 

The solar irradiation did not need particular treatment as data had full coverage and 
hourly sampling. 

3.2.2 Indoor temperature 

Measured indoor temperature data was available for buildings #1 and #2. The studied 
buildings contain multiple rooms. Therefore, indoor temperature is collected from 
multiple rooms as multiple data series in an ad-hoc manner. To apply the theoretical 
background of this thesis, the data series is combined into one aggregated series. This is 
done by aligning the data series based on their time stamps and then an aggregated 
series is created from the mean values of the ad-hoc series. This method does not take 
into account potential weighting factors such as room size when creating an aggregated 
series of the indoor temperature of a large building. Compared to previous studies, 
Hietaharju et al. (2018) makes use of less aggregated series whilst Wu and Sun (2012) 
do not aggregate the indoor temperature at all. 

Indoor temperature had sampling frequency of every 10th minutes. However, some 
series were only sampled for a period of time. Values are only interpolated within the 
sampled period. Data outside of said period is ignored. 

3.2.3 Heating power 

The heating energy consumed in buildings is measured as the standing on a cumulative 
energy meter. The heating power was calculated as the difference between two 
measurements. The energy meter data series does not have full 100% coverage but does 
have a sampling frequency of every 10th minute which enables accurate interpolation 
intra-hour.  

The energy meter data from building #5 was deemed noisy and not representative of 
actual behaviour of an HVAC-system and was therefore low-pass filtered. The data 
series were therefore put through a 0-0.6	F-m/Ä low-pass filter to remove what was 
considered high-frequency noise, as shown in Figure 4. No low-frequency drifts could 
be found which was not expected seasonal behaviour. 
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Figure 4. A section of samples from building #5. The original data (blue) has been low-

pass filtered (red) to remove high-frequency noise. 

3.2.4  Division of data and outlier removal 

In Figure 5 the data from building #2 is visualised. From the visualisation, both 
potential outliers and suitable datasets for validation could be evaluated. Outliers were 
removed with MATLAB’s function rmoutliers, which was adapted to achieve results 
that were sought after. Processed output data and folds are shown in Figure 6. In Table 
2 it is shown how sections of data were divided into folds and if the data was filtered. 
All folds from the same building contain the same number of samples. 

Only data from periods with heating demand was chosen for modelling. This means that 
the solar irradiation is low in magnitude for all data series used for modelling, which is 
expected due to the limited sunlight in Sweden during the winter half year. The choice 
to model solely on data sampled from the heating season was made to limit data to 
similar operating conditions. As the power used in a heating system cannot be negative, 
there is a threshold which makes the system nonlinear in the transition between heating 
demand and no heating demand. 
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Figure 5. Unprocessed data for building #2. The series contains hourly measurements 

from 12.12.19 to 15.03.21. 

 

 
Figure 6. Processed output data from building #2. Outliers have been removed and the 

data has been split into folds, which is represented by different colours. The green 
marked data (middle section) is excluded from modelling as it is not heating season. 

The data contains hourly measurements from 12.12.19 to 15.03.21. 
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Table 2. How each building’s data was divided into folds as well as if it was filtered. 

Building Sampling 
period 

Fold #1 
[Sample 

hour] 

Fold #2 
[Sample 

hour] 

Fold #3 
[Sample 

hour] 

Fold #4 
[Sample 

hour] 

Fold #5 
[Sample 

hour] 

Filtered 

#1 13.11.19-
15.03.21 

1-2000 2001-
4000 

7001-
9000 

9001-
11000 

- No 

#2 12.12.19-
15.03.21 

16-2015 2016-
4015 

7001-
9000 

9001-
11000 

- No 

#3 01.10.19-
15.03.21 

1-2000 2001-
4000 

4001-
6000 

8701-
10700 

10701-
12700 

No 

#4 21.09.19-
15.03.21 

1-2000 2001-
4000 

4001-
6000 

8981-
10980 

10981-
12980 

No 

#5 04.01.19-
15.03.21 

1-2000 7001-
9000 

9001-
11000 

17201-
19200 

- Yes 

#6 25.09.18-
15.03.21 

1-2500 2501-
5000 

9001-
11500 

11501-
14000 

19001-
21500 

No 

#7 25.09.19-
15.03.21 

1-2000 2001-
4000 

4001-
6000 

8701-
10700 

10701-
12700 

No 

 
In Table 3 correlations between validation data series are shown. It can be seen that 
outdoor temperature is the most highly correlated with heating energy for all buildings 
and that all inputs, except for indoor and outdoor temperature, are weakly correlated 
with each other. Note that only buildings #1 and #2 have measured indoor temperature 
available. 

Table 3. Correlation between data series used for modelling. 	
{ denotes solar irradiation. 

Building Output (=;<=9) Outdoor temperature 
(3A=) 

Indoor temperature 
(3+=) 

3A= 3+= { 3+= { { 
#1 -0.819 -0.436 -0.200 0.470 0.339 0.338 
#2 -0.863 0.065 -0.325 -0.208 0.347 -0.217 
#3 -0.895 - -0.375 - 0.382 - 
#4 -0.681 - -0.292 - 0.322 - 
#5 -0.593 - 0.025 - 0.189 - 
#6 -0.765 - -0.235 - 0.305 - 
#7 -0.867 - -0.340 - 0.345 - 

4. Establishing a model framework  
This chapter presents the establishment of a model framework based on the energy 
balance and data available. A subchapter is dedicated to recreating indoor temperature 
as a system state, which was begun due to a lack of data and later cancelled. Finally, the 
framework is developed into both ARX- and OE-models. 
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4.1 Modelling based on the energy balance 

In order to apply system identification methodology based on the energy balance (see 
(44)) for the purpose of this thesis, further considerations are needed. One aspect is that 
there are similarly structured heat convection relationships that drive the heat 
convection through walls and windows respectively. These must be separable to provide 
insight into how the model relates to heat convection through different structures such 
as walls and windows. Another aspect is that the indoor temperature is seldom 
measured. Alternate ways to incorporate the indoor temperature is therefore considered. 

4.1.1 Heat convection relationships 

=&, =', =E and =D (see (44)) are all constants based on physical building properties and 
stem from a relation of the surface temperatures of walls and windows. If these values 
cannot be specified, the respective regressors representing the convective heat exchange 
through the window and wall will be indistinguishable. Detailed information of 
buildings may allow some certainty and to decide these values but are not available. 
This information would make the expressions for heat transfer through the wall (39) and 
window (41) linearly independent and separable. The methodology used in Jiménez et 
al. (2008) would be applicable to derive information of the properties, but is beyond 
feasibility for this thesis. 

Another option is to analyse heat convection relationships by exploring time delays. 
This is motivated by observations of thermal inertia, see for example (Tsilingiris, 2004, 
2002; Verbeke and Audenaert, 2018). However, it cannot be expected to find exact 
same time-delays reoccurring in all buildings. The time-delays are dependent on the 
construction. Highlighting specific time-delays is easily done within ARX-models by 
adding specific regressors to the information vector L (see chapter 2.4). 

Given the data available of the buildings, exploring time-delays is more feasible. It can 
also be done independently of knowledge of the technical specifications. The 
parameters =&%D will therefore be excluded during model development and considering 
relevant time-delays will be in focus. 

4.1.2 Unmeasured indoor temperature 

Author’s note: Measured indoor temperature was not available until a while into the 
thesis project. 

The indoor temperature is not always available, but it must be related to the energy 
balance for a functioning model to be developed in this framework. Considering the 
energy balance, the indoor temperature can be either constant or changing. Arguing the 
case that as little heating as possible is used, it should be likely that the indoor 
temperature is kept as low as is legally allowed. The Swedish Work Environment 
Authority (2020) regards 20°C to be the lower limit on what a reasonable temperature is 
for offices, schools and similar workplaces. 
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4.1.2.1 Constant indoor temperature 

If the indoor temperature is considered to be constant, then 3+=(4 + 1) = 3+=(4) = 3+= 
and the model that follows from the energy balance (see (44)), should be written as  

 0 = =;<=9(4) + ℎ>=??+h>=??(3A=(4) − 3+=) + ℎ>@+h>@(3A=(4) − 3+=)
+ z{(4) + =+(9<B(=?(4). 

(45) 

 
It can further be rewritten as 

 =;<=9(4) 	= −8ℎ>=??+h>=?? + ℎ>@+h>@:(3A=(4) − 3+=) + z{ sin '!(4)
+ =+(9<B(=?(4) 

(46) 

 
given that heating is considered the output signal in the system. 

4.1.2.2 Observing indoor temperature 

Another option could be to attempt to recreate the indoor temperature as a bi-process of 
the modelling. An attempt was made to observe indoor temperature whilst estimating a 
state-space model using a ES-RLS algorithm proposed by Ding (2014). The reader is 
referred to Appendix A for a description of the algorithm, process, results and short 
analysis. Due to inconclusive results and the later availability of measured indoor 
temperature, it is not seen fit to include simultaneous estimation to a large extent in this 
thesis. However, it is thought to be valuable for further studies and is therefore included 
in Appendix A. 

4.2 Established model framework 

Based on the energy balance (see (44)) regressors were formed. Data was further 
modified and combined in a manner that results in regressors which are related to the 
energy balance. The ARX model framework is established as  

 B(6)!(4) = C#L# + C&(6)L&(4) + C'(6)L'(4) + CE(6)LE(4), (47) 
 
where L# is a constant and the regressors L&%E represent 3+=(4) − 3+=(4 − 1), 3A=(4) −
3+=(4) and {(4) respectively. The information vector	L used in eq. (12) is constructed 
as a combination of the output and regressors, for example 

 
 

L(4) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−!(k − 1)
−!(k − 2)

L#
L&(k − 2)
L'(4)

L'(k − 3)
LE(4) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, (48) 

 
dependent on the relevant model structure.  

OE-models use the same regressors, but a different structure  
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!(4) = C#L# +

C&(6)
*&(6)

L&(4) +
C'(6)
*'(6)

L'(4) +
CE(6)
*E(6)

LE(4), (49) 

 
with both nominator C+ and denominator *+ polynomials. OE-models have to be fit 
through gradient descent algorithms (see chapter 2.4) and therefore does not make use 
of an information vector. 

5. Model development 
This chapter first presents the resulting development of ARX- and OE-models using the 
presented system identification methodology. The first part focuses on quantitative 
measurements and residual analysis. A visualisation of model simulation is then 
presented and used as a tool to evaluate the developed models’ performance. The 
chapter will present the resulting model performance for all studied buildings and 
highlight the process of some. This will result in a continuous comparison between the 
development of ARX- and OE-models. 

