
UPTEC STS 21013

Examensarbete 30 hp
Mars 2021

Listening in on Productivity

Applying the Four Key Metrics to measure

productivity in a software development company

Johanna Dagfalk
Ellen Kyhle

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Listening in on Productivity

Johanna Dagfalk & Ellen Kyhle

Software development is an area in which companies not only need to keep
up with the latest technology, but they additionally need to
continuously increase their productivity to stay competitive in the
industry. One company currently facing these challenges is Storytel -
one of the strongest players on the Swedish audiobook market - with
about a fourth of all employees involved with software development, and
a rapidly growing workforce.

With the purpose of understanding how the Storytel Tech Department is
performing, this thesis maps Storytel’s productivity defined through the
Four Key Metrics - Deployment Frequency, Delivery Lead Time, Mean Time
To Restore, and Change Fail Rate. A classification is made into which
performance category (Low, Medium, High, Elite) the Storytel Tech
Department belongs to through a deep-dive into the raw system data
existing at Storytel, mainly focusing on the case management system
Jira. A survey of the Tech Department was conducted, to give insights
into the connection between human and technical factors influencing
productivity (categorized into Culture, Environment, and Process) and
estimated productivity. Along with these data collections, interviews
with Storytel employees were performed to gather further knowledge about
the Tech Department, and to understand potential bottlenecks and
obstacles.

All Four Key Metrics could be determined based on raw system data,
except the metric Mean Time To Restore which was complemented by survey
estimates. The generalized findings of the Four Key Metrics conclude
that Storytel can be minimally classified as a ‘medium’ performer. The
factors, validated through factor analysis, found to have an impact on
the Four Key Metrics were Generative Culture, Efficiency (Automation and
Shared Responsibility) and Number of Projects. Lastly, the major
bottlenecks found were related to Architecture, Automation, Time
Fragmentation and Communication.

The thesis contributes with interesting findings from an expanding,
middle-sized, healthy company in the audiobook streaming industry - but
the results can be beneficial for other software development companies
to learn from as well. Performing a similar study with a greater sample
size, and additionally enabling comparisons between teams, is suggested
for future research.

ISSN: 1650-8319, UPTEC STS 21013
Examinator: Elísabet Andrésdóttir
Ämnesgranskare: Davide Vega D’Aurelio
Handledare: Maria Verbitskaya & Jakob Wolman

1

Acknowledgement

We would like to acknowledge everyone that played a significant role in the accomplishment

of this Master’s thesis project, done in collaboration with Storytel, as part of the

Sociotechnical Systems Engineering program (STS) at Uppsala University.

First and foremost, we want to thank our supervisor and subject reviewer Davide Vega
D’Aurelio, for support and valuable advice. Secondly, the project would never have been

possible without our supervisors at Storytel; Jakob Wolman and Maria Verbitskaya. Thank

you for inspiring leadership and guidance throughout the process.

Lastly, of greatest importance for this thesis is the cooperation with all employees at Storytel

who have answered our survey and participated in interviews. We are grateful for the

assistance and input from each and every one of you.

Johanna Dagfalk & Ellen Kyhle

March, 2021

2

Populärvetenskaplig sammanfattning

För att förbli konkurrenskraftig inom mjukvaruutvecklings-branschen idag måste företag,

utöver att anpassa sig till det snabbt förändrande teknologi-landskapet, kontinuerligt bli mer

produktiva. Ett av de företag som står inför dessa utmaningar idag är Storytel - en av de

starkaste spelarna på den svenska ljudboksmarknaden - med ungefär en fjärdedel av sina

anställda inom deras tech-avdelning, och med en snabbt växande arbetsstyrka.

I denna uppsats kartläggs Storytels produktivitet med hjälp av fyra nyckelmått (the Four Key
Metrics) - Deployment Frequency, Delivery Lead Time, Mean Time To Restore och Change

Fail Rate - i syftet att öka förståelsen för hur Storytels Tech-avdelning presterar. En

klassificering utförs av vilken prestations-kategori (Låg, Medel, Hög, Elit) som Storytel tillhör

genom att djupdyka i systemdata med huvudfokus på Storytels ärendehanteringssystem Jira.

För att vidare undersöka olika faktorer som påverkar produktivitet på Storytel skickades en

enkät ut till hela tech-avdelningen, vilket genererade värdefull insyn i kopplingen mellan

faktorer (kategoriserade i Kultur-, Miljö- och Processfaktorer) och estimerad produktivitet.

Tillsammans med denna datainsamling utfördes även flertalet intervjuer med anställda för att

samla ytterligare kunskap om Storytels tech-avdelning, och för att förstå potentiella flaskhalsar

och hinder mot en högre prestation.

Samtliga Four Key Metrics kunde bestämmas med hjälp av systemdata, förutom Mean Time

To Restore, som istället kompletterades med hjälp av enkät-uppskattningar. Man fann att

prestations-kategoriseringen skiljer sig beroende på vilken service eller tech-stack inom

avdelningen som undersöks, men de generaliserade fynden från alla Four Key Metrics
konkluderar att Storytel minimalt kan klassificeras att prestera på medelnivå. De faktorer som

avgörs påverka the Four Key Metrics, validerade genom statistik faktoranalys, är ‘Generative

Culture’, ‘Efficiency (Automation and Shared Responsibility)’ samt ‘Number of Projects’. De

huvudsakliga flaskhalsar som hittas är relaterade till ‘Architecture’, ‘Automation’, ‘Time

Fragmentation’ och ‘Communication’.

Genom att beskriva utgångsläget för prestationsnivå utifrån dessa fyra mått, och följa upp

förändringar genom att analysera måtten och vilka faktorer som påverkar dessa så kan ett team

förbättra sin mjukvaruutvecklings-process och uppnå bättre affärsresultat. Denna uppsats

bidrar med intressanta fynd från ett expanderande, medelstort och framgångsrikt företag inom

ljudboksmarknaden - men resultaten kan även vara lärorika för andra företag inom

mjukvaruutvecklings-branschen.

3

Abbreviations and Important Concepts

Actionable Agile - Actionable Agile is a tool that enables flow charts for metrics such as WIP, throughput,
cycle time, and work item age based on for example Jira data.

Agile - Agile is an iterative approach to project management and software development that helps teams deliver
value to their customers faster. An agile team delivers work in small increments.

Android - a mobile operating system primarily for touchscreen mobile devices such as smartphones and tablets.

Backend - development concerning the server-side focusing on databases, algorithms and system optimization -
namely the portion of systems that you don’t see.

Batch size - in software delivery i.e. the amount of code being deployed on average.

Bartlett’s test of sphericity - can be used to test that items are unrelated and therefore unsuitable for detecting a
structure in Factor analysis. Small significance values (below a threshold of 0.05) indicate that items in the dataset
are sufficiently correlated and therefore that factor analysis can be useful.

Bottleneck - some limiting resource with a capacity equal to or less than the demand placed upon it in a system.

Cycle time - In this thesis, the cycle time is the amount of time from work started to work delivered.
Generally, the cycle time can refer to fewer steps of the delivery cycle than Delivery Lead Time.

Direct oblimin - Factor Analysis rotation method based on the assumption that the factors are correlated to each
other, used to obtain new sets of factor loadings (high loadings maximized) to reach the simplest and most
interpretable structure.

DORA - Google’s DevOps Research and Assessment team introducing the Four Key Metrics.

EFA - Exploratory Factor Analysis: a modelling technique used to discover the number of underlying factors
that are influencing variables.

Eigenvalues - Eigenvalues are a set of scalars associated with a linear system of equations. Eigenvalues > 1.0 is
used in factor analysis to extract how many factors to retain. Factors less than 1.0 are considered unstable,
accounting for less variability than one single item.

eNPS - Employee Net Promoter Score: Conventional method used to rate employees satisfaction with work and
loyalty to their employer. It is based on the percentage of employees rating their likelihood to recommend their
company for others.

E-factor - Environmental Factor: the fraction of uninterrupted hours at work in proportion to total hours.

Four Key Metrics - Balanced and comprehensive measuring framework for productivity in software
development organizations. Consists of Delivery Lead Time, Deployment Frequency, Mean Time To Restore
and Change Fail Rate, developed by DORA.

Frontend - development concerning the client-side focusing on conversion of data into graphical interfaces. It
involves everything the user experiences directly, such as the visual and interactive side of a system however
not the design - but functionality of designs.

Github - internet hosting of code repositories for software development collaboration and version control.

Google cloud platform - suite of cloud computing services that provides infrastructure as a service, platform as
a service and serverless computing environments.

iOS - a mobile operating system created and developed by Apple Inc. exclusively for its own hardware,
powering most of the company's mobile devices.

4

Jira - A Case Management System that allows for Agile project management and involves features for
planning, distribution of tasks, tracking, prioritizing, and reporting among lots of other features.

KMO - The Kaiser-Meyer-Olkin (KMO) test is a measure of whether a dataset is appropriate to analyse with
factor analysis. The score indicates to what degree the items in the dataset are related, by testing the partial
correlations among the items.

Lean management - an approach to managing and organizing work that aims to improve a company's
performance, involving the employees in improving the work environment. Includes several principles but relies
on three simple ideas: to deliver value from your customer’s perspective, eliminate waste (things that don’t
bring value to the end product) and continuous improvement.

Little's Law - The relation between throughput, WIP, and Cycle Time based on the formula: Cycle time = WIP
/ Throughput.

PAF - Principal Axis Factoring: Extraction method in Factor analysis which seeks to find the least number of
factors that can account for the common variance in a set of items.

P-value - statistical measurement that indicates the level of significance of the relationship between correlated
factors, used in spearman rank-order correlation. The lower the p-value, the greater the statistical significance of
observed difference.

Raw system data - in this thesis referring to data from the case management system Jira.

R-coefficient - A rank correlation coefficient (rs), ranked between +1 and -1, indicates the strength and direction
of the relationship between correlated factors, used in Spearman rank-order correlation.

Slack - business communication platform offering features such as chat rooms (channels), private and public
groups and direct messaging.

Software development - the process of conceiving, specifying, designing, programming, documenting, testing,
and bug fixing involved in creating and maintaining applications, frameworks, or other software components.

Spearman rank-order correlation - assesses the relationship between two factors without having to take
normality of distribution or equal variance of data into consideration.

SPSS - Statistical Package for the Social Sciences: Statistical Software Platform developed by IBM.

Tech-stack - a set of technologies an organization uses to build a web or mobile application. It is a combination
of programming languages, frameworks, libraries, patterns, servers, UI/UX solutions, software, and tools used
by its developers.

Test club - Cross-sectional cooperation of testers between teams with the purpose of sharing knowledge.
Responsible for testing during Freeze time.

Throughput - the units of work (tickets) that are completed within a set period of time.

UI - User Interface: including the visual touchpoints that allow users to interact with a product involving for
example combinations of colors, animations and typography that results in aesthetically pleasing usage

UX - User Experience: including the full experience of users contact with a product involving structural design
solutions that results in effective usage.

WIP - Work In Progress: the stories or tasks that are currently awaiting completion. Crucial component of Agile
development.

5

Table of Contents
1. Introduction ... 7

1.1 Aim and research questions .. 8
1.2 Implementation ... 9
1.3 Thesis structure ... 9

2. Background: Storytel context ... 10
2.1 About Storytel’s Tech Department ... 10
2.2 Communication Tools ... 11
2.3 Development process .. 13

3. Theoretical framework ... 15
3.1 Productivity ... 15
3.2 Measuring productivity ... 16
3.3 Categories influencing productivity .. 18
3.4 Self-rated productivity .. 25
3.5 Throughput and finding bottlenecks ... 25
3.6 Research model ... 26

4. Method .. 27
4.1 Research design .. 27
4.2 Data collection .. 28
4.3 Analytical methods ... 31

5. Methodology ... 34
5.1 Survey ... 34
5.2 Factor Analysis ... 37
5.3 System data ... 41
5.4 Interviews .. 45

6. Results - Four Key Metrics .. 46
6.1 Tempo Metrics .. 46
6.2 Stability Metrics .. 48
6.3 Summary of the Four Key Metrics estimation - from raw system data at Storytel 49
6.4 Comparison of the Four Key Metrics - System Data vs Survey Estimates .. 50

7. Results - Factors .. 54
7.1 Results from Factor Analysis .. 54
7.2 Investigating the correlated factors ... 56

8. Results - Bottlenecks .. 63
8.1 Tempo metrics .. 63
8.2 Stability metrics .. 64
8.3 Bottlenecks - data from our survey ... 65

9. Conclusions .. 67
9.1 Research Questions ... 67
9.2 Limitations .. 70
9.3 Sources of error ... 71
9.4 Lessons learned ... 72
9.5 Future research .. 73
9.6 Final words .. 74

References .. 75
Internal documents (unavailable without a Storytel-account): ... 80
Interviews: ... 81

6

Appendix .. 82
Appendix 1. Questions in questionnaire ... 82
Appendix 2. Final list of the 29 survey items for factor analysis ... 85
Appendix 3. Obstacles in Four Key Metrics Estimation .. 87
Appendix 4. HR surveys ... 91
Appendix 5. Attempts of measuring Mean Time To Restore ... 92
Appendix 6. WIP per team .. 96
Appendix 7. Historical perspective ... 97
Appendix 8. Initiated analysis of throughput .. 98
Appendix 9. Results from Factor Analysis ... 104
Appendix 10. Overview of Survey Responses ... 105

7

1. Introduction
Software development is an area of study characterized by constant change, and companies

need to keep up with the latest technology to stay competitive in the industry. To be able to

hold onto the market share and continuously deliver products and services of high value to

customers, it is often crucial for companies to increase productivity.