5.1 ARX-model development using varying indoor temperature 

Table 4 shows that by implementing the change in indoor temperature in ARX-models, 
little improvement or even increased MSE:s are obtained. By comparing Table 4 to 
Table 9 (presented in Appendix B) it can be seen that replacing the measured indoor 
temperature with a constant decreases MSE:s for all folds in both building #1 and #2. In 
Figure 7 and 8, a residual analysis of the residuals and L& regressor (the change in 
indoor temperature, see (48)) is shown for models of buildings #1 and #2 respectively. 
The cross-correlation is almost unchanged, independent of the model structure. 
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Table 4. MSE of model simulations for buildings #1 and #2, implementing different 
structures of the C& polynomial to model the change in indoor temperature. The other 
polynomial structures are kept as C'(6) = D',# and CE(6) = DE,# for all structures. 

Building B(6) C&(6) MSE 

Validation fold 
  1 2 3 4 

#1 1 - 375.22 1941.15 781.34 1140.82 
 1 D&,# 375.33 1959.23 782.39 1148.47 
 1 D&,# + D&,&6%& 375.18 1971.74 783.32 1152.38 
 1 + -&6%& - 317.76 1325.65 707.66 992.64 
 1 + -&6%& D&,# 319.36 1347.10 733.29 991.80 
 1 + -&6%& D&,# + D&,&6%& 320.21 1352.70 738.90 992.10 

#2 1 - 60.41 45.05 37.50 31.75 
 1 D&,# 60.60 45.06 37.52 31.75 
 1 D&,# + D&,&6%& 59.65 45.05 37.18 32.60 
 1 + -&6%& - 50.33 27.64 41.58 28.55 
 1 + -&6%& D&,# 50.71 27.62 41.64 28.57 
 1 + -&6%& D&,# + D&,&6%& 50.37 27.69 41.43 28.57 

 

 
Figure 7. Cross-correlation between residuals and the L& input signal for building #1, 
fold 4. All model structures contain B(6) = 1, C'(6) = D',#, CE(6) = DE,#. C& varies 
between D&,#, D&,# + D&,&6%& and D&,# + D&,&6%& + D&,'6%', depicted from left to right. 

The blue-shaded area depicts the 95% confidence interval. 
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Figure 8. Cross-correlation between residuals and the L& input signal for building #2, 
fold 4. All model structures contain B(6) = 1, C'(6) = D',#, CE(6) = DE,#. C& varies 
between D&,#, D&,# + D&,&6%& and D&,# + D&,&6%& + D&,'6%', depicted from left to right. 

The blue-shaded area depicts the 95% confidence interval. 

5.2 ARX-model development using constant indoor temperature 

The results presented onwards were obtained with the indoor temperature set to constant 
20°C, considered as an average temperature in offices. Keeping the indoor temperature 
constant enabled model development based on a larger set of data from different 
buildings. The ARX-model development was led by conducting a residual analysis. 
This allowed for a statistical analysis comparing the dynamics of the modelled and real 
system. 

In Figures 9 and 10 the residual analysis of a simple and a more complex (and better 
performing) ARX-model structure, applied to building #1, fold 1, is shown. The simpler 
model is structured as 

 !J(#) = ''(#)8D',#: + 'E(#)8DE,#: (50) 
 
and the more complex one as 

 !J(#)(1 + -&6%& + -'6%' + -&'6%&')
= ''(#)8D',# + D',&6%& + D',F6%F + D',&#6%&#:
+ 'E(#)8DE,#:. 

(51) 

 
The results from the residual analyses provided guidance through model development, 
as they provide an analysis of time-delayed signals relate to the dynamics of the 
modelled system. 
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In Figure 11, the residual analysis for the model with the lowest MSE found for 
building #1, fold 1, is shown. It can be seen that the residuals are mostly uncorrelated 
with the inputs, with some exceptions regarding autocorrelation and cross-correlation 
with solar irradiation. The correlations found with the residual analysis were not always 
translatable to linear dependencies that could be encapsulated by the ARX-model 
framework. For example, expanding the CE polynomial with time-delays around 12 
hours did not make for a better performing model; neither by looking at quantitative 
measures nor residual analysis. 

 
Figure 9. Residual analysis of the simplest ARX-model structure: B(6) = 1, C'(6) =
D',# and CE(6) = DE,#, for building #1, fold 1. The blue-shaded area depicts the 95% 

confidence interval. 
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Figure 10. Residual analysis of mid-performing ARX-model structure: B(6) = 1 +
-&6%& + -'6%' + -&'6%&', C'(6) = D',# + D',&6%& + D',F6%F + D',&#6%&# and 
CE(6) = DE,#, for building #1, fold #1. The blue-shaded area depicts the 95% 

confidence interval. 

 
Figure 11. Residual analysis of the ARX-model structure with the lowest MSE found: 
B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C'(6) = D',# + D',&6%& + D','6%' + D',&'6%&' 
and CE(6) = DE,# + DE,F6%F, for building #1, fold 1. The blue-shaded area depicts the 

95% confidence interval. 
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Table 9 (in Appendix B) shows the best ARX-models found based on MSE of 
simulations. Different model structures were found to be the best for different buildings 
and folds. The best model structures found are generalised and summarised in Table 5. 
Note that the groupings of time-delays are coherent for most folds, with some 
exceptions, notably building #2, fold 4, and building #6, fold 3. 

Table 5. Summary of contents of the three ARX-model structures found with the lowest 
MSE for each studied building and validation fold. Short delays (S.d.:s) are all time 
delays 5 hours or shorter, and long delays (L.d.:s) are all delays that are 6 hours or 
longer. The shade indicates if the structure was a part of the best performing models, 
dark = all three; white = none. ‘X’ denotes that the model structure found with the 

lowest cross-validation MSE included the grouping of time-delays. 

Building Val. 
fold 

S.d. AR 
[!J] 

L.d. AR 
[!J] 

S.d. 
temp. 

diff. [L'] 

L.d. 
temp. 

diff. [L'] 

S.d. solar 
irr. [LE] 

L.d. solar 
irr. [LE] 

#1 1 X X X X X X 
 2 X X X X X  
 3 X X X X X  
 4 X X X X X X 

#2 1 X X X  X  
 2 X X X  X  
 3 X X X  X  
 4 X  X  X  

#3 1 X X X X X  
 2 X X X X X X 
 3 X X X X X X 
 4 X X X X X  
 5 X X X X X  

#4 1 X  X X X X 
 2 X  X X X X 
 3 X  X X X X 
 4 X X X X X X 
 5 X  X  X X 

#5 1 X X X  X X 
 2 X  X X X X 
 3   X  X  
 4 X  X  X  

#6 1 X X X X X X 
 2 X X X X X X 
 3   X  X  
 4 X X X X X  
 5 X X X X X X 

#7 1 X X X  X  
 2 X X X X X X 
 3 X X X  X  
 4 X X X X X X 
 5 X X X X X X 
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5.2.1 Residual analysis of developed ARX-models 

Residual analysis was also used to evaluate the performance of the models developed. 
The ARX-models developed which had the lowest MSE can be found in Table 9 
(presented in Appendix B). In a good model structure, the residuals should ideally be 
uncorrelated to any signals. The residual analysis of a model structure depended on the 
fold. This indicates that the heating system behaves differently both dependent on 
building and the season. Some structures had better residual analyses overall, indicating 
a generalisability between multiple folds. 

5.2.1.1 Residual analysis of ARX-models of building #1 

In Figures 12-15 the residual analysis of the model structures with the lowest MSE for 
building #1 is presented. One model structure is presented per figure. The residual 
analysis is shown for all folds. 

 
Figure 12. Residual analysis of simulations of all validation folds, building #1, with 

ARX-model structure B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C2!6"= D2,0+D2,16−1+
D2,66

−6+D2,76−7+D2,86−8+D2,206−20 and C3!6"= D3,0+D3,106−10. The structure 
was, measured by MSE, found to be the best one for fold 1. The blue-shaded area 

depicts the 95% confidence interval. 

With regards to autocorrelation, all model structures presented have notable 
autocorrelation at time delays 0 and 1, for all folds. Some structures have 
autocorrelation with other time delays as well. 

Delay
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Figure 13. Residual analysis of simulations of all validation folds, building #1, with 
ARX-model structure B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C2!6"= D2,0+D2,16−1+
D2,66

−6+D2,76−7+D2,86−8+D2,206−20 and C3!6"= D3,0. The structure was, measured 
by MSE, found to be the best one for fold 2. The blue-shaded area depicts the 95% 

confidence interval. 

With regards to the constant term L#, no structure presented has correlated residuals, 
except the structure best fit for fold 4 (Figure 15). With regards to the temperature 
difference L', the structures best fit to fold 1 and 3 (Figures 12 and 14) have a notable 
cross-correlation for fold 2. 

Delay
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Figure 14. Residual analysis of simulations of all validation folds, building #1, with 

ARX-model structure B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C2!6"= D2,0+D2,16−1+
D2,66

−6+D2,76−7+D2,86−8 and C3!6"= D3,0. The structure was, measured by MSE, 
found to be the best one for fold 3. The blue-shaded area depicts the 95% confidence 

interval. 

Finally, with regards to the solar irradiation LE, all structures have correlated residuals, 
for all folds. The strength of the cross-correlation between the residuals and the solar 
irradiation varies. The structures that fit fold 1 and 2 the best (Figures 12 and 13) have 
the lowest cross-correlation between the residuals and the solar irradiation overall. The 
structure that best fit fold 2 has a simpler polynomial related to the solar irradiation, 
which is a deciding aspect according to the principle of parsimony. 
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Figure 15. Residual analysis of simulations of all validation folds, building #1, with 

ARX-model structure B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C2!6"= D2,0+D2,16−1+
D2,66

−6+D2,206−20 and C3!6"= D3,0 +D3,106−10 +D3,206−20	. The structure was, 
measured by MSE, found to be the best one for fold 4. The blue-shaded area depicts the 

95% confidence interval. 

5.2.1.2 Residual analysis of ARX-models of building #2 

In Figures 16-18, the residual analysis of the model structures with the lowest MSE for 
building #2 is presented. Overall, the residual analysis of models of building #2 is more 
pronounced than that corresponding to building #1. The structure with the lowest MSE 
for fold 1 (Figure 16) shows a notable autocorrelation and cross-correlations with all 
input signals for all folds. 

Delay
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Figure 16. Residual analysis of simulations of all validation folds, building #2, with 

ARX-model structure B(6) = 1 + -&6%& + -'6%' + -E6%E + -'D6%'D, C2!6"= D2,0+
D2,16−1 and C3!6"= D3,0 +D3,16−1 +D3,106−12	. The structure was, measured by MSE, 
found to be the best one for fold 1. The blue-shaded area depicts the 95% confidence 

interval. 

The model structure that fit the best to both fold 2 and 3 (Figure 17) show little 
autocorrelation and cross-correlations for those two folds. There is some correlation of 
the residuals but including the respective time-delay does not improve model 
performance and thus, the principle of parsimony is relevant. The residual analysis of 
folds 1 and 4 is similar to the other structures presented. 
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Figure 17. Residual analysis of simulations of all validation folds, building #2, with 

ARX-model structure B(6) = 1 + -&6%& + -'6%' + -'D6%'D, C2!6"= D2,16−1+
D2,26−2 and C3!6"= D3,0	. The structure was, measured by MSE, found to be the best 
one for both fold 2 and 3. The blue-shaded area depicts the 95% confidence interval. 

The structure best fitting to fold 4 (Figure 18) is notable as very simple. The structure 
also has considerable cross-correlations with all inputs for all folds but fold 2. 
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Figure 18. Residual analysis of simulations of all validation folds, building #2, with 

ARX-model structure B(6) = 1 + -&6%&, C2!6"= D2,0 and C3!6"= D3,0	. The structure 
was, measured by MSE, found to be the best one for fold 4. The blue-shaded area 

depicts the 95% confidence interval. 

5.3 OE-model development 

The OE-models were developed for buildings #1 and #2 only. They included all time-
delays up to the longest one, unlike the ARX-models that could include specific time-
delays. This was due to the way software was designed, which decreased the number of 
possible combinations and simplified model development. An exhaustive development 
was not possible due to time constraints and becomes impractical for the purpose of this 
thesis. It was done for time delays up to AO = [−	7	9], AP = [−	9	9] for building #1 and 
took around two days of execution time. The OE-models developed consider constant 
indoor temperature. 

In Table 6 the developed OE-model structures with the lowest MSE are presented. The 
indoor temperature was considered constant during all OE-model development. For 
building #1 (developed exhaustively), it can be seen that similar model structures are 
well performing for a specific fold. Comparing between folds, it appears that different 
model structures are the better performing for each fold. There is a greater similarity of 
the structures with regards to the denominator polynomials than the nominators. For 
building #2 (not developed exhaustively), the better performing models differ for 
specific folds. Some model structures are well performing for more than a single fold. 

 

Delay
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Comparing Table 6 to Table 9 (presented in Appendix B) it can be seen that the OE-
models perform better than the ARX-models in regards of MSE and CC. However, 
MAE and MBE measures are similar between ARX- and OE-models. MAE and MBE 
whey slightly in favour for OE-models overall, but the standard-errors are overlapping. 
It cannot be said the performance measured in MAE and MBE differ noticeably 
between ARX- and OE-models. 

Table 6. Quantitative measures from cross-validating simulation results of the three 
best performing OE-model structures for different buildings and folds. Indoor 

temperature is considered constant. Building #1 was subject to an exhaustive search up 
to time-delays AO = [−	7	9], AP = [−	9	9]. 

Buil-
ding 

Val. 
fold 

AO AP MAE (Std.) MBE (Std.) MSE CC 

#1 1 [- 7 6] [- 7 5] 9.87 8.01 -0.77 12.69 161.62 0.70 
  [- 3 9] [- 7 9] 9.99 8.13 -1.43 12.80 165.76 0.70 
  [- 5 9] [- 8 9] 10.01 8.12 -1.55 12.80 166.10 0.70 
 2 [- 2 0] [- 0 4] 12.12 10.15 -0.83 15.79 249.78 0.92 
  [- 2 0] [- 0 2] 12.19 10.23 -1.84 15.81 253.11 0.92 
  [- 4 0] [- 4 2] 12.25 10.16 -0.64 15.91 253.28 0.92 
 3 [- 6 5] [- 8 8] 16.84 16.13 2.12 23.22 543.49 0.80 
  [- 5 7] [- 6 8] 16.80 16.25 1.98 23.30 546.33 0.80 
  [- 2 6] [- 8 9] 17.09 16.18 2.90 23.35 553.56 0.80 
 4 [- 4 9] [- 5 9] 16.93 13.13 1.71 21.36 458.88 0.86 
  [- 4 9] [- 3 9] 17.17 13.40 -1.43 21.74 474.43 0.85 
  [- 3 8] [- 6 8] 17.62 13.09 1.63 21.90 481.90 0.85 

#2 1 [- 24 24] [- 24 24] 1.95 1.47 -0.83 2.29 5.96 0.71 
  [- 3 5] [- 7 14] 2.35 1.70 -1.21 2.63 8.39 0.65 
  [- 0 11] [- 0 11] 2.76 1.66 -1.84 2.64 10.36 0.64 
 2 [- 0 11] [- 0 11] 3.17 2.48 -0.21 4.02 16.19 0.89 
  [- 4 4] [- 4 4] 3.18 2.55 -0.25 4.07 16.59 0.89 
  [- 3 3] [- 7 7] 3.21 2.54 0.26 4.09 16.80 0.89 
 3 [- 3 5] [- 7 14] 2.92 1.99 0.03 3.54 12.49 0.89 
  [- 4 4] [- 7 7] 2.95 1.98 0.01 3.55 12.62 0.89 
  [- 11 11] [- 23 23] 2.97 1.96 -0.03 3.56 12.66 0.89 
 4 [- 24 24] [- 24 24] 2.54 1.62 0.00 3.02 9.10 0.91 
  [- 3 3] [- 7 3] 2.70 1.66 0.05 3.17 10.03 0.90 
  [- 4 4] [- 11 11] 2.75 1.73 0.29 3.23 10.54 0.90 

5.3.1 Residual analysis of OE-models 

In Figures 19 and 20, the residual analysis of OE-models with orders AO = [−	2	0], 
AP = [−	0	4] and AO = [−	24	24], AP = [−	24	24] are highlighted. The models 
highlighted were deemed to be good models of the real system given the quantitative 
measures. 

The residual analysis show that all simulations have residual autocorrelation for all 
folds. The autocorrelation is larger than for the ARX-models developed. With regards to 
the constant term L#, the residuals are not correlated, with the exception of fold 3, 
building #1 and fold 1, building #2. These folds also show cross-correlation with the 
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temperature difference L'. The simulation of building #1, fold 3, has an MSE of 669.24, 
MAE of 20.05 and MBE of 4.54, which is higher than for the other structures simulated. 
However, the simulation of building #2, fold 1, has an MSE of 5.96, MAE of 1.95 and 
MBE of -0.83, the lowest of any structure developed. The cross-correlation between the 
residuals and solar irradiation is notable for most folds but varies.  

 
Figure 19. Residual analysis of simulations of all validation folds, building #1, with 

OE-model structure AO = [−	2	0], AP = [−	0	4]. The structure was found to be the best 
for fold #2, by all quantitative measures. The blue-shaded area depicts the 95% 

confidence interval. 

Delay



  42 

 
Figure 20. Residual analysis of simulations of all validation folds, building #2, with 

OE-model structure AO = [−	24	24], AP =	 [−	24	24]. The structure was found to be 
the best model structure for fold 1 and 4, by measuring MSE. The blue-shaded area 

depicts the 95% confidence interval. 

5.4 Visual inspection of model output 

Following the results of the model development, a visual inspection of the developed 
models was conducted. All models inspected make use of constant indoor temperature. 

5.4.1 Visual inspection of ARX-models 

The ARX-model structure that best fit to building #1, fold 2, was  

 !J(#)(1 + -&6%& + -'6%' + -'D6%'D)
= 	D#
+ ''(#)8b',# + b',&6%& + b',Q6%Q + b',R6%R + b',F6%F

+ b','#6%'#: + 'E(#)8DE,#: 

(52) 

 
and simulation of it is presented in Figure 21. The structure showed low correlations 
between residuals and signals for all folds according to the residual analysis conducted 
in section 5.2. 

A close look at Figure 21 reveals that simulation of model structure captures the overall 
trend of all folds, with slight exceptions for fold 2. This is notable, as the structure was 
the best performing one with regards to that specific fold. It can be seen that there is a 

Delay
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low-frequency movement in the measured data which is not recreated by the simulation. 
Notably, in the first 400 sample hours the measured data is slightly higher, whilst in the 
last 700 it is slightly lower. Overall, the simulations appear representative of the average 
movements. The structure is not able to capture the variance in the data, with some 
exceptions. The simulation captures the variance in fold 2 and beginning of fold 3 to an 
extent. Taking all development and evaluation into consideration, the ARX-model 
structure (52) can be considered to be a good representation of the system modelled in 
building #1. 

 
Figure 21. Simulation results (blue) from ARX-model B(6) = 1 + -&6%& + -'6%' +
-'D6%'D, C2!6"= D2,0+D2,16−1+D2,66

−6+D2,76−7+D2,86−8+D2,206−20 and C3!6"=
D3,0,  for all validation folds (grey) from building #1. The structure was through ARX-

model development found to be a good representation of the system modelled in 
building #1. 

The ARX-model structure simulation showed in Figure 22 was derived through the 
same method, but for building #2. The model structure is 

 !J(#)(1 + -&6%& + -'6%' + -&'6%&' + -'D6%'D)
= 	D# + ''(#)8D',&6%& + D','6%': + 'E(#)8DE,#:. 

(53) 

 
The structure was the best fitting ARX-structure for building #2, fold 2 and 3, of all 
model structures developed. The model structure follows the dynamics well for all 
validation folds, but there is a constant offset when fitted to and simulating folds 1 and 
4. Similar to the visual inspection of simulations of building #1, the structure (53) 
manages to simulate the variance in the data for fold 2 and the beginning of fold 3 well. 
It also appears to be the case for fold 4, but with an offset. The offsets are notable in the 
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residual analysis as well. In Figure 17 a notable cross-correlation with the constant input 
could be seen. All aspects considered, the model structure (53) is regarded to be a good 
representation of the system modelled. 

 
Figure 22. Simulation results (blue) from ARX-model structure B(6) = 1 + -&6%& +
-'6%' + -&'6%&' + -'D6%'D, C'(6) = D',&6%& + D','6%' and	CE(6) = DE,#, for all 

validation folds (grey) from building #2. The structure was through ARX-model 
development found to be a good representation of the system modelled in building #2. 

In Figure 23 the same model structure (53) is compared to a very simple model  
 
 !J(#) = ''(#)8D',#:. (54) 

 
There are similarities between the simulated model structures, but also a difference in 
dynamics and mean. The dynamics of the simpler model can be described as more 
pronounced. 
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Figure 23. Simulation of building #2, of a developed model (blue): B(6) = 1 +

-&6%& + -'6%' + -&'6%&' + -'D6%'D, C'(6) = D',# + D',&6%& + D','6%' and	CE(6) =
DE,# and simplest possible model structure (red):	B(6) = 1,	 C'(6) = ''(#)8D',#: and  

CE(6) = 0. 

5.4.2 Visual inspection of OE-models 

The simulation results from OE-model structures with the lowest MSE for each fold is 
presented. In Figures 24-27 the simulations for building #1 can be seen and the ones for 
building #2 in Figures 28-30. 