Technology is fundamental in the audiobook streaming industry, and one of the strongest

players in the Swedish audiobook streaming market right now is Storytel. Storytel is an audio-

and ebook streaming service that is available in close to 30 countries distributed over three

continents. Like traditional media, the time came for the book to be digitized, and today the

revenues from audiobooks equate to 50% of the market for fiction books. The audiobook

industry is characterized by growth, estimates say that the market will grow at least 15% per

year (Storytel AB, 2019a).

Tech development is the enabler for a well-functioning subscription streaming service, and in

order to be a leader in the audiobook industry it is not enough to have a wide range of book

titles, but you also need to have a dominant application (Boktugg, 2020). Currently about a

fourth of all employees at Storytel belong to the Tech Department, and the number of Tech

employees is rapidly increasing. During 2020, Storytel’s Tech Department has increased its

workforce from about 100 to 160 employees. As the department increases in size, their teams

grow bigger and more features are developed.

Outside the Tech Department, Storytel has an Intelligence Department with the purpose ‘to

provide data-driven insights regarding the business, customers, and content across the

organization’. They are successful in monitoring the productivity of their organization based

on these terms with ‘business metrics’, which are helpful to look at when it comes to deciding

about the future and roadmap for the developers’ agenda (Storytel, 2021b). At the moment,

Storytel is however not utilizing the data that exists for generating insight regarding the flow

of work and information in the Tech Department. More employees are recruited continuously,

which is generally assumed in the software development industry to equal a higher level of

productivity (Brooks, 1995). That might be the case, but having a balanced measuring

framework covering the Storytel Tech Department’s productivity could validate such

assumptions.

Appropriate tech metrics should be balanced and include all necessary dimensions. Dimensions

that should be covered are, for example, responsiveness, stability, quality and predictability to

enable a holistic view of the current state within a team or a project. By monitoring

organizational performance, it is possible to influence and improve organizational productivity.

One approach for measuring the performance of a software development organization was

recently developed by Google’s DevOps Research and Assessment team (DORA) known as

the Four Key Metrics. Using these metrics can be valuable for historical comparison of the

state of the organization, furthermore discovering trends and patterns available which in turn

8

can be used to evaluate changes made to the organization or serve as the groundwork for

learning about how to streamline procedures (Forsgren, Humble and Kim, 2018).

1.1 Aim and research questions
With the purpose of understanding how Storytel’s Tech Department is performing, this thesis

aims to map Storytel’s productivity defined through the Four Key Metrics. The Four Key
Metrics are Delivery Lead Time, Deployment Frequency, Mean Time To Restore and Change

Fail Rate, and constitute a balanced framework that measures both the tempo and the stability

of the software development process. By measuring these key metrics, a software development

team can be classified into one out of four performance categories: Elite, High, Medium, and

Low. By creating a performance baseline from these metrics and tracking changes through

analyzing them, a team can improve on their work process and achieve better business

outcomes.

The following research questions will therefore be investigated:

● Where does Storytel rank in the software development performance categories based

on the Four Key Metrics?
● What human and technical factors have an impact on Storytel’s software development

performance?
● What bottlenecks exist that hinder Storytel from being a better performer in terms of a

higher performance category?

9

1.2 Implementation
In the following thesis, a classification is created into which performance category the Storytel

Tech Department belongs to. This is done through a deep dive into the raw system data existing

at Storytel, mainly focusing on the case management system used at Storytel called Jira

(Atlassian, 2019). To look into the factors influencing productivity, a survey of the Tech

Department was conducted. The survey took about 10 minutes to respond to and approximately

50% of the Tech Department answered the survey, giving valuable insights in the connection

between technical and human factors and perceived productivity. Along with these data

collections, interviews with Storytel employees were performed to gather knowledge about the

Storytel Tech department in-depth and to understand bottlenecks and obstacles. While some

analyses are looking at the team level to validate some findings, the overall focus has been on

the department as a whole.

1.3 Thesis structure

Following this introduction (Section 1), the thesis begins with a background of the Storytel

context needed in order to create a basic understanding (Section 2). Thereafter, the findings of

a literature review on the area of productivity and metrics within software development are

presented in the theoretical framework in Section 3. Among lots of factors, reasoning concludes

which factors are interesting to look into specifically for the Storytel context. In the concluding

part of the theoretical framework, the chosen factors are visualized in the research model

together with the metrics. The methodology and implementation (Sections 4 and 5) present

every step of the approach of data collection and analysis. Thereafter, the empirical results are

given along with some fact-founded analysis (Sections 6, 7 and 8). Results and insights in the

Storytel Tech Department are conferred, followed by the Four Key Metrics estimations and

factor analysis and the bottlenecks discussion. Conclusion (Section 9) wraps up the thesis with

reasoning on lessons learned, limitations, and future research.

10

2. Background: Storytel context
In this section, we present more knowledge about the Storytel Tech Department concerning

how the organizations and teams are structured. Further, elaboration is made on aspects like

which tools are used in the organization and which workflow stages are used in their software

development process.

2.1 About Storytel’s Tech Department
During 2020, Storytel’s Tech Department increased its workforce from about 100 to 160

employees. This means that they now constitute about one-fourth of all employees at Storytel

(Storytel, 2021a). Along with their growth, the tech organization has also been going through

a lot of organizational changes. Today there are eleven different teams each with unique focus

areas. The number of employees within each team ranges from 5-25. Within the team, there

can be several crews with corresponding Crew Coaches (corresponding to Scrum Master), and

each team has one Tech Manager. The tech manager’s main responsibility is growing the team

and the talents in it. How deep they are involved in the feature development is up to each team.

Apart from Tech Manager and Crew Coaches, there are different roles within the crews such

as developers working on different systems and multiple stacks, testers, and UX/UI designers

(Storytel, 2021c). How many people in each role there are depends on the focus area of the

team.

The structure of the teams has changed along with the size and needs of the department. Starting

off as just a few people in the Tech Department, several reorganizations have happened since

then. About two years ago Storytel switched from being divided into tech stack-specific teams

(backend, Android, iOS, and web) where dependencies between each other were inevitable, to

three different teams with different focus areas which were related to the end-user journey and

business metrics. These changes were aimed at reducing dependencies and creating

autonomous, independently functioning teams. The second reason was to decrease the number

of stakeholders necessary to manage for each team. The teams now all had their own different

backlogs, which made prioritizing easier. To adapt to the rapidly growing Tech Department,

these three teams were incrementally split during 2020 to make the work of each team more

easily managed (Interview 1: Product Manager, 2020).

Most of the current 11 teams are connected to some specific parts of the user journey - from

discovering the service, creating and paying for an account, finding and listening to their first

audiobook until finally becoming a frequent user. Cross-sectionally between teams there are

clubs, such as UX club, Test club, and iOS club (Storytel, 2021c). The purpose of these is that

people working in similar tech stacks on different teams can share knowledge and have a place

to meet and cooperate, such as in regular meetings or dedicated Slack channels (Interview 3:
Developer, 2020). Currently, a lot of architectural decisions are made in the clubs (Interview
16: Tech Manager, 2021).

11

2.2 Communication Tools
The following paragraphs will cover aspects of the Storytel context related to communication.

Storytel does not restrict its Tech Department teams to use universal models or tools within its

organization, neither frameworks nor programming languages. They generally use a bottom-

up approach, giving the development teams the power to make these decisions based on their

own expertise, interests, future surveillance, and in an experimental and explorational way. The

increase of employees has affected the communication routines and the amount of teams is

strongly correlated with the communication quality, efficiency and effort needed. The

following tools have either been used to collect data in order for analyses on productivity to be

made or are found important to gather understanding on the context in which the Tech

Department operates.

Since all teams have their own managers, and a diverse setup of roles and responsibilities, using

the same methods to derive their productivity is difficult. Some are frequent users of Storytel’s

case management system, and some are not. Documentation standards, commit structures, and

contribution guidelines on Github differ among the teams. However, the communication tool

Slack (Slack, 2021) was introduced at Storytel in 2016 and has been the main channel for

communication for all teams in the Tech Department since then. While email as a means of

communication is very prevalent in other parts of the organization, it is rarely used within the

Tech Department. The communication pattern through Slack somewhat characterizes the

culture of the department. Internal communication is mainly handled in a quick setup with low

formality. Anyone can easily message any other person directly, or post questions in open

channels to find answers. Responses are usually fast and ease simple cooperation both within

and between teams and crews.

Storytel’s Human Resources Department (HR) additionally utilizes a survey tool to gather

insight from the whole organization. Surveys are sent out to employees via email on themes

such as ‘Wellbeing’, ‘Leadership’, and ‘Feedback’. While some surveys are sent frequently,

others are sent out once as part of an investigation into a specific focus area. For this study, we

have analyzed HR survey data specifically gathered from the Tech Department in 2019 and

2020, see Appendix 4. This data will hereafter be referred to as HR survey data.

The case management system used at Storytel is called Jira (Atlassian, 2019). In general, Jira

is used on a daily basis by both developers and Crew Coaches. It allows for Agile project

management and involves features for planning, distribution of tasks, tracking, prioritizing, and

reporting among lots of other features. In Jira, you can design your own workflow and use

several plugins to design your own system of integrations with other tools. Generally, each

team has one or several projects in Jira. In some cases, each crew has its own specific project.

In the Jira projects, work is organized between different boards. Each team chooses its own

structure, but for example, there can be one board for representing the roadmap of the team as

an overview when it comes to prioritizing among Epics, a larger body of work that can be

divided into a smaller number of tasks (Atlassian, 2021). These tasks are called stories (or

12

tasks) and the rule of thumb is that no story should take longer to finish than one sprint of three

weeks (Interview 6: Crew Coach, 2021). Then the highest rank granularity is found in the

developer’s board, where the crew members join and concretize the stories into smaller tickets
or subtasks (see Figure 1). One ticket should preferably not take longer than two workdays to

finish (Interview 6: Crew Coach, 2021). At the end of each sprint, boards are cleared, closed,

or archived.

Figure 1. Representation of the hierarchy of Jira issues.

In Jira, automated reports are available. However, they do not allow for much specifications or

interaction. Instead, a plugin was used in this thesis called Actionable Agile (Actionable Agile,

2021). This was implemented in Jira for a short trial, but Actionable Agile Analytics was also

possible to use separately with imports from Jira. Actionable Agile enables flow charts for

metrics such as Work-In-Progress, throughput, cycle time, and work item age and allows for

filtering, zooming, enabling different workflow stages, and more.

Github (Github, 2021) is Storytel’s code repository. At this moment, there are about 200

collaborators involved in the organization account and over 550 repositories. Among the top

languages used are Java, C#, Go, JavaScript, Kotlin, Python, Shell and Jupyter Notebook. The

total number of languages used in the organization is around 25, however, they are used to

varying degrees. Some are abandoned and some are only maintained but not involved when

creating new features.

Several other tools are available depending on the role that you have, for example, tools that

are specific to the work of a UX designer. Examples of commonly used tools at Storytel are

Delibr (Delibr, 2020); a Jira plugin mainly used for writing specifications and requirements,

and Miro (Miro, 2021); a visual collaboration whiteboard suitable for meetings, brainstorming,

and workshops. When it comes to these tools, the teams - and in some cases, individual

developers - are free to choose their own tools as a part of the ambition to embrace creativity

and curiosity to try new things. The same idea applies to programming languages.

13

Each month, there is a meeting for the entire Tech Department called Monthly Tech. The

content of this meeting has partially changed over time. It used to be a check-up meeting where

every team had the chance to present what they were working on so that everyone could be up

to date on what was going on in the department. With Storytel’s growth, this has been set aside

in favor of welcoming new employees and general sweeping updates of the most important

notices. There are currently too many teams to practically have a proper presentation from each

of them every month (Interview 2: Crew Coach, 2020).

2.3 Development process
The following paragraphs will present the aspects of the Storytel Tech Department, for example

regarding workflow stages in their software development processes and strategic choices

concerning architecture and automated testing.

2.3.1 Services and architecture
Storytel maintains several different services. They maintain an audiobook streaming mobile

application for both Android and iOS, which is their main service. In addition, they have

internal web tools for employees and external tools for creators such as authors, narrators, and

publishers. Furthermore, Storytel maintains a customer web page, several payment-related

systems, APIs for partners, and databases.

Storytel is currently going through a migration process, switching from a local server platform

to the cloud-based Google Cloud Platform (GCP) (Google Cloud, 2019). This was an initiative

that started about 5 years ago, partly due to the ambition of decreasing their climate footprint

and one step in the right direction of their sustainability agenda (Storytel AB, 2019b).

2.3.2 Deployment pipeline
The deployment pipelines differ between the Storytel services. For the mobile applications

there is a new release every third week according to a schedule that involves time for testing

(freeze dates) and coordination with the AppStore (Apple, 2021a) for iOS (Apple, 2021b) and

GooglePlay (Google Play, 2021) for Android (Android, 2021). However, the final rollout

happens in stages. The complete rollout, which means availability (not reachability) for 100%

of the customers, is usually performed after 7 days. Not all customers update their mobile

applications every third week, but each release usually has time to reach about 85% of the

customers before it is time for a new release (Interview 10: Tech Manager, 2021). This means

that it is not straightforward to keep track of which features have an impact on business metrics.