 
Visually comparing the simulation results of building #1, the model best fitting fold 2 
(Figure 25) seems to describe all other models well. Hence, all validation measures 
combined; the structure AO = [−	2	0], AP = [−	0	4], can be considered a good 
representation of the modelled system. The structure best fit to fold 3 (Figure 26) is 
generally well fitting. The most notable error is in the beginning of fold 2, where the 
simulation is lower than validation data. The structure best fit to fold 1 (Figure 24) 
shows a clear overfit to fold 2. The structure best fit to fold 4 (Figure 27) also appear to 
suffer a slight overfit when simulating fold 2. Notably, the simulation is also quite 
fluctuating during the first sample hours of fold 4, which it fit best to of all structures. 
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Figure 24. Simulation results (blue) from OE-model structure AO = [−	7	6], AP =

[−	7	5], for all validation folds (grey) from building #1. The structure was, by measures 
MAE and MSE, found to be the best model structure for fold 1. 

 
Figure 25. Simulation results (blue) from OE-model structure AO = [−	2	0], AP =

[−	0	4], for all validation folds (grey) from building #1. The structure was, by measures 
MAE and MSE, found to be the best model structure for fold 2. 
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Figure 26. Simulation results (blue) from OE-model structure AO = [−	6	5], AP =
[−	8	8], for all validation folds (grey) from building #1. The structure was, by MSE, 

found to be the best model structure for fold 3. 

 
Figure 27. Simulation results (blue) from OE-model structure AO = [−	4	9], AP =

[−	5	9], for all validation folds (grey) from building #1. The structure was, by measures 
MAE and MSE, found to be the best model structure for fold 4. 
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Comparing the simulation of model structures for building #2 (Figure 29), no signs of 
notable overfit can be seen through visual inspection. The simulation results are 
generally good but differ some for fold 2. Between sample hours 2000-2400, only the 
model structure that fit particularly well to that specific fold results in a precise 
simulation. The same model structure appears to be the best performing one overall. All 
simulations adhere to the measured values in the validation fold and there is no apparent 
overfitting. All validation measures considered, the structure that best fit to fold 1 and 4, 
AO = [−	24	24], AP = [−	24	24], is considered the best representation of the modelled 
system in building #2. 

 

 
Figure 28. Simulation results (blue) from OE-model structure AO = [−	24	24], AP =
[−	24	24], for all validation folds (grey) from building #2. The structure was, by all 

quantitative measures, found to be the best model structure for fold 1 and 4. 
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Figure 29. Simulation results (blue) from OE-model structure AO = [−	0	11], AP =
[−	0	11], for all validation folds (grey) from building #2. The structure was, by all 

quantitative measures, found to be the best model structure for fold 2. 

 
Figure 30. Simulation results (blue) from OE-model structure AO = [−	3	5], AP =
[−	7	14], for all validation folds (grey) from building #2. The structure was, by 

measures of MSE and CC, found to be the best model structure for fold 3. 
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6. Sensitivity analysis 
A sensitivity analysis is conducted with a one-at-a-time (OAT) approach. This allows 
for the robustness and contribution of different parts to be determined in a linear model 
(Saltelli et al., 2008). The sensitivity analysis is done by increasing and decreasing the 
parameters of a part of the model by 25%, whilst keeping the other parameters set to its 
least squares estimate. For example, if a model is estimated as 

 C(6) = D# + D&6%& + D'6%' + D&#6%&# (55) 

the sensitivity analysis of inputs of long delays would look as 

 C!(6) = D# + D&6%& + D'6%' + (1 ± 0.25)D&#6%&#. (56) 

The sensitivity is then evaluated by the output of the model given that C is exchanged 
for C! in the model. 

The OAT approach is appreciated amongst the modelling community for its simplicity 
and features (Saltelli and Annoni, 2010). Three of those features are 1) a baseline is 
established which all evaluation is referred to, 2) the analysis is isolated to a single 
factor and 3) the approach only detects a changed output from relevant factors. 
However, the approach can notably not dismiss irrelevant factors by there not being a 
change in output. Overall, it is possible to draw conclusive results by applying to OAT 
approach. 

Though the OAT approach is the most commonly used sensitivity analysis by 
modellers, it is subject of criticism (Saltelli and Annoni, 2010). The main criticism 
raised by Saltelli and Annoni (2010) is that the approach is inept for conducting a global 
analysis. It is not possible to conclude overall model sensitivity using the approach. 
They further argue that an elementary effects approach is about as simple but allows for 
a considerably more thorough analysis. The criticism raised by Saltelli and Annoni 
(2010) is similar to the emphasis on considering operating conditions by Ljung and 
Glad (2004). Such consideration has already been made during model development with 
the data selection process and folding method. It is therefore argued that another ethos 
of Ljung and Glad (2004) should be considered: to model considering the purpose of the 
model. The OAT approach allows for the simple integration and clear evaluation of 
different changes to the model, which is in line with the purpose and goals of this thesis. 
Therefore, the OAT approach is considered applicable to ARX-models to obtain the 
results and evaluation that is sought from the sensitivity analysis.  

The approach is also applicable to the OE-models. However, as they are more difficult 
to interpret than the ARX-models, it does not serve the same purpose to group 
regressors. It is therefore not possible to motivate by the same ethos as applying it to 
ARX-models. If a similar sensitivity analysis where to be conducted on OE-models, it 
could perhaps make use of filters to enhance dynamics of certain frequencies. Such a 
sensitivity analysis would not be dependent on there being groupings of regressors. 
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6.1 Results of sensitivity analyses 

In Figures 31-33, sensitivity analyses of some ARX-model structures are shown. The 
structures are found to be good representations of the building they were modelled after. 
Changing the value of the different polynomial parameters changes the simulation 
output. The variance of the output seems to be maintained for all independent of 
parameters changed, but the low-frequency output appears slightly changed after 
decreasing the s.d. AR parameters. Notably, increasing the s.d. AR parameters makes 
the system unstable and is not included in the visualisation. The most notable changes in 
model output can be seen in changing the parameters of the AR parameters and s.d. 
temp. diff. 

 

 
Figure 31. Sensitivity analysis of ARX-model structure: B(6) = 1 + -&6%& + -'6%' +
-'D6%'D, C2!6"= D2,0+D2,16−1+D2,66

−6+D2,76−7+D2,86−8+D2,206−20 and C3!6"=
D3,0. The analysis is done on data from building #1, which the structure has been found 
to be a good representation of. Groups of time-delays have been increased or decreased 

by 25%. 
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Figure 32. Sensitivity analysis of ARX-model structure: B(6) = 1 + -&6%& + -'6%' +
-&'6%&' + -'D6%'D, C2!6"= D2,0+D2,16−1+D2,66

−6+D2,76−7+D2,86−8+D2,206−20 
and C3!6"= D3,0. The analysis is done on data from building #2, which the structure 

has been found to be a good representation of. Groups of time-delays have been 
increased or decreased by 25%. 
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Figure 33. Sensitivity analysis of ARX-model structure: B(6) = 1 + -&6%& + -'6%' +
-E6%E + -'D6%'D, C2!6"= D2,0+D2,16−1+D2,26

−2+D2,86−8+D2,246−24 and C3!6"=
D3,0+D3,16−1+D3,26−2+D3,86−8. The analysis is done on data from building #3, 
which the structure has been found to be a good representation of. Groups of time-

delays have been increased or decreased by 25%. 

In Table 7, the results of the sensitivity analysis are summarised. It is further notable 
that the results from the sensitivity analysis are analogous between the models shown. 

  

1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26
104

-20

-10

0

10

20

30

40

50

60

70

80

1.1 1.2 1.3
104

-20

0

20

40

60

80
Original sys.
S.d. AR Dec.
L.d AR Inc.
L.d. AR Dec.
S.d. Temp. Diff. Inc.
S.d. Temp. Diff. Dec.
L.d. Temp. Diff. Inc.
L.d. Temp. Diff. Dec.
S.d. Solar Inc.
S.d. Solar Dec.
L.d. Solar Inc.
L.d. Solar Dec.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-10

0

10

20

30

40

50

60

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000
-10

0

10

20

30

40

50

60

4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
-20

-10

0

10

20

30

40

50

7200 7400 7600 7800 8000 8200 8400 8600 8800 9000
-5

0

5

10

15

20

25

30

35

He
at

. p
ow

er

Simulated Response Comparison

Time (hours)

Am
pl

itu
de

7200 7400 7600 7800 8000 8200 8400 8600 8800 9000
-5

0

5

10

15

20

25

30

35

H
ea

t. 
po

w
er

Simulated Response Comparison

Time (hours)

Am
pl

itu
de

8800 9000 9200 9400 9600 9800 10000 10200 10400 10600
-20

-10

0

10

20

30

40

50

60



  54 

Table 7. Results of OAT sensitivity analysis. Time-delays 5 hours and shorter are 
considered short, 6 hours and longer are considered long. 

Parameters Time-
delays 

Change Result Comment 

AR (B(6)) Short Increase The system 
becomes unstable. 

 

 

 Decrease Decreases 
simulation output 
the most of any 

change. 
 

Low frequency 
dynamics appear 
slightly affected. 

 

Long Increase Increases model 
output the most of 

any change. 
 

The increase is similar to s.d. 
temp. diff. during simulation 
output with much variance, 
but not during output with 

little variance. 
 Decrease Decreases model 

output the third 
most of any 

change. 

 

Temp. diff. 
(C'(6)) 

Short Increase Increases model 
output the second 

most of any 
change. 

 

The increase is similar to l.d. 
AR during simulation output 
with much variance, but not 

during output with little 
variance. 

 Decrease Decreases model 
output the second 

most of any 
change. 

 

Long Increase Decrease model 
output the fourth 

most of any 
change. 

 

 

 Decrease Increases model 
output the third 

most of any 
change. 

 

Solar 
irradiation 

(CE(6)) 

Short Increase Negligable 
 

 

 Decrease Negligable  
Long Increase Negligable 

 
 

 Decrease Negligable  
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7. Discussion 
This chapter will discuss the resulting model development in relation to the goals and 
purpose of this thesis. It will begin with a discussion of the functionality of measuring 
indoor temperature, which was dismissed from model development based on early 
results. The chapter will continue with a comparison of the developed ARX- and OE-
models. It will raise a comparison of quantitative measures, model dynamics and the 
model development of both structure types. Based on the model development, a general 
model structure will be discussed. Lastly, the model development will be discussed 
through a physical interpretation. 

7.1 Indoor temperature 

According to the energy balance, the indoor temperature plays an important role in 
explaining the heating demand. A warmer room demands more heat than a colder room 
and the energy balance explains why this is. Including the indoor temperature should 
therefore make for a better model which allows for more insight into the dynamics of 
the modelled system (see chapters 2.9.1, 2.9.4 and 4.1.1). Early model development did 
however not indicate an improved model by including the indoor temperature. Instead, 
the model development of this thesis shows that considering the indoor temperature to 
be constant results in better models. 