This further supports the assumption that business metrics are not sufficient for measuring

productivity within the tech teams. There is a long latency and delay to see feature-related

changes in the business metrics (Interview 1: Product manager, 2020). To make it more

complex, all features are not available in all markets. The release versions do not differ between

countries but features can be disabled through a feature flag system (Interview 16: Tech
Manager, 2021). Even though the number of 85% reached customers for each release is quite

high, this number takes up to three weeks to reach - explaining why released to production does

not necessarily mean reaching end-users.

14

While the routines for app releases have been developed and reached some maturity within the

organization, there are initiatives in different stages to introduce similar routines for other

services in the company (Interview 10: Tech Manager, 2021). For the legacy platform, releases

are given a version number and are deployed at an interval of one week (Interview 8: Test Lead,
2021). For the internal and external web tools, changes are being deployed more frequently as

the teams usually can release new features independent of other teams. Generally, for teams

working on these, there are deployments every week (Interview 3: Developer, 2020). These

releases are communicated to affected users to varying degrees, with a decreasing trend - but

they lack version control (Interview 3: Developer, 2020; Interview 6: Crew Coach, 2021).

2.3.3 Test pipeline
Since one year ago, Storytel has one person employed as Test Lead. This role grew from the

necessity of a coordinator to keep all the testers at Storytel organized, which had become quite

many along with the growth of the Tech Department. The role was established with the aim to

increase the level of tests and the overall quality. With a background as a tester, it also means

that the Test Lead can help or temporarily replace someone in the test organization. In

conclusion, this role has both a strategic and operational focus. Initiatives in Storytel to improve

the testing organization are based on the theoretical concept to shift left - meaning that testing

should be included earlier in the development cycle - and to expand the degree of automation

in the testing activities (Interview 8: Test Lead, 2021). Storytel is striving towards further

automating regression testing, but is still in early phases, with the gain of being able to repeat

tests often and cheaply (Interview 8: Test Lead, 2021).

In order to strengthen the relationship between the Tech Department and customer support, and

to some extent enable customer feedback-driven work, the new role within customer support

called the Global Support Technical Administrator, appeared in March 2020. Cooperation is

mainly orbiting what is called the Bug Refinement Sessions, happening each Friday (Interview
11: Customer Support, 2021). At this meeting, there is a chance to discuss bug prioritization,

Customer Service insights into present bugs, and lift overall questions between the Customer

Support representative, Crew Coaches, and testers. If it is not possible to wait until this meeting

due to the urgency of the bug, Slack channels are used (Interview 8: Test Lead, 2021).

The testers are team-specific during the development phase, and they either test source code

themselves during this time or they serve as a coach to the developers to manage their own

testing. When it is time for releasing the applications a freeze date tells the teams when it is not

possible to push new code, as testing commences. This exists so that the whole test club can

test the upcoming release material together. After the freeze date, it no longer matters which

part of the code belongs to which team, as they are encouraged to test each other's teams’ work

(Interview 8: Test Lead, 2021).

15

3. Theoretical framework

In this section, the findings of a literature review on the area of productivity and metrics within

software development are presented. Among a lot of potential factors theorized to impact

software development productivity, reasoning concludes which factors are interesting to look

into specifically for the Storytel context. In the concluding part of the theoretical framework,

the chosen factors are visualized in the research model together with the Four Key Metrics

chosen to measure productivity.

3.1 Productivity
Productivity in the field of software development is notoriously challenging to measure

because of the complexities of the tasks and processes it involves. The traditional definition of

productivity as being output divided by input may sound straightforward, but defining what

constitutes input and output in a software development process presents many challenges. The

output needs to be evaluated in terms of both quantity and quality, among other dimensions.

Regarding the input, the key ingredient in a software development process is people, and the

qualities and skills of people are also famously difficult to quantify. (Wagner and Ruhe, 2018)

There has been a lot of research done on the area of productivity within software development

over the years, and consequently, efforts have been made by researchers to collect and review

these findings. Wagner and Ruhe (2018) conducted a systematic review intended to overview

productivity factors in software development. They have collected hundreds of relevant studies

and present them with a timeline perspective which serves as valuable groundwork for future

research in the field of measuring productivity. However, the large amount of influencing

factors presented in their research highlight the difficulties in finding a simple measurement

tool (Wagner and Ruhe, 2018).

According to Wagner and Ruhe (2018), literature within the software engineering productivity

area has had a strong emphasis on mostly technical factors. Consequently, Wagner and Ruhe

(2018) have been careful to also analyze human-related, ‘soft’ factors, hereby referred to as

human factors, with equal detail. The importance of involving these human factors for

productivity surfaced during the ’90s, partly because of the comprehensive work on the

influence of soft factors by DeMarco and Lister (Wagner and Ruhe, 2018). Wagner and Ruhe

(2018) present the human factors and technical factors separately, but highlight that the line

between these can sometimes be fuzzy. The factors are listed in their paper with a short

description but do not involve details of how factors may affect productivity positively or

negatively. The human and the technical factors are further divided into categories. The five

categories within the human factors are: corporate culture, team culture, capabilities and

experiences, environment, and project-specific factors. The technical factors are divided into

the three categories of product, process, and tools (Wagner and Ruhe, 2018).

16

3.2 Measuring productivity
3.2.1 Background on measuring productivity
Defining metrics to measure productivity and quality in software development has been an

important research area for many decades. In the book Accelerate (Forsgren, Humble and Kim,

2018), the authors discuss the flaws of a few traditional attempts to measure productivity in

software development, such as lines of code, velocity, and utilization, which are all relatively

ineffective and misleading for different reasons. According to the authors, measuring lines of
code - historically a rather favored method - sets an incentive for developers to write bloated

software that in turn requires more maintenance and a higher cost of change. Using velocity as

a metric of productivity is a relative and team-dependent measure, which can cause teams to

try and inflate their estimates by working on completing as many tasks as possible while

avoiding collaboration with other teams - as to not increase others’ velocity at the expense of

their own. Finally, the flaw in measuring utilization as an indicator of productivity is that when

an entire team is working at full capacity, there is no spare capacity that can handle changes to

the plan such as unexpected workloads or improvement work. Ultimately, having a utilization

rate close to 100% leads to teams taking exponentially longer to get work completed. The

authors argue that a successful performance metric should avoid these pitfalls by fulfilling two

key requirements: they should focus on global outcome to ensure that teams are not competing

against each other; and they should focus on outcome rather than output, work that contributes

towards achieving organizational goals (Forsgren, Humble and Kim, 2018).

Meyer et al (2014) emphasize that there might not be a single or simple measure for a

developer’s productivity. Wagner and Ruhe (2018) share their concerns, and refer to Ramirez

and Nembhards saying that ‘it seems to be a common agreement that to date there are no

effective and practical methods to measure knowledge workers’ productivity’. However, there

are strong incentives to attempt to make these measurements, which is why researchers and

organizations keep trying. First of all, measurements can prompt action. Secondly, they can

serve as the foundation for goals and aligning actions accordingly. They are also important for

advocating when seeking investments and to justify and confirm actions (Github, 2019).

When discussing productivity, it is common that some vocabulary is used interchangeably.

Words like productivity, performance, efficiency, and quality are used synonymously.

Moreover, it is important to remember that measuring commercially can differ quite a lot from

measuring academically (Construx Software, 2016). There are not only difficulties connected

to how or what to measure, but also how to evaluate the results. Furthermore, one must take

into account the potential risk of unwanted effects from implementing measurements.

A good productivity metric should indicate factors that are within the teams’ influence to

change and feel relevant to the individuals involved. They should be linked to company strategy

so that the output it measures is aligned with organizational goals. To ensure sustainability,

they should also be of low cost and effort to capture. As no single metric can capture enough

information to give a good indication of team productivity, it also needs to be balanced by other

complementary metrics. Bad metrics tend to pit teams against each other and focus on local

17

outcomes rather than global outcomes. If the metric is linked to personal reputation, it also runs

the risk of causing detrimental social effects within the team. (Øredev Conference, 2015)

A risk of using metrics is that if they are set up as a target, they risk being abused. If good

metrics are in place, their abuse will generally lead to desirable outcomes (Øredev Conference,

2015) Attitudes towards metrics may also vary. In a study by Meyer et al. (2014) 10% of

participating software developers stated that they do not think it is possible to measure

productivity, that they have privacy concerns, or that they believe that the measuring itself

might in fact lead to a decrease in productivity.

3.2.2 Four Key Metrics
Metrics intended to capture productivity quantitatively need to be balanced to ensure that an

organization gains any real value and insight from using them. They should include dimensions

such as responsiveness, stability, quality, and predictability to enable a holistic view of the

current state within a team or a project. This requires multiple complementary metrics (Øredev

Conference, 2015).

In the book Accelerate (Forsgren, Humble and Kim, 2018), the authors propose the Four Key
Metrics to quantitatively measure productivity and indicate performance level in the software

development context. The focus of these metrics are on global rather than local, team-level

outcomes, and aim to measure outcome rather than output that does not actually contribute to

organizational goals. The idea is that by measuring these key metrics, a software development

team can be classified into one out of four performance categories: Elite, High, Medium, and

Low. In Figure 2 the categories are represented in a matrix, with corresponding intervals

separating the different categories. Each of the top three categories are divided by time spans,

indicating speed for Delivery Lead Time and Mean Time To Restore, and frequency for

Deployment Frequency. The metric Change Fail Rate is divided by the percentage proportion

of ’failed’ changes to a service. The matrix and intervals are constructed by the DORA team

based on their research findings on software development organizations placing on a global

scale.

Figure 2. The Four Key Metrics and their respective classification into four performance categories.

18

The first proposed metric is Delivery Lead Time. When measuring the lead time it is often not

clear where to begin, due to the difficulty of defining what constitutes the beginning of the

product development process. One relatively stable metric is using the delivery part of the lead

time, as opposed to beginning with the product design and development phase. This includes

the building, testing, and deployment and can be translated to the time it takes to go from code

committed to code running in production. Shorter product Delivery Lead Times are preferable

as they enable a quicker feedback loop and consequently faster course correction (Forsgren,

Humble and Kim, 2018).

The second metric is Deployment Frequency, used as a proxy measurement of batch size, i.e.

the amount of code being deployed on average. By reducing batch size, one can enable faster

cycle times, accelerate feedback loops and reduce overhead and risk. As the batch size is not

made up of visible inventory in software development it is tricky to measure, and therefore

Deployment Frequency, defined by a software deployment to production or an app store, is

used to approximate batches (Forsgren, Humble and Kim, 2018).

As these two metrics are indicators of the tempo of the product development, they need to be

balanced by measures indicating the reliability and quality of the developed product, namely

the stability. This allows for a more complete picture to be derived, and for impacts and

tradeoffs between the metrics to be found (Øredev Conference, 2015). Reliability is generally

measured as the time that passes between failures, but as failures are impossible to avoid in

modern software services and products as systems are becoming increasingly complex, the

interesting measure instead becomes the time it takes for service to be restored in the inevitable

case of failure. The third metric is therefore defined by Forsgren, Humble and Kim (2018) as

the Mean Time To Restore.

Finally, the fourth metric is a measure of quality defined as Change Fail Rate. It is measured

as the percentage of changes made to the primary service or application that result in either

degraded service or a need for remediation such as a patch, roll-back, or a hotfix. (Forsgren,

Humble and Kim, 2018)

This framework can be applied to indicate what performance level an agile software

development organization is at compared with other companies on the market, as well as allow

for an unbiased historical comparison of the state of the organization. Using the metrics,

internal trends and patterns can be observed over time and in turn be utilized to indicate what

kind of impact different decisions and events have had on productivity in the organization.

3.3 Categories influencing productivity
Based on the findings in Section 3.2 Measuring Productivity of what makes a good metric, the

factors were narrowed down to what the metrics should cover, fit for the Storytel context. Based

on the findings of Wagner and Ruhe (2018) and Forsgren, Humble and Kim (2018), eight

categories of factors influencing productivity were extracted (see Figure 3). In this thesis, the

19

most relevant categories within the human factors are found to be the corporate- and team

culture factors, since they are company-wide and involve the team. Capabilities and experience,

on the other hand, are related to the individual and are therefore most reasonable to exclude.

Between project-specific factors and environment factors, the environment-related ones are

deemed more interesting - since these will more likely continue to be relevant in the future. For

the technical factors, it is concluded that good metrics are focused on the process rather than

the product (Github, 2018). The factors connected to the choice of tools would preferably be

excluded in favor of a measurement framework that can be relevant no matter what software

development tools are currently trending. Since Storytel is flexible regarding tools and product-

related factors and allows these to be easily interchangeable, the product and tool category can

be considered less significant for this thesis. The chosen categories (Culture, Environment,

Process) most relevant for the Storyte context are highlighted in a darker color, and the

corresponding factors that will be the focal point of this study and are visualized in Figure 3.

In the following sections, each factor will be described and contextualized.

Figure 3. Factors influencing productivity from chosen categories

3.3.1 Culture Factors
Academic literature has long recognized the impact of culture on productivity and quality in

software development organizations (Mathew, 2007). In this subsection, a number of factors

that are theorized to measure the culture in an organization are described. These are generative

culture, job satisfaction, transformational leadership, team identity, cohesion between teams,

and communication.

20

Westrum (2004) found that cultures that optimize information flow, also known as generative

cultures, were found to be particularly predictive of desirable organizational outcomes.

Westrum introduced ‘The three cultures model’ in which three typical patterns are identified

in organizational cultures. The first culture is power-oriented and pathological, in which

cooperation is low, novelty is crushed and responsibilities are shirked. The second culture, in

the middle of the spectrum, is distinguished by bureaucracy and rules and marked by modest

cooperation and narrow responsibilities. The third and final culture is generative and

performance-oriented within which risks are shared, cooperation is encouraged and novelty is

implemented. The concentration in the organization is on the mission, rather than positions and

individual people. Westrum emphasizes that the flow of information needs to be timely and

presented in such a way that it can be used efficiently and provide the right answers to the

questions that the receiver needs answered. (Westrum, 2004). The culture needs to promote

meaningful work, psychological safety, and clarity to generate high-performing teams. A

generative culture is listed by Forsgren, Humble and Kim (2018) as one of the capabilities

found to drive higher software delivery performance, organizational performance, and

productivity. In order to measure Westrum cultures accordingly, they have tested seven

statements related to the dimensions in Table 1. to be both valid and reliable.

Pathological
(Power-Oriented)

Bureaucratic
(Rule-Oriented)

Generative
(Performance-Oriented)

Low Cooperation Modest Cooperation High Cooperation

Messengers Shot Messengers Neglected Messengers Trained

Responsibilities Shirked Narrow Responsibilities Risks Are Shared

Bridging Discouraged Bridging Tolerated Bridging Encouraged

Failure Leads To Scapegoating Failure Leads To Justice Failure Leads To Enquiry

Novelty Crushed Novelty Leads To Problems Novelty Implemented

Table 1. Westrum’s culture framework with three different types of cultures.

According to Forsgren, Humble and Kim (2018), job satisfaction - signified by employees

feeling that their work is meaningful, that their judgement is valued, and that they have access

to the right tools and resources to perform their job - is a predictor of organizational

performance. Engaged employees that bring the best of themselves to work produce better

work results which consequently results in a higher software delivery performance. The feeling

of fulfillment in one's job is an emotional state and naturally a perceptual measure that cannot

be directly quantified, but a commonly used proxy metric is to measure Employee Net

Promoter Score (eNPS). The idea behind eNPS is to ask how likely it is that an employee would

recommend their company as an employer to a friend or colleague on a scale and that this score

reflects the respondent’s level of satisfaction with their employer. The eNPS score can be

calculated from 5 point scale survey answers by retracting the share of ‘detractors’ (those who

score in the bottom range, between 1-3) from the share of ‘promoters’ (those who score in the

21

top range, 5) (Sedlak, 2020). An eNPS score can range from -100 to 100, and generally, scores

between 10 and 30 are considered ‘good’. A score above 50 is considered ‘excellent’

(Madhavan, 2019).

Forsgren, Humble and Kim (2018) additionally found that the style of leadership in a team has

a measurable and significant impact on organizational productivity and software delivery. The

model of transformational leadership has been emphasized and embraced as a way an

organization can encourage its employees to exceed expectations. Transformational leaders

motivate their followers and ‘transform’ their attitudes, beliefs, and values (Rafferty and

Griffin, 2004). Rafferty and Griffin (2004) identify five characteristics of a successful

transformational leader that are highly correlated with performance. These characteristics are

vision, inspirational communication, intellectual stimulation, supportive leadership, and

personal recognition. In a study by Ali, Farid and Ibrarullah (2016), transformational leadership

was additionally found to have a significant effect on job satisfaction and organizational

commitment. Transformational leadership can be measured directly by asking team members

to what extent they perceive their leaders to exhibit these characteristics (Forsgren, Humble

and Kim, 2018).

Demarco and Lister (1987) argue that teams with a strong sense of identity are more effective

because the team members are more directed. The reason that teams with a strong sense of

identity are more likely to have aligned goals, and in turn are more likely to attain those goals.

Strong team identity can be signified by members having a joint feeling of ownership of the

product, and that they feel that they are part of something unique and that they take enjoyment

in their work.

Aligned with Demarco and Lister’s (1987) line of argument in the previous paragraph and

Westrum’s (2004) finding that cultures that optimize information flow drive performance, it

can be theorized that cohesion between teams is a factor that similarly influences productivity.

Insight into what other teams are working on and corresponding transparency into one’s own

team can promote cooperation, information flow, and cohesiveness between different teams

within the organization, and in turn promote organizational performance.

A large software development project typically includes a lot of requirements to fulfill and a

diverse set of roles, and therefore a good communication structure is fundamental. To meet

requirements and divide the workload, projects need to be divided up into multiple tasks, many

of which might be interconnected in a chain. In the book The Mythical Man-Month: Essays on
Software Engineering (1995), author Frederick P. Brooks finds that most tasks within software

engineering projects are tasks with complex interrelationships, and therefore they become more

and more time-consuming the more people you add to the task. As a general rule, Brooks argues

that assigning more software developers to a project with the purpose to speed up the process

will lead to a further delay because of the time it takes for the new recruits to learn about the

project and the increased communication overhead. This simplified observation is known as

Brook’s Law (Brooks, 1995).

22

While there is a common belief within the field of software engineering that efforts on

communication should be reduced as they hamper productivity due to interruptions, Wagner

and Ruhe (2018) suggest the opposite. They find that several studies advise that higher

communication intensity is positively correlated with successful projects, and that the

communication efforts should therefore strongly correlate with the increasing number of people

in the organization (Wagner and Ruhe, 2018). The importance of communication can be

derived from Conway’s law, based on Melvin Conway’s publication ‘How do committees

invent?’ (1968), proposing that an organization's communication structure will inevitably be

mirrored in the software systems that are designed within the organization (Brooks, 1995). This

basically means, that in order for a software module to function, the authors developing it must

communicate frequently.

3.3.2 Environment Factors
The work environment, both in terms of physical as well as time-management and workflow-

related components, is naturally a significant aspect of an employee's work life and

consequently their day-to-day productivity. In this subsection, factors theorized to measure

impactful aspects of the organizational environment are described. These are time

fragmentation, E-factor, and working remotely

.

Fragmentation of employees’ time is brought up by Demarco and Lister (1987) as one of the

main obstacles for efficiency and productivity, and mention this as being a consequence of

when people are involved in too many projects. They argue that a good work environment

should afford employees to work uninterrupted in a flow. Similarly, Meyer et al (2014)

highlight interruptions and switches and how they concern productivity. Switches can be

separated into different kinds. Task, activity, and context- switches all have different impacts

on productivity and can be of both positive and negative character for the individual as well as

for the team. An interruption from coding for one developer, for example, to review code from

someone else in the team, can possibly prevent a bottleneck for a teammate. A task switch for

the individual is therefore not necessarily negative for the productivity of the whole team

(Meyer et al., 2014). The impact of the number of uninterrupted hours a software developer

has access to in regards to productivity has been contested in different studies. Meyer et al.

(2014) studies showed that over half of the developers’ time was spent in interactive activities

other than coding. Wagner and Ruhe (2018) present the same estimate to be that a third of the

time the typical software developer is not working explicitly with technical work.

Following Demarco and Lister’s (1987) idea that uninterrupted hours is a prerequisite for a

productive work environment, the collection of uninterrupted hour data can be a meaningful

metric of how good or bad a work environment is - they name this metric the Environmental

Factor, or the E-Factor. They argue that when there is a low number of uninterrupted hours in

proportion to total hours, approximately below 40%, this can imply reduced effectiveness and

frustration among employees. A number above 40% indicates an environment that allows

employees to get into a flow when they need to.

23

Things like communication patterns, performance management as well as the work itself

undergo a transformation when an employee starts working remotely (Watad and Will, 2003).

Bloom et al. (2014) have investigated whether working remotely affects job performance. In

the study of Ctrip, a company located in Shanghai, the authors found that the introduction of

remote work increased the performance of employees by 22 percent. One reason for the

increased performance, the authors suggest, is because the remote workers worked more

minutes as they took fewer breaks. Another reason was found to be connected to a quieter and

more convenient working environment. They conclude that tasks requiring concentration may

be best undertaken at home, whereas other tasks involving teamwork may be best undertaken

in the office. Naturally, this is depending on the employee's individual prerequisites at home

and living situation whether working from home allows for more uninterrupted hours than at

work, or fewer.

Individual effects of working from home, Bloom et al. (2014) identified as fewer redundancies

and a significant increase in job satisfaction. Harpaz (2002) and Bellman and Hübler (2020)

continue to write about the advantages and disadvantages of the individual working from home.

Among other things, individuals experience more flexibility, better time management, and

savings in expenses and travel time. On the other hand, the individual may also experience a

feeling of isolation, a poorer division between work and private life, and a lack of professional

support (Harpaz, 2002).

3.3.3 Process Factors
Factors belonging to the process category measure technical aspects of the software

development process. Those estimated to be most relevant to the Storytel context are described,

mainly based on Wagner and Ruhe’s (2014) and Forsgren, Humble and Kim’s (2018) research.

These factors are mainly part of the concept of continuous delivery, including architecture,

‘shifting left’, automation, and lean management practices like visual management and limiting

Work-In-Progress.

Continuous delivery is described by Forsgren, Humble and Kim (2018) as the ability to release

all kinds of changes to production ‘quickly, safely and sustainably’ and is supported by their

research to have a measurable impact on software delivery performance. It is about increasing

throughput while simultaneously lowering risks, and promotes prioritizing keeping software

deployable over working on new features, ensuring that feedback on quality and deployability

of the system is available to everyone on the team, and working in small batches. Continuous

delivery is implemented by adopting a number of different practices related to automation,

security design, and architecture. Eleven contributing components are mentioned by Forsgren,

Humble and Kim (2018), and four of those found most applicable to this study are described.

One of the practices of continuous delivery is loosely coupled architectures (also known as

microservices) which allow organizations to achieve better delivery performance and reduce

the pain of deployment. In microservice architectures, services and applications are units that

can be deployed or released independently of services it depends on, and services that depend

on it (Forsgren, Humble and Kim, 2018).

24

Another aspect that is closely tied to continuous delivery is the move to ‘shift left on security’,

i.e. address security concerns earlier in the development process in order to build more secure

systems and achieve higher levels of software delivery performance. Traditionally security

testing is done after development is complete, which typically means that if significant issues

are discovered - such as architectural flaws - they are expensive to fix. Furthermore, when

testing activities are carried out towards the end of each development cycle and since

development processes are rarely completed on time - the testing process tends to suffer most

by being cut off. Additionally, the effect of ‘shifting left’ has been observed to improve

communication and information flow (DevOps Research and Assessment, 2021).

Automation is another key feature to continuous delivery, both in regards to testing and

deployment. Test automation, performed alongside a degree of manual testing, can be used to

increase test reliability and regularity, which leads to lowered risks and increased quality.

Deployment automation similarly enables more reliable and risk-free deployment to

production. The impact of both of these factors can be indicated by investigating the percentage

of automation in their respective pipelines (DevOps Research and Assessment, 2021).

Complementing the principles of continuous delivery, a set of practices categorized as lean
management is proven by Forsgren, Humble and Kim (2018) to improve software delivery

performance, decrease burnout, and lead to a more generative culture. Out of the four practices

described by the authors, the two deemed most relevant are emphasized below (left out are

‘Feedback from Production’ and ‘Lightweight Change Approvals’.)

Visual management entails enabling greater visibility for the team into their collective work

through key productivity and quality metrics, which can promote a greater understanding of

the flow of the entire work process. Metrics (for example lead times and failure rates) are

presented on dashboards or other visual displays. Teams that are proficient in implementing

work visibility have a greater understanding of how their work moves from idea to customer,

and are in turn empowered to improve their workflow (Forsgren, Humble and Kim, 2018).

Limiting work-in-progress, the number of tasks team members are working on, drives process

improvement and increases throughput. These lean management practices protect teams from

becoming overburdened and expose obstacles to the flow of work. Interestingly, it has been

observed that solely constricting the number of Work-In-Progress, hereby referred to as WIP,

in a team does not in itself have an impact on software delivery performance, but only when

this practice is combined with the use of visual displays a strong positive effect can be observed

(Forsgren, Humble and Kim, 2018).

25

3.4 Self-rated productivity
How a developer perceives their own productivity can be of interest in relation to more

quantitative metrics of productivity. Productivity can be measured on several levels, both

organizational, team-specific, and individually and in this thesis, emphasis will be placed on

organizational and team-specific levels of productivity. However, it can still be valuable to

account for how developers perceive themselves as productive as a helpful support to measure

and assess productivity on higher levels (Meyer et al. 2014). Studying the developers'

perceptions of their own productivity - besides hypothetically being indicative of

organizational productivity - might also indicate the culture and attitudes of the organization.