The lesser performance obtained by using measured indoor temperature can perhaps be 
attributable to difficulties in aggregating the data series, which were collected in an ad-
hoc manner. Previous studies have successfully implemented the indoor-temperature in 
the respective models, but they did not have the same method for collecting and pre-
processing data as this thesis. Wu and Sun (2012) studied smaller building sections and 
did not aggregate any measurements. Hietaharju et al. (2018) aggregated at most two 
series. 

7.2 Comparing ARX- to OE-models 

7.2.1 Quantitative measures 

As is seen by comparing Table 6 and Table 9 (presented in Appendix B), OE-models 
are better performing by quantitative measures. However, both types of models are 
indistinguishable with regards to MAE and MBE. This means that the OE-models 
capture more of the variance in the simulation (see the relationship between bias, 
variance and MSE in (24)). This finding was also found by visually comparing model 
outputs. The results indicate that OE-models are better than ARX-models for simulating 
a more detailed heating demand. 

7.2.2 Model dynamics 

Comparing the results found in chapters 5.2.1, 5.3.1 and 5.4, the different dynamics 
encapsulated by ARX- and OE-models can be seen. Visual inspection and quantitative 
measurements further indicate that OE-models are better than ARX-models at 
simulating the fast-changing heating demand intra-day. Both models can be considered 
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to capture the overall dynamics well given that there is little MAE, MBE and a high CC 
in general. 

The residual analysis of ARX- and OE-models differs some. Both types of models 
generally have residuals uncorrelated to the difference in temperature (L'). This 
indicates that the heating demand created by the difference in temperature indoors and 
outdoors can be described by the linear ARX- and OE-model structures.  

No model is without cross-correlation between the residuals and solar irradiation (LE) 
for all folds, but the OE-models show less cross-correlation. This means that there are 
dynamics in the solar irradiation which are difficult to encapsulate with the linear ARX- 
and OE-models. It could be the case that the relationship is nonlinear or time-variant. 
However, the sensitivity analysis presented in chapter 6.1 shows that the solar 
irradiation has little impact on the simulated heating demand. It is an expected result 
given that there is little sunlight in Sweden during the heating season. On the other 
hand, including the solar irradiation improved the simulations, so it cannot be dismissed 
from the model structures. The dynamics related to the solar irradiation cannot be 
considered fully modelled.  

Comparing the autocorrelation of the residuals, it can be seen that the inclusion of AR 
dynamics does remove some residual dependence previous outputs. This indicates that 
there is an AR behaviour inherent to the system, which by definition cannot be 
incorporated into the OE-model.  

7.2.3 Comparing model development 

The process of developing ARX- and OE-models is different. As ARX-model 
parameters are obtained through LS-estimates using the normal equation (see (12)), the 
model structure is easily altered and can incorporate specific time-delays. OE-model 
parameters are however obtained through gradient-based algorithms, which required 
more complex methods compared to an LS-estimate. As a result, this thesis has used 
pre-made software for developing OE-models. The software used includes all time-
delays up to the longest one. However, this is in theory not a necessity. 

Encapsulating important time-delays in an OE-model is therefore more difficult and 
important time-delays risk being hidden amongst unnecessary ones that are included. 
There is also a risk of overfitting the model, which was shown for OE-models. During 
ARX-model development, no overfit models were encountered. This could be due to the 
guided approach applied to ARX-model development. Applying the same residual 
analysis-guided approach to OE-models is more difficult because the structure includes 
both nominator and denominator polynomials. Doing an exhaustive search is in theory 
simple. But in practice, it takes days of computational time, far beyond what can be 
considered practical. 

7.3 Finding a general model structure 

Finding a general model structure is an endeavour that must grapple with multiple 
models describe a system well, as noted by Saltelli et al. (2008). Since all the models 
developed essentially can be seen as a linearisation of a complex system, no model 
represents the exact system. Instead, a model structure which works well for multiple 
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folds indicates that the building’s heating demand is the product of coherent dynamics 
encapsulated by the model structure. If multiple buildings are described by similar 
model structures, it means that the dynamics are reoccurring between buildings. This is 
to be expected from a system driven by physics. 

The evaluation of model structures for specific folds has made much use of MSE. 
However, the measure varies between buildings and folds. To some extent, this is 
because models describe the system differently well. But to a more significant extent, 
this is because the magnitudes of the signals are different. Absolute MSE is therefore 
not a useful measure to compare model structures on different buildings or folds. It will 
only indicate how well a model fits to the specific data. The basis of a general model 
structure is better evaluated by the dynamics simulated by the models, making use of 
residual analysis, visual inspection and measures such as MAE, MBE and CC. 

7.3.1 Comparing different buildings 

Overall, the developed model structures (ARX and OE) have close to zero MAE and 
MBE values for all folds. There is uncertainty to the measures, indicated by the standard 
deviation. Since the low MAE and MBE are reoccurring between folds and buildings, it 
indicates that the true values are indeed low. Further, the low MAE and MBE indicate 
that the model structures manage to simulate the low-frequency dynamics and long-term 
behaviour of the system. 

The CC:s are high for most well performing structures, meaning that the model output is 
highly correlated to the measured outputs. This result is expected from a model that well 
encapsulates the dynamics the real system. There is only a single fold for which no 
model simulation had a CC below 0.6. No other quantitative measures are outliers for 
this fold. The majority of CC:s are higher than 0.8. 

Finally, illustrated by Table 5, groupings of time-delayed regressors can be found 
reoccurring between folds and buildings. This is taken as indication that ARX-model 
structures can be generalised between buildings. These results could not be found for 
OE-model structures. It should be remembered that OE-model development was 
conducted different to ARX-models and could not include specific time-delays. Only 
buildings #1 and #2 were modelled with OE-models. 

7.4 General model structure and comparison to physical 
relationships 

ARX-models can be interpreted in the time-domain and are therefore rather simple to 
understand the dynamics of. This also makes the model structure fit the purpose of this 
thesis. As they are considered to model the system well, the principle of parsimony 
further motivates the use of them. An aggregated general structure for ARX-models can 
be found through model development. All buildings benefit from including regressors 
with short time-delays, and most also from including regressors with long time-delays. 
The general ARX-model structure found, by quantitative measures, was 
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 ℎ)-#HAG	m)+-Am
= Ä. m	B[ + é. m. B[ + Ä. m. #)+>. mHXX)F)Ab)
+ 	é. m. #)+>. mHXX)F)Ab) + Ä. m. Äké-F	HFF-mH-#HkA
+ 	é. m. Äké-F	HFF-mH-#HkA. 

(57) 

However, l.d. solar irradiation was the least reoccurring grouping and residual analysis 
signed that the grouping was not of much importance. 

Interpreting the reoccurring pattern found amongst ARX-models through the lens of 
physics, the model describes the following thermal dynamics in a heating system 

 ℎ)-#HAG	m)+-Am
= ℎ)-#HAG	Ä!Ä#)+	HA)F#H- + HA#)F-m-!	#F)AmÄ + 67Hb4	ℎ)-#	ékÄÄ)Ä
+ ℎ)-#	ékÄÄ)Ä	#ℎFk7Gℎ	+-#)FH-é	êH#ℎ	-	é-FG)	#ℎ)F+-é	+-ÄÄ
+ mHF)b#	HAÄké-#HkA
+ ℎ)-#HAG	kX	+-#)FH-é	êH#ℎ	-	é-FG)	#ℎ)F+-é	+-ÄÄ. 

(58) 

Interpreting the ARX-model structure as such allows for energy flows to be identified. 
It is beyond the scope of this thesis to determine energy flows with certainty, but 
through the results, coupled with previous literature and documentation, a probable 
description of energy flows can be portrayed. In Table 8, the different parts of the model 
structure are coupled to probable energy flows and motivation is given. Note that the 
coupling is not exhaustive and there may be specific phenomena coupled to a specific 
energy flow. The purpose of Table 8 is to discuss how energy flow relates to the 
identified models. The results from the sensitivity analysis are also discussed in the light 
of physical interpretation. 

Coupling energy flows to the developed OE-models is possible, but also more difficult 
since the denominator polynomials requires that the model is understood through the 
frequency-domain. Since the models do not highlight specific time-delays, the specific 
energy flows need to be analysed through frequency analysis and is left out of this 
thesis. 

Table 8. Possible interpretations of generalised model structures. 

Group of 
time-delays 

Interpretation Motivation Sources 

S.d. AR Inertia in the 
heating 
system. 

Inertia would cause the 
heating system to act slower 
and less precise, leading to 

heat waste. The inertia could 
stem from factors such as 
slow reaction to demand, 

addressable through model 
predictive control, or the 

heating system being under-
dimensioned. 

 
Based on the sensitivity 

analysis, the inertia of the 
heating system plays a large 

(Abel and Elmroth, 
2016; Drgoňa et al., 
2020; Hietaharju et 

al., 2018; Holm, 
2015; Wu and Sun, 

2012) 
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part in how much energy is 
needed to be consumed. 

 
L.d. AR Inter-day 

trends 
The current heating demand 
is dependent on the energy 
consumed the previous day. 
This could be related to the 

thermal inertia of the building 
interacting with seasonal 

temperature change. 
 

(Verbeke and 
Audenaert, 2018) 

S.d. 
temperature 
difference 

Heat losses 
through 

windows and 
thermal 
bridges 

Windows and thermal bridges 
constitute the main heat loss 
from a warm indoor climate 

to a cold outside climate. The 
thermal inertia of these 

objects is small given that 
windows generally have low 
mass, and the thermal bridges 

tend to have high thermal 
diffusivity. This gives rise to 

quick changes in heating 
demand. 

 
The sensitivity analysis 

shows that the s.d. 
temperature difference is a 

notable factor for the energy 
consumed. Energy mappings 
have shown the same for heat 

losses through thermal 
bridges and windows. The 
main tool for decreasing 

these energy losses is 
targeted insulation. 

 

(Abel and Elmroth, 
2016; Holm, 2018; 

Kurkinen, n.d.; 
Tsilingiris, 2004) 

L.d. 
temperature 
difference 

Heat loss 
through walls 
and thermal 

inertia  

Walls, in particular in stone 
and brick buildings, have a 
lot of thermal inertia. The 

thermal inertia gives rise to 
time-constants, which in turn 

is dependent on how the 
insulation is designed. 

 
High thermal inertia is 

thought to have a smoothing 
effect on indoor temperature 
and provide thermal comfort. 

However, the potential to 
decrease energy consumption 

(Holm, 2018; 
Kurkinen, n.d.; 

Tsilingiris, 2004; 
Verbeke and 

Audenaert, 2018) 
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through increased thermal 
inertia has proven to be 

limited. 
 

Energy mappings have shown 
that conductive heat loss 
through walls and roof is 

small but can be decreased. 
 

The sensitivity analysis states 
that the l.d. temperature 

difference has an effect on 
the overall energy 

consumption. 
 