Furthermore, the developers' feeling of the productiveness of the organization can have an

indirect impact on productivity, since it can affect the mood of a developer and eventually the

performance level. There are studies showing the causal link between human-well being and

human performance, that provide evidence that happiness makes people more productive

(Oswald, Proto and Sgroi, 2007), as well as the opposite, that depression and beliefs about

cognitive confidence independently predicted behavioral procrastination (Spada, Hiou and

Nikcevic, 2006). Some suggest that fluctuating emotional states of humans should be seen as

input in designing a model that seeks to increase the productivity of a system (Pakdamanian,

Shiyamsunthar and Claudio, 2016).

Through a survey and observational study, Meyer et al. (2014) gathered perception data. The

survey showed that developers think about productive days in terms of ones in which many or

big tasks are completed without significant context switching or interruption. Developers also

like to organize their work to get in “the flow” so as to have few interruptions and context

switches. However, from observational data, it was found that significant context switching

between tasks and activities can occur with developers still perceiving themselves as

productive (Meyer et al 2014). Therefore, it would make sense to communicate and support

developers in reflecting upon their productivity and sharing best practices for work habits - to

achieve and support the feeling of productiveness.

3.5 Throughput and finding bottlenecks
Throughput - the units of work (tickets) that are completed within a set period of time - can

also be valuable to look at as an indicator of productivity. Meyer et al. (2014) asked software

developers about which measures might be helpful to them to assess their productivity, and the

metric with the highest rating was found to be ‘The number of work items (tasks, bugs) I

closed’, which supports that throughput can be used as a complementary measure to the Four
Key Metrics. Developers were also interested in the value of their work. Participants mentioned

that performing useful, necessary, and interesting work and having the feeling of being

necessary to the team or product is very important, i.e. the feeling of being productive is

important for motivation to continue to be productive.

There are similarities between agile and lean software development that goes back to traditional

manufacturing methods. Just like in manufacturing, the continuous flow in the assembly line

26

is what quickly delivers value to customers and makes money. The development process can

be seen as a continuously running factory that collects, implements, tests, and releases

requirements (Petersen and Wohlin, 2011). Within the field of software development,

inventory is generally of a more perishable nature compared to manufacturing. Produced work

will be outdated at a quicker rate as market requirements and customer needs change rapidly.

This calls for even faster throughput, i.e. delivery of working code into production that can be

generated into value (Anderson, 2004).

The relation between throughput, WIP, and Cycle Time (the amount of time from work started

to work delivered) is described in Little’s law, with the formula Cycle time = WIP / Throughput

(The Agilist, 2014). This concept is one of the main theories behind the agile methodology,

meaning that the lower WIP you have combined with the higher throughput, the faster features

can be delivered. To be able to decrease WIP and cycle time, bottlenecks need to be found and

managed. Bottlenecks can be defined as some limiting resource with a capacity equal to or less

than the demand placed upon it in a system. Cycle times grow if e.g. testing is a bottleneck.

WIP grows e.g. if there is a dependency issue that means one feature cannot be finished until

collaboration is performed, so the developer starts with another task meanwhile. It is when

analyzing the process flow, bottlenecks can be identified in order to improve throughput

(Petersen and Wohlin, 2011).

3.6 Research model
Based on the literature review, relevant variables theorized to impact software development

performance are used to construct a research model, visualized in Figure 4. Arrows visualize

the theorized impact on productivity as a whole, and not necessarily one specific metric. The

Four Key Metrics are used to measure productivity in a sufficient, comprehensive, and

balanced way.

Figure 4. Research model describing the relationship between influencing factors and

productivity, measured by the Four Key Metrics.

27

4. Method

This chapter describes the methods used and related decisions made during this study.

Explanations are made to validate the choices of research design, data collection methods, and

statistical measurements. It also elaborates on how the implementation went and a summary of

which obstacles got in the way.

4.1 Research design
Forsgren, Humble and Kim (2018) describe the differences between methods of collecting data

from the software development process. Two options were considered; looking directly into

the system tools and data logs to get insights about influencing factors or gathering this data

through a survey. Both are primary research, as the data is collected first-hand, and depending

on what kinds of questions are asked in the survey, both methods can be quantitative.

Quantitative methods are suitable when studies are related to quantity, frequency, or how usual

a phenomenon is (Trost, 2012), but it can also be used to find variation in variables (Djurfeldt,

Larsson and Stjärnhagen, 2010). System data can be found in systems or tools used by the

organization, as well as from surveys. If a survey asks questions that capture responses in a

numerical format, or on a Likert scale, it is System data. There are advantages with both kinds

of methods, but Forsgren, Humble and Kim emphasizes that collecting survey system data can
actually obtain more benefits than only using raw system data.

Raw system data is limited to reflecting what is happening inside the system boundaries, while

people have the ability to see the surrounding context (Forsgren, Humble and Kim, 2018).

Asking questions to individuals in the Tech Department can create a more holistic view of the

system than the more simplistic representation that raw system data would generate. The

vocabulary regarding productivity in the area of software development can be confusing as

definitions and perceptions diverge, and different terms are often used interchangeably. By

using surveys there is a large opportunity to avoid misinterpretations (Forsgren, Humble and

Kim, 2018). However, it means that the survey needs to be carefully worded to avoid differing

interpretations and consequently unreliable data.

To look into the factors influencing productivity and evaluate the research model, a survey was

conducted. The survey took circa ten minutes to respond to and approximately 50% of the Tech

Department answered, providing insights into the connection between technical and human

factors and perceived productivity.

Factor categories theorized to influence productivity are measured in the survey using latent
constructs. Using a latent construct is a way of measuring something that cannot be measured

directly, such as culture. Instead, questions are asked that can capture indicator variables that

represent the underlying construct. These are also called manifest variables (Forsgren, Humble

and Kim, 2018). For example, the latent construct ‘Culture’ can be indicated by measuring the

manifest variables ‘Job Satisfaction’, ‘Transformational Leadership’, etcetera. Through

28

secondary research, eleven manifest variables have been extracted that are hypothesized to

have an influence on productivity.

Consequently, these can also be interpreted as latent constructs that cannot be measured

directly. Instead, multiple secondary manifest variables or items have been set to describe each

of these constructs. An item can be measured directly through a question.

In this thesis, a literature review was performed in order to overview previous findings on

influencing factors on productivity in the software development process. Based on these

findings, a research model was constructed with those factors determined most relevant in

Storytel’s context. Furthermore, an online survey was used to collect data from Storytel’s Tech

department to evaluate these influencing factors and their respective impact on software

development productivity. Raw system data has been analyzed to complement the survey data

in estimating the Four Key Metrics. Apart from collecting information from internal

documentation, interviews have been performed in both an exploratory and confirmatory

manner to gather qualitative data. All of them have been performed in a semi-structured way,

where questions and themes have been prepared in advance. Because of the varied data

collection and strategies used to fulfill the research questions, each method is described

respectively.

4.2 Data collection
Data has been collected in both qualitative and quantitative manner. The quantitative was

performed through both a survey and system data analysis. The qualitative collection included

15 interviews with people in different roles of the tech organization.

4.2.1 Quantitative data

4.2.1.1 Survey
Applying statistical analysis to these latent constructs makes it possible to ensure that there is

validity in the chosen theoretical approach, as well as validity and reliability in the

operationalization of the theoretical background. The survey involved a section of

demographics capturing which team and role the respondent belongs to, a section of

comparative historical perspective for those who have been employed for more than 12 months,

a section covering the factors defined in the research model, and a section where the respondent

estimates the Four Key Metrics in their team. The section with Four Key Metrics estimations
was done in order to complement the raw system data in several aspects. We set out to measure

eleven factors in the questionnaire using a total of 32 questions (or items). Most questions

(23/32) were five-point Likert scale questions; statements to which the respondent answered

by choosing an option between 1 (‘Strongly Disagree’) and 5 (‘Strongly Agree’)

(SurveyMonkey, 2018). The complete questionnaire can be found in Appendix 1, and the

factors can be found below:

29

● Number of Projects (3 items)

● Generative Culture (6 items)

● Team Cohesion (3 items)

● Job Satisfaction (2 items)

● Transformational Leadership (3 items)

● Team Identity (3 items)

● Communication (2 items)

● E-Factor (4 items)

● Architecture (2 items)

● Automation (2 items)

● Lean Management (2 items)

When designing the questionnaire, finding the correct latent constructs and manifest variables

is not enough, as it is the actual questions in a survey that are the indicators for the theoretical

concepts. The operationalization is of great importance, so the questions need to be carefully

worded. Common weaknesses in survey questions presented by Forsgren, Humble and Kim

(2018) are the following:

● Leading questions

● Loaded questions (means that there is no option to choose the right answer, so the

respondent is forced to lie by choosing one of the existing alternatives)

● Multiple questions in one

● Unclear language

In shaping the questionnaire, we paid careful attention to the order, the complexity, and the

number of questions to ensure that they were hard to misinterpret and that they serve to answer

the research purpose. (Esaiasson et al. 2017).

To be able to generalize the results for a sample population, there are four potential sources of

error to take into account. These errors include (a) sampling error which will be present when

certain members of the population from which responses are obtained are deliberately

excluded, (b) non-coverage error is the error that the survey is not participated in by some part

of the population, (c) non-response error comes from the fact that some members of the

population do not respond to the survey for various reasons, and (d) measurement error refers

to the discrepancy between undiscovered, underlying variables such as certain opinions or

behaviors, and the observed survey responses. This might stem from questions being phrased

so that they cannot be answered correctly, or from some hidden motivation in respondents to

provide inaccurate answers (Dillman, 1991).

The non-response error is traditionally viewed as the major problem for mail surveys. To

maximize response rates and maintain quality responses while still minimizing the risk of non-

response error, an approach called Total Design Method (TDM) designed by Dillman (1991)

was applied. This framework posits that respondents will respond to a larger extent if they

perceive that the benefits of responding are greater than the cost. Thus, every part of the survey

30

was designed with three considerations: making the questionnaire appear easier and less time-

consuming, making it interesting for the respondent to fill out by adding attention-grabbing

questions, and focusing on increasing trust, for example by using some official format on the

survey. The specific TDM design recommendations that are applicable to online surveys are

the following: order questions so that the interesting ones that are related to the topic in the

survey description come first; use graphical design and question-writing principles to facilitate

the respondent’s task of reading and answering questions, and include an explanation on how

confidentiality is protected (Dillman, 1991).

In a survey-based study, it is important to test the questionnaire. By performing a pilot study

the researcher can ensure that the questions are designed in a way that the respondents can

understand and that they provide information that answers the research questions (Bryman,

2011). A pilot study was conducted involving students with terminology knowledge, and our

supervisors. This gave us an opportunity to revise unclear questions and improve the format.

The questionnaire was sent through Google Forms. It is easy to set up and supports good

presentation management of answers. Furthermore, it is beneficial in the way that respondents

can decide upon when and where to answer the survey, which ensures anonymity and

confidentiality (Bryman, 2011). Expectations of a rather small share of responses prompted us

to send out the survey to the entire Tech Department. We cannot enlarge the target group in

order to receive a certain amount of responses, but we can avoid choosing a smaller number of

people, for example, based on selected teams. Furthermore, the survey is distributed to all roles

within the department. Surveying everyone in the teams provides perspectives ranging from

manager roles to those closer to the actual value-creation in the software development process,

such as developers.

4.2.1.2 Raw system data
To classify Storytel’s performance, system data was analyzed using several different data

sources (described in Table 2). These were chosen over in favor for example Github because

of their ease in accessibility and no need for help from administrators at Storytel. Each system

or tool will be presented individually.

31

Source Type of data

Actionable Agile The Cycle Time Scatterplot visualizes how long it takes to finish a single item of work
once started. The number of started but unfinished work items over time is shown in the
WIP run chart. The number of finished items in a period of time is shown in the
Throughput run chart. (Actionable Agile, 2021).

HR Survey Data Data has only been gathered at a department level to avoid spreading sensitive
information connected to specific teams. A limitation was made to only study surveys
from 2020, and in some instances from 2019. The response rate is relatively steady
within the Tech Department at around 80%.

Table 2. System data sources utilized in this thesis.

4.2.2 Qualitative data
When preparing interview questions, templates were made. The templates served as a tool for

conducting semi-structured interviews. For this study, semi-structured interviews were

preferable, with a combination of fixed themes but still having the possibility to ask further

questions (Bryman, 2011). Generally, there is a risk with interviews that answers will be

affected by the phenomena social desirability (Bryman, 2011). However, it is of great value to

be able to ask unique follow-up questions (Eriksson and Wiedersheim-Paul, 2014). The

templates were structured containing central themes and questions covering the most important

concepts needed to answer the research questions (Dalen, 2008). Based on previous interviews,

the template was adjusted along the way.

Interviewees were asked to participate, with a short introduction to topics and purpose of the

study. Interviewees in a wide spectrum of roles and responsibilities have been covered. In the

end of each interview we asked to be recommended who the interviewee thought would be

appropriate for us to talk to next. Furthermore, supervisors helped us out finding good

candidates.

4.3 Analytical methods
Several statistical methods have been applied to analyze the data obtained from our survey and

these are explained in the following subsection.

4.3.1 Statistical methods
Factor analysis is a statistical method in which the key concept is that multiple observable

variables have similar patterns because they are all associated with some latent variable - a

variable that the researcher is interested in but which cannot be directly measured. The goal is

to understand to what extent some measurable items can reflect this hypothetical construct.

32

Exploratory Factor Analysis (EFA) is a modelling technique used to discover the number of

underlying factors that are influencing variables, and to analyze what factors seem to correlate

with each other. It is used to develop theories. The goal of EFA is to identify the groups of

items that when jointly considered explain as much of the observed covariance as possible.

Each of these groups are called a factor or a latent variable. It should be noted that EFA is not

a statistical way to conclude whether the extracted factors are correct or not, and is commonly

used when the researcher has no hypotheses of the underlying factors (Yong and Pearce, 2013).

One of the most widely-used methods of extraction in factor analysis is Principal Axis
Factoring (PAF), which seeks to find the least number of factors that can account for the

common variance in a set of items. A common way of deciding how many factors to extract is

by using the Kaiser criterion; all factors with an eigenvalue below 1.0 are dropped (an

eigenvalue of 1.0 is equal to the information accounted for by one single item) (Field, 2009).

After extraction, each item obtains a factor loading for each factor (between -1 and 1), which

represents to what extent the item correlates to the factor (Mabel and Olayemi, 2020).

The procedure begins with defining individual constructs theoretically. To account for

unidimensionality between and within construct error variance, at least four constructs and

three items per construct should be defined. Then the validity of the model needs to be assessed,

which is performed by comparing the theoretical model to the reality model and evaluating

how well the data fits (Statistics Solutions, 2013).

After an initial solution is obtained through factor analysis, the loadings on each factor are

rotated to obtain a new set of factor loadings. This is in order to maximize high loadings and

minimize low loadings so that the simplest possible interpretable structure can be achieved.

One common rotation method is direct oblimin, which is based on the assumption that the

factors are correlated to each other.

Before proceeding with interpreting the extracted factors, tests to assert that the dataset is

appropriate to analyze using factor analysis should be evaluated (IBM, 2021). The Kaiser-

Meyer-Olkin (KMO) measure of sampling adequacy is standard test procedure for this purpose.

The KMO-score indicates to what degree the items in the dataset are related by testing the

partial correlations among the items. As a general rule, the KMO score should be at least 0.60

to justify that factor analysis makes sense (Schwarz, 2011). Furthermore, Bartlett’s test of

sphericity can be used to test the hypothesis that the items are unrelated and therefore unsuitable

for detecting a structure. Small significance values from Bartlett’s test of sphericity (below a

threshold of 0.05) indicate that items in the dataset are sufficiently correlated and therefore that

factor analysis can be useful (IBM, 2021).

To further analyze correlations between factors without having to take normality of distribution

or equal variance of data into consideration, Spearman rank-order correlation can be applied.

Spearman’s rank-order correlation assesses the relationship between two variables. A rank

correlation coefficient (rs), ranked between +1 and -1, indicates the strength and direction of

the relationship, and the p-value (p) indicates the level of significance of the relationship. A p-

value lesser than 0.05 indicates that the relationship between the two variables is significant,

33

i.e. there is less than a 5% chance that the strength of the relationship found (rs) happened by

chance (Al-jabery et al., 2020).

4.3.2 Validity and Reliability
The purpose of testing validity is to give the researchers a high degree of confidence that the

chosen methods are useful in finding scientific truth. There are several different types of

validity, and in this subsection content validity, construct validity and reliability will be

discussed (Straub, Gefen and Boudreau, 2004).

Content validity centers on the question whether the measures chosen to capture the construct

are wisely chosen. They need to represent the construct well and capture its essence. If

measures that do not represent the construct well are included, measurement error is likely to

happen. On the other hand, if measures are omitted, the error will stem from this exclusion.

Generally, content validity can be tested through literature review (Straub, Gefen and

Boudreau, 2004).

Construct validity centers on the issue of measurement between constructs, and whether the

measures capturing the construct are ‘balanced’ or not. If measures are grouped together in

different manifest constructs, we would want to be assured that these variables are most closely

associated with other variables in the same construct. If construct validity is established, the

researcher can rule out the possibility that the constructs - which are artificial, intellectual

constructions that the researcher cannot observe - are not being captured by the choice of

measurement instrumentation (Straub, Gefen and Boudreau, 2004). EFA can be used to

evaluate construct validity; items that do not empirically belong to the constructs can be

identified and eliminated (Knekta, Runyon and Eddy, 2019).

In contrast to construct validity, reliability is the issue of the measurement within a construct.

The metrics chosen to measure a specific construct may involve aspects of a construct that are

different to the degree that they do not correlate (Straub, Gefen and Boudreau, 2004). It can be

viewed as a statistical measure of the reproducibility of the survey data. By ensuring reliability,

the researcher avoids instability of responses over time and questions being perceived

differently by different respondents (Litwin, 1999). Cronbach’s alpha is one of the most

common indicators of scale reliability in factor analysis such as EFA, and can be viewed as a

measure of internal consistency (Osborne, 2014).

34

5. Methodology
In this section, the implementation of the method is presented. Demographics, datasets and

obstacles in data collection are also conferred. A timeline of the implementation can be found

in Figure 5.

Figure 5. Timeline of the implementation process of this thesis.

5.1 Survey
After the literature review, one of the first tasks was to construct and test the survey. Then

finally, the survey was sent out in January 2021 and was open for answers for two weeks, with

a cover letter describing purpose, data usage and privacy concerns. An additional

encouragement was written from our supervisors to promote the benefits of the survey for the

Tech Department. Several reminders were sent in Slack channels, and we got a slot during a

Monthly Tech Meeting to promote the survey.

The survey has been carried out according to the Swedish Research Council guidelines that

involves demand for information, consent, confidentiality and utilization (Lindstedt, 2017).

First of all, respondents were informed of the purpose study and that participation was

completely voluntary in the cover letter (Esaiasson et al., 2017), and that they give their consent
to participate when they send in their answers. Regarding confidentiality, names were not

collected, however team affiliation and role was. Raw survey data was only available to the

authors. Finally, the records were and will not be utilized for anything else than the purpose of

this scientific study (Lindstedt, 2017).

The statistical analyses applied to the survey data have mainly been performed using the

statistical software platform SPSS (Statistical Package for the Social Sciences) (IBM, 2019).

5.1.1 Descriptive statistics
The survey was sent to all employees within the Tech Department, and no matter what their

role was, everyone was encouraged to answer. Half of the department (75 employees) answered

the survey. The total number of people in the Tech Department is represented in the historical

35

graph, see Figure 6, showing the increase of approximately 60 people per year during 2019 and

2020.

Figure 6. Tech Department Employee Tracking document for 2018-2020,

 indicating the number of employees each month.

The distribution between roles among the respondents in categories with 5 or more

respondents, are shown with the respective number of people in each category in Table 3,

equivalent to circa 75% of the respondents.

Role N Percentage

Backend Developer 25 33.3 %

Crew Coach 8 10.7 %

Frontend Developer 6 8.0 %

IOS developer 7 9.3 %

Tech manager 5 6.7 %

Full-stack Developer 5 6.7 %

Table 3. Responses to question ‘What is your primary role?’.

 Role categories with 5 or more respondents shown - circa 75 % of the population (56 out of 75).

To validate that the distribution of roles in the survey data reflected the proportions of roles in

the Tech Department, a graph was created from internal documents for comparison (see Figure

7). It was found that the majority of Back-end Developers among the respondents, mirrored the

actual distribution of roles in the Tech Department. From this data, it could further be assumed

that Crew Coaches are more prone to answer this kind of survey, since they are the second

largest group of respondents - but a smaller percentage among all employees. For example, this

36

is compared to that almost no testers answered the survey while this role has a larger percentage

in the company. There are more iOS developers than Android developers, and this is mirrored

among the respondents.

Figure 7. The distribution of roles among all employees at the Storytel Tech department according to the

internal Tech Department Employee Tracking document.

Looking at the distribution of respondents, one can conclude that it is not enough data to be

able to draw conclusions from comparisons between roles and their answers. Regarding the

distribution among teams from respondents, Figure 8 shows an expected distribution. The

teams differ in size, so it is reasonable that the number of respondents differ. To not reveal

sensitive information, the names of each team have been anonymized. In the end, comparisons

between both roles and teams were never performed.

Figure 8. The distribution among survey answers to the question ‘Which team do you belong to?’.

37

If the respondent had been employed more than 12 months, they were able to answer a

complementary section of questions related to a historical perspective. As can be summarized

from Table 4, this applied to a little more than half of the respondents. The distribution among

respondents employed time has the same proportions as the whole Tech Department. Among

the 160 employees in the beginning of 2021, 100 employees have been employed for more than

12 months. This equals 62%, compared to the 54% in the survey. In conclusion, recently

employed personnel are slightly more prone to answer this kind of survey.

Time Employed N Percentage

Less than 6 months

19

25.3 %

Between 6 months and 1 year

16

21.3 %

Between 1 and 2 years

23

30.7 %

Between 2 and 5 years

9

12 %

More than 5 years

8

10.7 %

Table 4. Responses to question ‘How long have you been at Storytel in total?’.

The demographics questions were added after careful deliberation, as having to give potentially

identifiable information might impact people's tendency to take part in the survey because

complete anonymity subsequently is not ensured. The anonymization is not complete since

combining answers could potentially reveal sensitive information (if looking at for example

team affiliation, role and time in Storytel combined, there is not a large amount of options on

who the respondent is). Since the team affiliation proved to be difficult to use due to time

constraints and lack of opportunity to find the corresponding raw system data, this could

potentially have been omitted. However, if this could have increased the response rate is hard

to tell.

5.2 Factor Analysis
Some factors were only measured using two items, in order to simplify the questionnaire and

in turn increase the response rate. This is theorized to be an insufficient amount to account for

unidimensionality between and within construct error variance, and can be viewed as a

potential flaw in the survey design (Statistic Solutions. 2013)

5.2.1 Pre-processing
To perform the EFA, the dataset containing the survey responses is loaded into SPSS. The

majority of survey items are measured on a Likert scale between 1 and 5 (a total of 23 out of

32 items), and do not require further pre-processing for analysis. Some items are re-coded into

new variables in order to translate nominal responses into an ordinal scale, and responses

38

stating ‘I don’t know’ are filtered out. For example, the item ‘How many projects are you

working on right now simultaneously?’ with responses ranging from ‘1-2’ to ‘More than 10’ is

re-coded into a new variable with corresponding responses but on a scale from 1 to 6. Similarly,

questions regarding automation phrased ‘What is, in your estimate, the percentage of tasks

related to X that are automated in your team?’ with options ranging from ‘0-20%’ to ‘81-100%’

are also re-coded into a six point scale.

Two new variables were created using mathematical expressions combining other variables.

The new variable ‘E-factor’ was calculated as the fraction between the items ‘How many

complete full hours without interruptions do you have?’ and ‘How many hours is your average

work day?’ to express the fraction of uninterrupted hours on an average work day. The new

variable ‘Fraction desired uninterrupted hours’ was calculated as the fraction between ‘How

many consecutive uninterrupted hours would you prefer to have on a regular working day?’

and ‘How many complete full hours without interruptions do you have?’ to reflect the fraction

of average uninterrupted hours to the respondent’s preferable amount of uninterrupted hours.

The three included items (‘How many complete full hours without interruptions do you have?’,

‘How many hours is your average work day?’, ‘How many consecutive uninterrupted hours

would you prefer to have on a regular working day?’) were subsequently left out of the factor

analysis as these are highly correlated with the new variables.

Survey items connected to demographics and historical perspective were also excluded as these

were not intended to measure any factors. The full list of factors and corresponding variables

are presented in Appendix 2. The item ‘How many projects are you working on right now

simultaneously?’ (NP1) was removed as it was highly correlated (0.81) with the item ‘How

many projects have you worked on during the last three months?’ (NP2). According to Field

(2009), highly correlated items (as mentioned in Section 4.3.1 Statistical Methods; above 0.9)

may create problems because of multicollinearity, i.e. a near perfect linear relationship between

two or more variables in the data. Although the variable score of item NP1 was not above 0.9,

it was removed as it was the only score in the correlation matrix exceeding 0.8. It was also

deemed as not adding any significant information that item NP2 did not already inform, as both

items indicated the respondent’s involvement in what number of projects during a relatively

short time span (last three months versus currently).

The item ‘In my team messengers are not punished when they deliver bad news’ (GC3) was

also removed due to a very low KMO-score (0.388) (see Section 4.3.1 Statistical methods for

a description of the method) in the Anti-image correlation matrix. According to Field (2009),

all variables with an individual KMO-score below 0.5 should be considered for removal as the

proportion of variance explained by the variable is very low (Field, 2009). The final list of the

29 remaining items are listed in Appendix 2.

5.2.2 Factor Analysis Operationalized
To perform the factor analysis, Principal Axis Factoring (PAF) was conducted on the 29 items

with oblique rotation (Direct Oblimin). The rotation method was used in preference over an

39

orthogonal method as it allows for some degree of correlation between factors. The Kaiser-

Meyer-Olkin results (0.690) verified that the sample size was adequate for analysis (above 0.6

is classified as ‘mediocre’ and above 0.7 is ‘good’ according to Field (2009)). Additionally,

Bartlett’s test of sphericity indicated that correlations were sufficiently large to perform PAF

(χ2 = 657.899, p = < 0.001).