S.d. solar 
irradiation 

Solar 
insolation 

The effect of solar insolation 
is dependent on how much 
sunlight shines through the 
windows. Solar insolation 
helps to heat up the indoor 
climate. However, it is very 
limited during the heating 

season in Sweden. 
 

The insolation is also 
dependent on the windows’ 

and building’s overall 
position. If it is shaded, the 
sunlight will not reach. This 
would also give rise to time-
variance, which the residual 

analysis gives hints of. 
 

The sensitivity analysis 
concludes that the 

contribution of solar 
insolation is minor. 

 

(Abel and Elmroth, 
2016; Hietaharju et 
al., 2018; Swedish 
Meteorological and 

Hydrological 
Institute, 2021; Wu 

and Sun, 2012) 

L.d. solar 
irradiation 

Solar heating 
of walls and 

opaque outside 
material 

Unlike sunlight that shines 
through a clear material, 
sunlight heats up opaque 

material which in turn gives 
off heat to its surroundings, 
decreasing heating demand. 
The heating of the material 
itself gives rise to a time-

delay, especially large if the 
material has large thermal 
inertia. However, the solar 
irradiation is very limited 

(Jiménez et al., 
2008; Swedish 

Meteorological and 
Hydrological 

Institute, 2021; 
Tsilingiris, 2004, 

2002) 
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during the heating season in 
Sweden. 

 
The heat absorption from 

solar irradiation is dependent 
on the colour and texture of 

the outer material. 
 

The sensitivity analysis 
shows that the contribution to 
the energy consumption from 

the l.d. solar irradiation is 
minor. 

8. Conclusions and future studies 
Based on a building’s thermal energy balance, ARX- and OE-models were developed 
for simulation purposes. The models made use of time-series of heating demand, indoor 
temperature, outdoor temperature and solar irradiation. Early model development 
showed that including data series of indoor temperature did not to improve the model, 
likely due to the aggregation of measurements that was made. As the indoor temperature 
is seldom recorded in most buildings, this result is not considered impractical. The main 
loss is that the developed models become less insightful than it could have been 
otherwise. Better models were found by considering the indoor temperature to be 
constant. 

Both ARX- and OE-models can be considered to encapsulate the dynamics of the 
buildings’ heating demand, indicated by visual inspection, residual analysis and 
measures such as MAE, MBE and CC. OE-models perform better for simulation 
purposes given most measures, but are more difficult to interpret than ARX-models and 
more difficult to develop guided by residual analysis. A particular difference in 
simulation performance is that OE-models are better at simulating intra-day dynamics.  

A general structure of ARX-models could be found based on groupings of time delays. 
The general model structure found was discussed in relation to physics related to 
heating demand. Based on the OAT sensitivity analysis conducted, the interpreted 
physics are in line with documented energy flows in buildings. This indicates that 
information about physics and energy flows can be extrapolated from the ARX-models. 
The sensitivity analysis state that the two main factors driving energy consumption for 
heating is the design of the heating system and heat losses through windows and 
thermal bridges. 

The concluding statement on the purpose and goals of this thesis is that it is possible to: 

§ through physics develop a model framework suitable for system identification, 
§ extrapolate information about physical properties through analysis of the derived 

model, and 
§ identify the main contributions to heating demand through model simulation. 
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As the goals are considered to be met, the method applied in this thesis can may be 
proposed to for use in analysing retrofitting potential and analysis of energy flows. 

8.1 Future studies 

The thesis showed that OE-models are better at simulating energy demand. Therefore, 
future studies should attempt to discuss the physics in relation to developed OE-models. 
As it appears AR dynamics are relevant to the model, exploring full Box-Jenkins 
models can be of interest as well. 

For the purpose of developing upon the goals set by this thesis, it is recommended for 
future studies to elaborate on the physical interpretation of the heating demand. An 
example would be to include more meteorological inputs, such as wind speeds. It could 
also be interesting to implement coincidence factors (see (Yarbrough et al., 2015)) or 
proxy series (like electricity usage, as noted by (Lowry and Lee, 2004)) to include 
heating demand related to human activities. 

Lastly, it is recommended to build upon this study and cement its findings. It is 
proposed that future studies take a qualitative or comparative approach for this purpose. 
Generalisable system knowledge should be sought and future models should strive 
towards becoming more open and “white”.  
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Appendix A 
In this appendix an attempt to simultaneously estimate indoor-temperature and model 
parameters is presented. The attempt was cancelled during the thesis project because 
measurements of indoor temperature became available. Therefore, the results are 
inconclusive. However, both the process and results are deemed valuable for future 
studies. This appendix ends with a literature review valuable for future studies. 

State-space representation 

State-space models are commonly used in grey-box modelling as they allow the 
modeller to parametrise differential equations that provide a physical description of the 
system (Afram and Janabi-Sharifi, 2014; Ljung and Glad, 2004). The models relate the 
inputs and outputs of a system through a set of system states. Written as 

 y(# + 1) = X8y(#), 7(#): = By(#) + C7(#) + ]a&(#) (59) 
 
and 

 !(#) = ℎ8y(#), 7(#): = jy(#) + ë7(#) + a'(#), (60) 
 
a state-space representation describes a change in system states y(#) which influence 
the output of the system is created, where B, C, j, ë	and	] are matrices containing 
parameters relating states, inputs, outputs and noise a&(#) and a'(#). State-space 
models allow the modeller to design the systems’ structure using the physical laws that 
govern it whilst using statistical measurements to estimate the elements of the parameter 
matrices. Further, the modeller can directly describe any parameter using physical 
insight, not needing to estimate it if not necessary (Ljung and Glad, 2004). 

State observation 

The states in a state-space model can have physical interpretations. Ideally, the system 
states are measured, but that is not always the case (Wenzel et al., 2006). They may be 
important for analysing the system and ensure that it is working and behaving as 
expected. States that can, for example, resemble quantities such as temperature or 
velocity which may be importance for safety reasons. Thus, there has been a lot of work 
and many publications regarding what is called state observation.  

A system is observable if its observability matrix 

 
í = O

j
jB
⋮

jB(%&
Q (61) 

has full rank, where A is the length of matrix B (Glad and Ljung, 2003). If so, then what 
is called an observer can be used to estimate the system states given an initial estimate 
and the measured input- and output signals. The standard observer can be introduced 
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yJ(# + 1) = ByJ(#) + C7(#) + v8!(#) − !J(#): (62) 

and 

 !J(#) = jyJ(#) + ë7(#), (63) 
where yJ and !J denotes estimations and v is an error gain determining how much the 
prediction error should influence the state-estimation (Glad and Ljung, 2003). 

The Kalman filter 

When doing a state-estimation the error gain v must be determined. Kalman (1960) 
developed a solution to choosing the value of v by analysing the error-covariance. For a 
linear time invariant system with Gaussian noise and known covariance, Kalman’s 
method is an optimal estimator and the Kalman filter (KF) has thus become a staple in 
both modelling and control theory (Glad and Ljung, 2003). Essentially, the KF adapts 
the uncertainty of the model to estimate the state value. The filter works in a model by 
predicting a state-estimate given the previous estimate and input 

 yJ(#|# − 1) = ByJ(# − 1|# − 1) + C7(#)	 (64) 
 
and its covariance 

 =(#|# − 1) = B=(# − 1|# − 1)B4 + 0, (65) 
 
where 0 is the covariance of the process noise a'(#). The innovation residual 

 !ì(#) = î(#) − jyJ(#|# − 1) (66) 
 
is the residual given the initial state-estimate, where î is the observation of the states. 
The innovation covariance is defined as 

 h(#) = j=(#|# − 1)j4 + [, (67) 
 
where [ is the observation covariance. Finally, the Kalman gain 

 v = =(#|# − 1)j4h%&(#), (68) 
 
is calculated and used to update the initial state-estimate by combining the Kalman gain 
v and model residual !ì(#) 

 yJ(#|#) = yJ(#|# − 1) + v!ì(#), (69) 
 
the state-estimate is updated (or corrected) by analysing both covariance and residuals.  

Estimated states-based recursive least squares algorithm 

State-estimation using the KF works from a defined model. However, the purpose of 
this thesis is to develop model. The challenge, therefore, is twofold as both states and 
parameters are to be estimated. 
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Ding (2014) presented an algorithm for simultaneous estimation of both states and 
parameters of a state-space model. This is very useful as states may not be possible to 
measure in real life and parameters may be unknown, as was with this study up to a 
point during the project. Ding presented an estimated states-based recursive least 
squares (ES-RLS) algorithm where the states are estimated with a KF using parameters 
that have been obtained as a least squares estimate. The algorithm was designed for 
single-input observable canonical state-space systems. However, as this thesis seeks to 
retain the physical interpretations and has two inputs, the algorithm is analogously 
adapted to the given state-space system. 

Model representation 

A linear function is derived such that the output can be described by a vector 
multiplication 

 !(#) = L4(#)' + a'(#), (70) 
 
of the parameter vector 

 ' = ï
ñ
óò, (71) 

 
where	ñ and ó are column vectors containing unknown elements in the	B and C 
matrices respectively, and information vector L(#) contains relevant input- and state 
values at time #. 

State-estimation 

The state-estimation is based on the KF, but as there are unknown elements in the 
matrices the KF is not fully defined. Ding (2014) proposes to estimate the parameter 
vector 'E and to construct estimates of the matrices with unknown elements. The KF 
using estimated parameters (adapted for this thesis) is 

 yJ(# + 1) = Bô(#)yJ(#) + CE(#)7(#) + v'(#)ö!(#) − jô(#)yJ(#)õ,

yJ(1) =
ú(
>#
, (72) 

 v'(#) = Bô(#)='(#)jôö1 + jô(#)='(#)jô4(#)õ
%& (73) 

and 

 ='(# + 1) = Bô(#)='(#)Bô4(#) − v'(#)jô(#)='(#)Bô4(#),   ='(1) = ù(, (74) 
 
where û  denotes an estimate. 

Parameter estimation 

By least squares estimation, the estimate of parameters ' at time # is obtained by 
minimizing the squared error 
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'E(#) = -FG	+HA

'
I[!(ü) − L4(#)']'
9

T,&

, (75) 

 
with respect to the parameter vector. 

From the least squares estimate a recursive algorithm is obtained. The estimate of ' at 
time # is updated from its previous estimate 

 
'E(#) = 'E(# − 1) + =&(#)L(#)ö!(#) − L4(#)'E(# − 1)õ, 'E(0) =

ú5
>#
, (76) 

 
 =&

%&(#) = =&
%&(# − 1) + L(#)L4(#), =&(0) = >#ù5, (77) 

 
where ú5 denotes a +-dimensional column vector consisting of ones, + is the 
dimension of the information vector and ># is chosen as a large positive number such as 
10Q. 