Applying Kaiser’s criterion of extracting factors with an eigenvalue exceeding 1.0 (Field,

2009), ten factors were retained for the final analysis, and aggregated these explained 60.28%

of the variance. Table 5 shows the factor loadings after rotation. Initially, those with factor

loadings less than 0.4 were suppressed, based on Steven’s (2002) suggestion that this is an

appropriate cut-off for interpretive purposes. At a later stage, a threshold of 0.35 was applied

supported by Osborne (2014) who mentions that this is preferred by some EFA authors, and

because this slight adjustment made a meaningful difference in the analysis pertaining to how

many items that were sufficiently loaded to be included in the factors (5 additional items). In

those cases where an item had a loading above the threshold of 0.35 on more than one factor

(TI2 and GC4), the item was interpreted as only belonging to the factor in which it had the

highest score in order to simplify overall interpretation.

Included items (with factor loadings > 0.35) Factor loading (including
loadings on secondary factors)

Factor 1

TI1 - My team is collectively working toward the same goal .806

TI2 - I know the reason for all features developed in my team .483 (-.467 on Factor 4)

C1 - Communication is efficient in my team .391

Factor 2

NP2 - How many projects have you worked on during the last three months? .911

NP3 - How many projects have your team been involved in during the last three months? .654

Factor 3

TL3 - My manager regularly gives med actionable feedback -.910

TL1 - My manager challenges me to see problems from new perspectives -.849

TL2 - My manager notices me -.696

Factor 4

GC5 - In my team, failure causes inquiry so that we can learn from the experience -.775

GC4 - In my team, cross-functional collaboration is encouraged and rewarded -.480 (-.458 on Factor 7)

GC6 - In my team, new ideas are welcome -.451

40

GC1 - In my team, information is actively sought -.443

Factor 5

JS2 - I would recommend my team as a place to work -.872

JS1 - I would recommend my workplace s a place to work -.651

TI3 - I am proud to be a part of my team -.495

Factor 6

TC1 - In my team we put effort into facilitating work for other teams .759

AU1 - What is, in your estimate, the percentage of tasks related to deployment that are
automated in your team?

.649

AU2 - What is, in your estimate, the percentage of tasks related to testing that are
automated in your team?

.529

GC2 - In my team, responsibilities are shared .519

LM2 - In my team the ambition is to keep the number of WIP to a minimum .376

Factor 7

LM1 - I have access to visual displays showing the status and/or flow of work within my
team by some metrics.

-.558

C2 - How often do you interact with members from other teams for inspiration and/or
assistance for a task you are working on?

-.367

Factor 8

EF3 - Fraction Desired Uninterrupted Hours -.558

EF1 - E-Factor -.367

Factor 9

TC3 - I wish I had more insight into what other teams are doing. .725

TC2 - I have a good insight into what other teams are doing -.352

Factor 10

EF2 - Switching between tasks can be good in terms of being productive .621

AR1 - Features developed in my team can be tested and deployed without being dependent
on other teams.

.412

Table 5. Survey items categorized into factors according to the factor analysis, with corresponding factor
loadings after rotation.

5.2.3 Factor Analysis Reliability

As factor analysis is used to validate the questionnaire, the reliability of these factors need to

be measured. This is performed using Cronbach’s α to indicate the factors’ internal consistency.

41

Generally, researchers agree that an alpha of 0.7 is ‘adequate’ and above 0.8 is ‘good’.

(Osborne, 2014). According to Hinton, Mcmurray and Brownlow (2014) a score above 0.5 can

also show moderate reliability. The results from the performed Cronbach’s α test can be found

in Table 6.

Factor

Item-codes

Cronbach’s α

1 TI1, TI2, C1 .760

2 NP2, NP3 .778

3 TL1, TL2, TL3 .869

4 GC1, GC4, GC5, GC6 .720

5 JS1, JS2, TI3 .788

6 TC1, AU1, AU2, GC2, LM2 .747

7 LM1, C2 .355

8 EF1, EF3 .546

9 TC2, TC3 .644

10 EF2, AR1 .353

Table 6. Cronbach’s α reliability test

Factors 1 through 5 all have adequately high reliabilities, with Cronbach’s α > .70. As seen in

Table 5, factor 6 had a few items scoring below 0.3 (.263 and .273) in the inter-item correlation

matrix, which indicates that those particular items do not correlate very well with the scale

overall and may cause unreliability. This was ignored due to a relatively high Cronbach’s α

score. Factor 7 and Factor 10 scored low, both significantly below the thresholds for

Cronbach’s α, and were discarded. From an interpretive standpoint, these two factors also

contained the least clear sets of items from a variation of separate theoretical constructs. Factors

8 and 9 scored relatively low, and do not pass the general rule of thumb for Cronbach’s α of a

score greater than 0.7, although they do pass the ‘moderate’ threshold of 0.5, and therefore

these factors are considered reliable in this analysis.

5.3 System data
5.3.1 Obstacles in Four Key Metrics estimation

In order to estimate the Four Key Metrics, a combination of both raw system data and survey

data are used in a complementary manner. This was performed since estimates of the Four Key
Metrics may vary from person to person due to differing perceptions and access to information,

and because solely using raw system data can be erroneous and unreliable due to differing

procedures between teams, recent organizational restructurings etc. This subsection will

42

summarize the difficulties and obstacles for the raw system data estimation of each metric

respectively. A comprehensive explanation of the obstacles can be found in Appendix 3. The

tempo metrics are Delivery Lead Time and Deployment Frequency, and the stability metrics

are Mean Time To Restore and Change Fail Rate.

Obstacles related to Tempo Metrics mostly revolve around that the teams in the Storytel Tech

Department have a very high degree of autonomy. As a consequence of this, the way different

teams work often differ significantly from each other. As a consequence, there were difficulties

in trying to extract values of the Four Key Metrics. There are few routines, procedures, and

standards that span the entire tech organization, which makes generalization difficult. Another

obstructing factor in finding reliable data from a longer period of time was due to Storytel’s

multiple organizational restructurings during the last year. Some teams are only a few months

old and cover new focus areas, and others were previously part of a larger team that was split

into different focus areas. These characteristics have resulted in obstacles such as:

● There are no standardized guidelines at Storytel regarding what workflow stages a

ticket should pass in Jira

● The usage of the workflow stage ‘Waiting For Release’ is different.

● Differences in what the workflow stage ‘Done’ implies in different Jira projects.

● Workflow stages and their meaning for each team, have changed over time

● Differences between teams regarding the size of a ticket in Jira.

● Not possible to give one single estimate that generalizes the entire Tech Department.

When discussing the obstacles related to the Stability Metrics - Mean Time To Restore and

Change Fail Rate - the numbers are heavily dependent on defining what constitutes a failure.

A failure could be a bug that the customer rarely notices (or believes is a design choice), a bug

that actually impacts the user but has a work-around, a bug that impacts the user that does not
have a workaround, or it could be related to degraded performance, downtime, partial or whole

system disruption. Several options were considered but none of the attempts were sufficient in

estimating the Mean Time to Restore. The options for estimating Mean Time To Restore are

presented below, but the extensive explanations are given in Appendix 3.

● Option 1: Measure the lead time in Jira for bugs with priority ‘critical’ or ‘blocker’

● Option 2: Measure the lead time of system disruptions logged at status.storytel.com

● Option 3: Create a timeline for hotfixes based on information from slack

● Option 4: Create a timeline for requests of hotfixes based on information from slack

Option 1 was chosen due to its reasonable simplicity, and to avoid the time-consuming action

of reading through and manually evaluating Slack channels for information that would be

required for option 3 and 4. This was carried out, but proved to not indicate failures that caused

disruption of sufficient size. Option 2 was thereafter tested, but concluded faulty. Option 3 and

4 are still unexplored.

43

The Change Fail Rate is, similar to the Mean Time To Restore metric, particularly difficult to

define as the central question becomes what constitutes a failure. The options considered are

based on the same definitions of failure as the Mean Time To Restore metric, but by looking

at the relative proportion of failures, rather than the timeline of a failure from occurrence to

remediation.

One problem with the Change Fail Rate metric is the idea of whether a whole batch (for

example all code related to a specific iOS app release) should be considered to be a ‘failure’ if

there is one serious bug leading to failure among hundreds of issues involved in the batch, or

not. The chosen method of calculating the Change Fail Rate from the proportion of bugs to the

monthly throughput neglects to consider batch size due to the increased complexities of taking

this into account. This was chosen in favor of a simpler calculation that can be performed and

compared easily over time, leaving the aspect of batch size to be presented in the Deployment

Frequency metric. This decision is supported by the logic that the metrics balance each other

and should not be analyzed separately, but joint together.

5.3.2 Preprocessing of Raw System data sets
The earlier mentioned systems and tools were chosen partly based upon the accessible data

sets. The different datasets are presented in this section.

Jira has been used for several years, and the data-set from all time use of Jira consists of circa

27 000 issues. Among these, the 5 largest issue categories are displayed in Table 7.

Number of

issues

Category

7188 Stories

5849 Tasks

6499 Sub-tasks

4717 Bugs

913 Epics

Table 7. The 5 largest categories of issues in Jira and their respective amount.

However, the entire dataset was not used in every analysis. To overview recent trends, only

2019-2020 were analyzed in depth. Depending on the distribution of the data, outliers were

excluded. Furthermore the 85th percentile is the one represented in the following numbers.

For tempo metrics related analyses, all issues apart from epics and bugs were used. Because of

constraints of the system causing overload, unnecessary issues were examined and omitted.

Therefore, epics (large features equivalent to heavy time consumption) were excluded because

44

of its ticket size. Furthermore, bugs were excluded. At the Storytel Tech Department bugs are

filed because of formality rather than the attempt to solve them as soon as possible, if they have

a low priority. As a lot of bugs are placed in the bottom of the backlog for a very long time,

including the whole set of bugs could potentially skew the lead time results. After deleting

bugs and epics, the final dataset for tempo metrics contained approximately 21 000 issues. For

stability metrics, the dataset included only bugs, filtered on a certain priority label which will

be further explained later in this section. The stability metric dataset contained 420 issues.

Another pre-processing involved the classification of workflow stages. Since every team and

crew choose their workflow themselves, and Jira allows you to design the process from scratch,

there are a lot of workflow stages to manage when overviewing all issues created in Jira.

Classification was performed, mapping each existing stage into one of the four chosen stages;

either ‘Backlog’, ‘To Do’, ‘In Progress’ or ‘Done’. This means for example that ‘Waiting for

Test’ or ‘Waiting for Release’ were lumped together into ‘In Progress’. The flexible options

became fewer, but it was necessary to be able to manage and operate on the very large dataset.

Further looking into the data, one large disruption was found. In February 2020, a large amount

of resolved issues happen at once, resulting in a large gap in the graphs. In Figure 9 an example

is shown, where the daily number of work in progress decreased into half (the green line

indicates the trend over the blue dots that is the daily WIP number). By looking at the details

of the graph we found that issues connected to one team in particular were responsible for the

big heap. Questioning the Crew Coach of the team cleared that they had configured its Jira

tickets differently, so that they were never classified as “Done”. A large heap of finished issues

were cleaned up causing the data to become significantly skewed. Since the impact of this data

on other graphs are unknown, this team with all its related issues was chosen to be excluded

from the dataset.

Figure 9. Visualizing the data in a WIP run chart before excluding one team from the data set.

The data from HR surveys was processed by HR before handed over to us, in order to protect

sensitive information. The accessed dataset contained questions and answers from the Tech

45

Department, response rates and some averages. A majority of HR survey questions are

answered allowing the respondent to indicate their level of agreement between 1 and 100.

These answers are summarized by an average score of agreement in the data. The surveys

deemed relevant for this study have been categorized into relevant factors. A table summarizing

the included surveys can be viewed in Appendix 4.

5.4 Interviews
The interviews conducted in this thesis were approximately 45 minutes long. With the consent

of the interviewee, the interviews were recorded. This was not only because the focus enables

listening rather than writing down the answers, but also because it added value through the fact

that it was possible to use direct quotation afterwards (Bryman, 2011). A summary of

conducted interviews can be found in Table 8.

No.

Role

Date

1 Product Manager Nov 27, 2020

2 Crew Coach Dec 1, 2020

3 Developer Dec 2, 2020

4 Tech Manager Dec 7, 2020

5 Customer Support Dec 15, 2020

6 Crew Coach Jan 8, 2021

7 Developer Jan 8, 2021

8 Test Lead Jan 11, 2021

9 HR Jan 12, 2021

10 Tech Manager Jan 18, 2021

11 Customer Support Jan 18, 2021

12 Developer Jan 25, 2021

13 Crew Coach Jan 25, 2021

14 Developer Jan 27, 2021

15 Tech Manager Feb 1, 2021

16 Tech Manager Mar 7, 2021

Table 8. An anonymized list of the conducted interviews.

46

6. Results - Four Key Metrics

In this section, the raw system data estimation of the Four Key Metrics is used to answer the

first research question ‘Where does Storytel rank in the software development performance
categories based on the Four Key Metrics?’. In the last paragraphs of this section, 6.4
Comparison of the Four Key Metrics, the estimated productivity gathered in the survey is set

against the raw system data and a comparison is made.

To be able to answer the final research question, ‘What bottlenecks exist that hinder Storytel
from being a better performer in terms of a higher performance category?’, it is not enough to

estimate the Four Key Metrics current situation, there is also a need to understand the context

for why they are currently performing this way, what the performance level has previously
looked like and if there are tendencies that support certain expectations for the future.
Furthermore, being able to bring reasonable explanations for why they are categorized in a

certain way, increases validity. If no explanations can be found, it is additionally a warning

sign in terms of reliability. This kind of estimations are therefore included in this section.

6.1 Tempo Metrics
When discussing the two key metrics that indicate tempo - Delivery Lead Time and

Deployment Frequency - these vary between the different services and tech stacks at Storytel.

The different services are separated when needed in a simplified representation and not the

exact reality. The app related services are fairly easy to distinguish from the rest, but the other

services (see Section 2.3.1 Services and architecture) are sometimes presented grouped

together as ‘non-app related services’ - even though there are differences among these as well.

Sometimes further distinctions are made, like services on ‘the legacy platform’, internal and

external web tools, and backend. The ambition is to cover most services, but sometimes there

are gaps or overlaps. The exact distinctions and corresponding numbers are not the important

conclusions here, rather that there exists differences within the tech stacks and services in the

Tech Department.

6.1.1 Delivery Lead Time
The Delivery Lead Time at Storytel Tech Department is between one week and one month,
which means they are a medium performer (see Figure 10). Interestingly, this is one of the

metrics that according to the raw system data has changed the most if looking at the historical

perspective. During 2019, the lead time is 10 days which indicates Storytel as being a medium

performer. However, for 2020 the lead time has almost doubled and is now about 19 days (for

85% of the issues, outliers excluded).

Not only the number of issues have significantly increased during 2020, so has the average

cycle time. It has not been possible to separate issues for apps due to insufficient usage of

labels, why the numbers includes tickets from all tech stacks. However, the Cycle time of 19

days is almost corresponding to the app release schedule with three week intervals. Regarding

the increasing trend from 10 days 2019 to 19 days 2020, the efforts on improving test coverage

47

could be a potential explanation. The Test Lead role was introduced in the beginning of 2020,

and the number of employed testers has almost doubled since the beginning of 2019. During

interviews it is conveyed that the ambition to decrease the interval to two weeks is becoming

less and less realistic. When internal discussion started whether to increase Deployment

Frequency to two weeks, the cycle time was 10 days according to the data, which could explain

the optimistic approach. Since then, Delivery Lead Time has adapted to Deployment Frequency

for example because standards have been set higher.

Figure 10. The estimate of the present classification of Delivery Lead Time.

6.1.2 Deployment Frequency
The Deployment Frequency at Storytel Tech department cannot be conclusively generalized.

Apps deploy every third week according to schedule, wherefore they are categorized into

deploying between once per week and once per month. The legacy platform is updated once a

week according to schedule, i.e. deploys happen between once per day and once per week.
Apart from these, other deployments occur more frequently. Backend-related deploys, or web

deploys connected to internal or external web tools often happen weekly and in some instances

daily. However, this occurs especially when a new feature or tool is under construction, before

being launched to users. Therefore, fast deployment is possible since it does not risk to entail

any disruption or outage.

In conclusion, some deploys are scheduled and some are not. With this in mind it is reasonable

to determine that the Deployment Frequency defines Storytel’s Tech Department to be both a

medium and a high performer depending on the service (see Figure 11).

Figure 11. The estimate of the present classification of Deployment Frequency.

The Tech Department’s Deployment Frequency has stayed the same for the last couple of years.

The apps have deployed every third week since at least January 2019 according to documented

release history (Storytel, 2021f). For the legacy platform, the weekly scheduled releases is a

newly introduced routine. There are ambitions to increase the routines for other services, and

to involve testing time periods for the releases already happening weekly. One improvement

48

regarding Deployment Frequency is for the unscheduled deployments for web tools that

previously affected services crossing over several teams. More coordination was needed in

order to not affect other teams’ code, as updates could not be performed individually. These

dependencies have decreased along with architectural changes into microservice usage

(Interview 7: Developer, 2021). The ambition of the company is to use the standard deployment

pipeline instead of hotfixes when there is a disruption or bug fixed (Storytel, 2021e).

6.2 Stability Metrics
6.2.1 Mean Time To Restore
When defining what constitutes a failure we deliberated several different approaches. Two

attempts to estimate the Mean Time To Restore were carried out, but both were discarded

because of uncertainty. The first attempt, measuring the lead time in Jira for bugs with priority

‘critical’ or ‘blocker’, ended up being inefficient in terms of impact on users. This could for

example be due to the assumption that the majority of bugs in Jira are in production might be

incorrect, or that the guidelines for priority labels on bugs are outdated. The second option,

measuring the lead time of system disruptions logged at status.storytel.com, was found to not

measure the desired type of failure. These attempts and the obtained data can be found in

Appendix 5. The remaining options are still unexplored due to time constraints.

Conclusively, no final estimate was retrieved for the Mean Time To Restore (see Figure 12).

The raw system data were supposed to complement the survey estimated Mean Time To

Restore to create a holistic and nuanced estimation. Fortunately, the survey estimates had rather

small variations and this data could be used in the factor analysis.

Figure 12. No estimate has been possible to define Mean Time To Restore.

6.2.2 Change Fail Rate
Change Fail Rate, defined as the percentage of deployments made that lead to a degraded

service which in turn requires immediate remediation, is another measure indicating quality.

As mentioned, at Storytel, deployments rarely lead to service degradation. The large majority

of issues that would need immediate action if deployed are caught in the earlier development

stages (Interview 8: Test Lead, 2021; Interview 10: Tech Manager, 2021).

The Change Fail Rate is closely related to testing and how many bugs are caught before release

to production. If looking into the raw system data, the total number of filed bugs have increased,

but so has the total throughput (see details in Appendix 8). For the proportion of critical and

blocker bugs among the monthly total throughput of all issues, the increase constitutes for one

percentage point between 2019 and 2020 - but still far below the level of 15%. However, it is

49

important to note that it is not necessarily concluding that a larger proportion of bugs are

produced, but that more bugs are found and filed due to improved routines and amount of

testers.

As previously concluded, bugs prioritized as critical or blocker are found to not be a proper

definition of a failure at Storytel. However, since it is a broader definition of failure (less

impactful bugs are included) and this proportion is already below 15%, it can be used as a basis

to infer that Storytel is already performing well, having a Change Fail Rate below 15%. Unlike

the other metrics, this is a common rate for both Elite, High and Medium performers (see Figure

13).

Figure 13. The estimate of the present classification of Change Fail Rate.

6.3 Summary of the Four Key Metrics estimation - from raw system data
at Storytel
In conclusion, from the found data Storytel is today performing as a medium or high performer

(see Figure 14). Notice that this is based on present performance. The historical perspective

suggests some changes within the categories rather than any major changes between the

categories.

 Figure 14. Summary of the Four Key Metrics estimation from raw system data at Storytel

50

6.4 Comparison of the Four Key Metrics - System Data vs Survey
Estimates
In the survey, respondents were asked to give an estimate of each of the Four Key Metrics
based on their team in order to complement the raw system data in several aspects. The main

reason for this was to provide the opportunity to analyze how the factors theorized to impact

productivity correlate with the Four Key Metrics through statistical measures. Additionally, it

serves to further contextualize the raw system data. As described in the methodology section,

gathering data through a survey can create a more holistic view than what the raw system data

can generate (Forsgren, Humble and Kim, 2018). However, during interviews, some employees

have indicated that they believe developers will likely contribute with a large spread in

estimates, and that some will be far away from reality (Interview 8: Test Lead, 2021). Lastly,

it serves to validate the raw system data - if the data provided by the survey shows very different

metric values from the raw system data, this would be a strong reason to believe that the raw

system data is likely untrustworthy.

From analyzing the survey responses, a relatively large share of respondents opted out of giving

an estimate. On the two tempo metric questions about Deployment Frequency and Delivery

Lead Time, 9.5 % and 8.2 % respectively responded ‘I don’t know’. The rate of this response

was even higher for the Stability metrics - 16.7% in Mean Time To Restore and 19.4% in

Change Fail Rate. These high percentages indicate that there is likely a degree of uncertainty

and guesswork from a number of respondents who chose other options than ‘I don’t know’.

This emphasizes that the survey estimates of the Four Key Metrics should be treated as biased

estimates, and not as fact.

6.4.1 Delivery Lead Time
The survey data on Delivery Lead Time partly contradicts the raw system data which classifies

Storytel as a medium performer. The majority of survey respondents (34.2%) estimate that their

team’s Delivery Lead Time is between one day to one week, which classifies them as a ‘high’

performer. The second most frequent answer (27.4%) is one week to one month, which should

be the majority answer in accordance with Jira data (see Figure 15). When accumulating the

share of respondents that estimated that their average Delivery Lead Time is shorter than one

week (ranging from ‘Less than one hour’ and ‘one day to one week’), the result is that 61.1 %

of respondents classify their team’s performance in the ‘high’ to ‘elite’ range according to the

classification of the Four Key Metrics.

51

Figure 15. Survey responses for Delivery Lead Time.

There are several possible reasons for this discrepancy. It might be that respondents tend to

underestimate how long their teammates spend on each task on average, and mainly respond

based on their individual experience because the respondent’s focus is only the part they are

mainly responsible for in the development cycle. This is interesting, as it either shows lack of

team perspective and bad awareness of how well the team is doing - or lack of communication

and that the state of the teams is not properly signaled. It could also be both of them. Similarly,

how the respondent interprets the wording ‘code successfully running in production’ and how

this differentiates to the workflow stages included in the Jira analysis may affect the results.

For example, an iOS developer might interpret code and corresponding Jira ticket as

‘successfully running in production’ when their code is added to the version that will be

deployed to the App Store on the next scheduled release - whereas the Delivery Lead Time

extracted from the Jira data may also include the time in which the ticket that reflects that iOS

code is finished but is still waiting for the next scheduled App release. This is due to differences

in what workflow stages different teams use, and how they define ‘Done’. Lastly, it might be

that results are skewed due to the fact that only half of the Tech department responded to the

survey.

Some discrepancies are expected, since Delivery Lead Time differs among the tech stacks.

From the survey data, for example among developers, the Backend and Frontend Developers

estimate a shorter Delivery Lead Time than Android developers corresponding to expectations.

Since Backend Developers are the majority role both in the Tech Department in total and

among the respondents, this will affect the average estimates of Delivery Lead Time (both in

survey and raw system data collection). However, apart from Android developers, the

overrepresented roles among the longest estimated Delivery Lead Times are Crew Coaches,

project managers and testers. Arguably, these roles might have a better overview over the whole

process than the developers.

52

In conclusion, based on the survey data there are indications that Storytel has a lower score

(shorter time) in the Delivery Lead Time metric than what is found by the raw system data. A

majority of respondents indicate that the average Delivery Lead Time for their team is less than

one week, which would classify Storytel as a ‘high’ performer.

6.4.2 Deployment Frequency
The raw system data regarding Deployment Frequency, indicating that Storytel deploys

between once per day and once per month and categorizing them between a ‘medium’ and

‘high’ performer, is overall corroborated by the survey results (by 75.7 % of respondents). 44.6

% respond that they deploy between once per day and once per month and 31.1% respond

between once per day and once per week (see Figure 16).

Figure 16. Survey responses for Deployment Frequency.

The third largest share (8.1%) - when excluding those who responded ‘I don’t know’ - indicate

that their team deploys multiple times per day, which would categorize their team as an ‘elite’

performer. As previously discussed, the differences in Deployment Frequencies at Storytel is

largely due to the differing procedures between teams developing the iOS and Android apps,

and teams involved in developing other Storytel services. It might be additionally due to other

influencing factors, but these are difficult to separate from the aforementioned differences.

6.4.3 Mean Time To Restore
A large majority (50 %) of respondents, estimate that the Change Fail Rate of their team is less

than one day (see Figure 17). Unfortunately, these numbers cannot be corroborated by the raw

system data findings due to a gap in the findings. The survey data however classifies Storytel

as a high/medium performer. Furthermore, 20.8 % of respondents estimate that issues are

resolved in less than an hour value, which would indicate that those respondents belong to

53

teams that can be classified as ‘elite’ performers. However, these estimates are in a minority,

and Storytel is classified as a high/medium performer.

Figure 17. Survey responses for Mean Time To Restore.

6.4.4 Change Fail Rate
A large majority of respondents in the survey (68.1 %) estimate that the percentage of deployed

changes that result in a degraded service and require immediate remediation is between 0-15

% (see Figure 18). This is in accordance with the raw system data, and verifies that Storytel is

not a ‘low’ performer in this metric.

Figure 18. Survey responses for Change Fail Rate.

54

7. Results - Factors

This chapter presents the results of the factor analysis and its correlation with the Four Key
Metrics made of the survey responses in SPSS. Ultimately, it answers the second research

question of this thesis ‘What human and technical organisational factors have an impact on
Storytel’s software development performance?’.

7.1 Results from Factor Analysis
The survey was constructed based on content validated factors with the help of a literature

review. The factor analysis has been performed to evaluate construct validity (see 4.3.2 Validity
and Reliability). To interpret the factors, the contents of the items included in the factor are

scanned to identify common themes excluding those deemed unreliable (Factor 7 and Factor

10). Overall, the factors the survey intended to measure seem to be reflected to a high degree

in the factor analysis. Factors 1-5 and 8-9 mainly consist of variables from the same theoretical

constructs, see Table 5. The same final factors from the factor analysis, but with respective

thematic interpretations, are shown in Appendix 9.

Factor 1 contains two items from the construct Team