The recursive algorithm still depends on knowing the information vector, but since it 
contains unmeasured states that is not possible. Instead, it is replaced by an estimate 
LJ(#) to rewrite (76) and (77) to 

 
'E(#) = 'E(# − 1) + =&(#)LJ(#)ö!(#) − LJ4(#)'E(# − 1)õ, 'E(0) =

ú5
>#
, (78) 

and 

 =&
%&(#) = =&

%&(# − 1) + LJ(#)LJ4(#), =&(0) = >#ù5. (79) 
 
Further, the inverse of =&(#) eq. (79) can be rewritten using the matrix inversion lemma 

 (B − Cj)%& = B%& − B%&C(ù + jB%&C)%&jB%& (80) 
to 

 =&(#) = =&(# − 1)
− =&(# − 1)LJ(#)[1 + LJ4(#)=&(# − 1)LJ(#)]%&LJ4(#)=&(#
− 1), 

(81) 

obtaining a formula for the covariance of the parameter estimates =&(#). The gain vector 
v&(#) is introduced as 

 
 v&(#) = =&(#)LJ(#) = =&(# − 1)LJ(#)[1 + LJ4(#)=&(# − 1)LJ(#)]%&, (82) 

 
which gives 

 
'E(#) = 'E(# − 1) + v&(#)ö!(#) − LJ4(#)'E(# − 1)õ, 'E(0) =

ú5
>#

 (83) 

and 

 =&(#) = [ù5 − v&(#)LJ4(#)]=&(# − 1). (84) 
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Combined state and parameter estimation algorithm 

By combining eq. (82), (83) and (84), the ES-RLS algorithm was adapted for the state-
space model relevant in this thesis. Eq. (83) recursively estimates the unknown 
parameters 'E(#) at time # using the states yJ(#) in the estimation vector LJ(#) and in turn 
uses the estimated parameters to compute the estimate of the state vector. The algorithm 
is as follows: 

1) Initialise by letting # = 1, 'E(0) = U&
V'

, =&(0) = >#ù5, yJ(1) = U(
V'

, ='(1) = ù( 
and ># = 10Q. 

2) Form the information vector LJ(#) from the measured inputs and estimated 
states. 

3) Compute the gain vector v&(#) and covariance matrix =&(#) with eq. (82) and 
(84) respectively. Then use the gain vector and covariance matrix to compute the 
parameter estimate 'E(#) using eq. (83). 

4) Read the values from 'E(#) to construct matrices Bô(#),	CE(#) and jô(#).  
5) Compute the state gain vector v'(#) and covariance matrix ='(# + 1) with eq. 

(73) and (74) respectively. From the state gain vector, covariance matrix, 
matrices Bô(#),	CE(#) and jô(#), measured inputs and outputs calculate the state-
estimate yJ(# + 1) using eq. (72). 

6) Increase # by 1 and go to step 2. 

State-space model representation 

Alternatively, the indoor temperature can be treated as a varying system state and as 
such, warranting a state-space model representation. The energy balance is a differential 
equation and can therefore be written as a state-space representation. Derived from the 
energy balance (44) the state vectors and parameter matrices in the state-space 
representation (eq. (62) and (63)) are constructed as 

 
y(4) = †

=;<=9(#)
3+=(#)

3+=(# − 1)
°, (85) 

 
7(4) = ¢

3A=(#)
{(#)

£, (86) 

 a&(#) = =+(9<B(=?(#) = )(#), (87) 

 a'(#) = )(#), (88) 

 !J(#) = =E;<=9(#), (89) 
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B = §
0 -&' -&E
-'& -'' 0
0 1 0

• ,

⎩
⎪
⎨

⎪
⎧
-&' = 4 + ℎ>=h>==& + ℎ>@h>@=E

-&E = −4

-'& = −
1
-&E

-'' =
-&'
4

, 

(90) 

 

C = §
D&& D&'
D'& D''
0 0

• , ™

D&& = ℎ>=h>==' + ℎ>@h>@=D
D&' = z

D'& = D&&4
D'' = D&'4

	 (91) 

and 

 j = [1 0 0], (92) 

where )(#) is white noise. This state-space representation describes the heating energy 
and indoor temperature as system states and relates it to the output of the system (the 
energy consumption). It can be noted that the system is not linear with regards to the 
parameters. Written on this form, the system’s observability matrix  

 
í = §

1 0 0
0 -&' -&E

-&'-'& -&'-'' + -&E 0
•		 (93) 

has full rank as long as elements íE' and í'E are nonzero and thus the system should be 
observable. Elements íE' and í'E	 are nonzero if -&E ≠ 0 and -&E ≠ −-&'-''. The 
states (indoor temperature) should then be observable in the state-space representation. 

Applying the algorithm derived from Ding (2014) the state-space representation 

 yJ(# + 1) = BôyJ(#) + CE7(#) + v8!(#) − jyJ(#): (94) 

and 

 !J(#) = jyJ(#) + a'(#) (95) 

includes both estimates of states 

 
yJ(#) = †

=E;<=9(#)
3E+=(#)

3E+=(# − 1)
° (96) 

and parameter matrices 

 
Bô = §

0 -J&' -J&E
-J'& -J'' 0
0 1 0

• (97) 

and 
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CE = †

DE&& DE&'
DE'& DE''
0 0

°, (98) 

where the relationships from (90) and (91) are assumed to translate such that -J'& =
− &
=:)*

, -J'' =
=:)+
$

, D'& = D&&4 and D'' = D&'4. 

Results 

The ES-RLS algorithm applied to the energy balance (44) gives asymptotic parameter 
estimates, leading to unstable state-estimates. Different combinations of relating the 
parameters to each other (see (91)) at best gives unstable estimates, at worst approaches 
dividing by zero and creates an error. 

The output of the model can be kept similar to the measured output if the parameter 
estimation is constricted by pre-determining the value of k. This indicates that the 
feedbacked model works as intended and that state observation and parameter 
estimation balance each other. However, if parameters are pre-determined, there is no 
reason to estimate them. 

Discussion 

Given the results, it seems unlikely that the ES-RLS algorithm can be applied in a 
practical manner to estimate both the indoor temperature and parameters in the energy 
balance simultaneously. There could be many reasons for this being the case and two 
reasons will shortly be discussed. Firstly, it is not an ideal system. It is likely that there 
are both non-linearities and noise due to human interaction with the building. This may 
produce residual errors which makes the ES-RLS impractical. Secondly, the model is 
non-linear with regards to the parameters. This perhaps seems to engage a volatile 
parameter estimation leading to asymptotic results. 

There is however possibility for development of the state-space and simultaneous 
estimation algorithm. Firstly, the model is developed after the ideal energy balance. As 
can be seen in the main results of this thesis, there are time delays inherent to the system 
which are not included in the state-space representation, but perhaps could be. 
Secondly, the ES-RLS algorithm is designed for linear estimates and has been proven in 
simple and controlled environments (Ding, 2014). Better results may be obtained if 
algorithms developed for more complex systems were used. For example, algorithms 
developed for non-linear systems or that include probabilities of states. To end this 
appendix, a literature review of simultaneous estimation is provided.  

Literature review for future studies 

Methods for simultaneous estimation includes Ding (2014), Pavelková and Kárný 
(2014), Wang and Ding (2016), Wenzel et al. (2006) and Xu et al. (2017). Ding (2014) 
presented a modest algorithm to simultaneously estimate both states and parameters of a 
linear state-space system using a KF and recursive least squares estimates (the ES-RLS 
algorithm applied in this appendix). More complex KF-based algorithms designed for 
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non-linear systems were presented by Wang and Ding (2016) and Wenzel et al. (2006). 
The previous applies an over-parameterisation technique to describe the system as two 
sub-models and estimates the states by using the estimated parameters and vice versa. 
This algorithm allows the modeller to consider coloured noise. The latter algorithm 
makes use of a dual extended KF (DEKF) technique to divide the state and parameter 
estimation into different but dependent problems. Further, Wenzel et al. (2006) 
demonstrate that their DEKF is appropriate given a good model structure and stable 
states. The DEKF also allows for the algorithm to adapt focus on state-estimation if the 
parameter estimation is considered appropriate enough and vice versa. Xu et al. (2017) 
presented a multi-innovation gradient-based algorithm that included state-delays. 
Lastly, Pavelková and Kárný (2014) presented a joint parameter and state-estimation for 
linear state-space models which included Bayesian modelling (a generalised case of 
Kalman filtering) to bind the state-estimates to realistic values. 
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Appendix B 
In Table 9 the three model structures with the lowest MSE are shown for each building 
and fold. MAE, MBE and correlation coefficient is shown alongside MSE. 

The numbers written in columns B(6), C'(6) and CE(6) indicate the time-delays 
included in the respective polynomial. For example, the lowest MSE model structure for 
building #1, fold 1, has polynomials 

 B(6) = 1 + -&6%& + -'6%' + -'D6%'D (99) 

and 

 C'(6) = D',# + D',&6%& + D',Q6%Q + D',R6%R + D',F6%F + D','#6%'#. (100) 

Table 9. Quantitative measures from cross-validating simulation results of the three 
ARX-model structures which perform the lowest MSE for different buildings and folds. 

Indoor temperature is considered constant. 
Build-

ing 
Val. 
fold 

B(6) C'(6) CE(6) MAE (Std.) MBE (Std.) MSE CC 

#1 1 [1-2-
24] 

[0-1-
6-7-8-

20] 

[0-10] 11.04 8.83 -0.36 14.13 199.77 0.61 

  [1-2-
24] 

[0-1-
6-7-8-

20] 

[0] 10.97 8.97 -1.12 14.13 200.86 0.61 

  [1-2-
24] 

[0-1-
6] 

[0-10-
20] 

11.14 8.84 0.18 14.23 202.36 0.60 

 2 [1-2-
24] 

[0-1-
6-7-8-

20] 

[0] 18.03 13.41 6.64 21.48 505.03 0.87 

  [1-2] [0-1-
6] 

[0] 18.66 12.87 6.70 21.66 513.92 0.87 

  [1-2] [0-1-
6-12] 

[0] 18.77 13.01 7.22 21.66 521.23 0.87 

 3 [1-2-
24] 

[0-1-
6-7-8] 

[0] 19.51 16.52 1.88 25.50 653.34 0.76 

  [1-2-
24] 

[0-1] [0] 19.63 16.48 2.54 25.50 656.63 0.76 

  [1-2-
24] 

[0-1-
6] 

[0-10-
20] 

19.74 16.44 5.13 25.18 659.92 0.76 

 4 [1-2-
24] 

[0-1-
8-20] 

[0-10-
20] 

20.42 14.21 -2.44 24.76 618.92 0.80 

  [1-2-
24] 

[0-1-
8-20] 

[0-10-
20] 

20.42 14.21 -2.44 24.76 618.92 0.80 

  [1-2-
24] 

[0-1-
6-7-8-

20] 

[0] 20.42 14.24 -2.28 24.79 619.57 0.80 

#2 1 [1-2-
3-24] 

[0-1] [0-1-
12] 

3.94 1.72 -3.90 1.81 18.49 0.78 
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  [1-2-
24] 

[0-1-
12] 

[0-15] 3.96 1.74 -3.92 1.82 18.67 0.78 

  [1-2   
3-24] 

[0-1-
2-3-

12-24] 

[0-1-
2-12-
24] 

3.98 1.69 -3.89 1.90 18.71 0.76 

 2 [1-2-
12-
24] 

[1-2] [0] 3.36 2.55 -0.20 4.22 17.81 0.89 

  [1-2-
12-
24] 

[0-1-
2-24] 

[0] 3.41 2.52 -1.48 3.98 17.98 0.90 

  [1-2-
3-24] 

[0-1-
2-3-6] 

[0-1-
2-12] 

3.50 2.40 -1.37 4.02 17.99 0.90 

 3 [1-2-
12-
24] 

[1-2] [0] 3.52 2.13 1.51 3.82 16.88 0.87 

  [1-2-
3-24] 

[0-1] [0] 3.79 2.26 2.15 3.85 19.47 0.86 

  [1-2-
24] 

[0-1-
12] 

[0-8] 3.80 2.24 2.17 3.85 19.49 0.86 

 4 [1] [0] [0] 3.35 2.58 2.63 3.31 17.85 0.91 
  [1-2] [0] [0] 3.52 2.58 2.90 3.26 19.04 0.91 
  [2] [0] [0] 3.52 2.61 2.90 3.29 19.19 0.91 

#3 1 [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-3] 

2.09 2.16 0.02 3.01 9.05 0.87 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-15] 

2.09 2.17 0.12 3.01 9.06 0.87 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2] 

2.09 2.16 0.03 3.01 9.06 0.87 

 2 [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
15] 

1.88 1.50 -0.64 2.32 5.78 0.64 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-15] 1.88 1.50 -0.65 2.32 5.79 0.64 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1] 1.89 1.51 -0.72 2.31 5.86 0.64 

 3 [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-8] 

3.38 2.81 -0.10 4.40 19.36 0.88 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2] 

3.39 2.81 -0.13 4.40 19.37 0.88 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-15] 

3.40 2.80 -0.31 4.39 19.39 0.88 
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 4 [1-2-
3-24] 

[0-1-
2-8-
24] 

[0] 1.84 1.69 0.29 2.48 6.22 0.93 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2] 

1.85 1.67 0.25 2.49 6.24 0.93 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-3] 

1.85 1.67 0.25 2.49 6.24 0.93 

 5 [1-2-
3-24] 

[0-1-
2-8-
24] 

[0] 1.73 1.43 -0.06 2.24 5.03 0.94 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2-8] 

1.78 1.41 0.41 2.24 5.16 0.94 

  [1-2-
3-24] 

[0-1-
2-8-
24] 

[0-1-
2] 

1.78 1.41 0.43 2.23 5.17 0.95 

#4 1 [1-2-
3] 

[0-1-
8] 

[0-1-
2-11] 

7.43 5.59 -0.80 9.27 86.48 0.91 

  [1-2-
3] 

[0-1-
2-3] 

[0-1-
2-11] 

7.47 5.57 -1.05 9.26 86.76 0.91 

  [1-2-
3] 

[0-1-
10] 

[0-1-
2-11] 

7.45 5.60 -0.59 9.30 86.78 0.91 

 2 [1-2-
3] 

[0-12-
24] 

[0-1-
2-11] 

5.16 5.87 -2.74 7.32 61.10 0.59 

  [1-2-
3] 

[0-8-
12] 

[0-1-
2-11] 

5.16 5.94 -2.91 7.31 61.90 0.59 

  [1-2-
3] 

[0-1-
12-24] 

[0-1-
2-11] 

5.20 5.93 -2.96 7.31 62.19 0.59 

 3 [1-3] [0-1-
2-8] 

[0-1-
2-8-
18] 

9.23 7.00 1.65 11.47 134.11 0.86 

  [1-2-
8] 

[0-1-
12-24] 

[0-1-
2-11] 

9.46 6.82 -2.11 11.47 135.90 0.85 

  [1-3] [0-1-
2-3] 

[0-1-
2-8-
18] 

9.41 7.12 1.99 11.64 139.31 0.86 

 4 [1-2-
12-
24] 

[0-1-
24] 

[0-3-
10] 

7.39 5.55 0.10 9.24 85.38 0.83 

  [1-2-
12-
24] 

[0-1-
8-24] 

[0 -1-
10] 

7.50 5.54 -0.65 9.30 86.91 0.83 

  [1] [0-1-
12-24] 

[0-1-
2-10] 

7.13 6.04 -2.25 9.07 87.37 0.84 

 5 [1-3] [0-1-
2] 

[0-1-
2-6-
10] 

12.70 10.96 8.65 14.38 281.48 0.66 
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  [1-3] [0-1-
2] 

[0-1-
2-12] 

12.79 10.88 8.81 14.30 282.07 0.65 

  [1-3] [0-1-
2] 

[0-1-
2] 

12.86 10.90 8.90 14.32 284.24 0.65 

#5 1 [1-2-
3-24] 

[0-1-
2-3] 

[0-10] 1.63 1.60 -1.36 1.84 5.22 0.87 

  [1-2-
3-24] 

[0-1-
2-3] 

[0-8] 1.65 1.65 -1.33 1.91 5.43 0.87 

  [1-2-
3-24] 

[0-1-
2-3] 

[0-1-
2-3-8] 

1.66 1.65 -1.33 1.93 5.48 0.87 

 2 [1-2-
5] 

[0-1-
2-3-
15] 

[0-8-
24] 

1.03 0.94 0.58 1.28 1.96 0.88 

  [1-2-
3] 

[0] [0] 1.04 1.00 0.48 1.35 2.07 0.87 

  [1-2-
3-24] 

[0-1-
2-3-
12] 

[0-8] 1.09 0.95 0.59 1.33 2.10 0.87 

 3 - [0-1-
2] 

[0] 1.40 2.07 0.00 2.50 6.26 0.36 

  [1-2-
3-24] 

[0-1-
2-3-

12-24] 

[0-8-
24] 

1.60 1.94 -0.44 2.47 6.31 0.36 

  [1-2-
3-8-
24] 

[0-1-
2-3] 

[0-8] 1.63 1.92 -0.63 2.44 6.34 0.41 

 4 [1-2] [0] [0] 2.91 2.19 1.40 3.36 13.23 0.60 
  [1-3] [0] [0] 2.97 2.24 1.51 3.40 13.87 0.59 
  - [0] [0] 3.02 2.31 0.96 3.68 14.45 0.47 

#6 1 [1-2-
12-
24] 

[0-1-2 
-16-
24] 

[0-3-
20] 

4.91 2.55 -3.75 4.07 30.66 0.88 

  [1-2-
24] 

[0-1-2 
-16-
24] 

[0-3-
20] 

4.94 2.55 -3.77 4.08 30.84 0.88 

  [1-2-
12-
24] 

[0-1-
2-24] 

[0-3] 4.90 2.63 -3.62 4.22 30.95 0.88 

 2 [1-2-
12-
24] 

[0-1-
2-24] 

[0-3-
18-19-

20] 

4.29 4.28 -3.39 5.02 36.70 0.80 

  [1-2-
24] 

[0-1-2 
-16-
24] 

[0-3-
20] 

4.34 4.32 -3.40 5.09 37.48 0.79 

  [1-2-
12-
24] 

[0-1-
2-16-
24] 

[0-3-
20] 

4.33 4.33 -3.39 5.10 37.49 0.79 

 3 - [0] [0] 4.18 2.57 3.25 3.67 24.06 0.79 
  - [0-1] [0] 4.24 2.57 3.42 3.59 24.63 0.80 
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  - [0-1-
2] 

[0] 4.30 2.58 3.52 3.57 25.16 0.80 

 4 [1-2-
24] 

[0-1-
2-24] 

[0-3] 4.80 3.97 3.08 5.42 38.83 0.76 

  [1-3] [0-1] [0-24] 4.98 4.10 3.35 5.51 41.56 0.75 
  [1-2] [0-1] [0] 5.08 4.09 3.45 5.53 42.55 0.75 
 5 [1-2-

24] 
[0-1-
2-24] 

[0-3-
18-19-

20] 

2.85 2.33 -0.61 3.63 13.51 0.92 

  [1-2-
24] 

[0-1-
2-24] 

[0-3-
20] 

2.86 2.34 -0.46 3.66 13.63 0.92 

  [1-2-
12-
24] 

[0-1-
2-16-
24] 

[0-3-
20] 

2.95 2.38 -0.69 3.73 14.37 0.92 

#7 1 [1-2-
24] 

[0-1-
2] 

[0] 9.46 6.54 6.68 9.37 132.30 0.87 

  [1-2-
24] 

[0-8-
24] 

[0-1-
2] 

9.74 6.32 7.90 8.51 134.87 0.89 

  [1-2-
24] 

[0-1] [0] 9.74 6.66 7.28 9.29 139.22 0.87 

 2 [1-2-
24] 

[0-8-
24] 

[0-12] 4.94 3.60 0.17 6.11 37.39 0.73 

  [1-2-
24] 

[0-8-
24] 

[0] 4.89 3.74 -0.66 6.13 37.96 0.73 

  [1-2-
3-24] 

[0-8-
24] 

[0-12] 5.06 3.56 0.95 6.12 38.32 0.72 

 3 [1-2-
3-24] 

[0-1] [0] 8.30 7.28 -1.71 10.91 121.86 0.88 

  [1-2-
24] 

[0-8-
24] 

[0-8] 8.23 7.54 0.78 11.14 124.61 0.87 

  [1-2-
24] 

[0-8-
24] 

[0-12] 8.73 7.06 -3.42 10.70 126.05 0.88 

 4 [1-2-
3-24] 

[0-8-
24] 

[0-12] 11.11 7.17 -7.38 10.98 174.92 0.92 

  [1-2-
3-24] 

[0-8-
24] 

[0-1-
12] 

11.21 7.21 -7.61 10.94 177.59 0.92 

  [1-2-
3-24] 

[0-8-
24] 

[0-1-
12] 

11.21 7.21 -7.61 10.94 177.59 0.92 

 5 [1-2-
24] 

[0-8-
24] 

[0-1-
2-18] 

7.95 6.87 -2.92 10.09 110.32 0.87 

  [1-2-
24] 

[0-8-
24] 

[0-1-
2] 

8.00 6.88 -3.20 10.05 111.25 0.87 

  [1-2-
24] 

[0-8-
24] 

[0-1-
2-8] 

8.02 6.91 -3.51 9.99 111.98 0.87 

           
 

 
 
 


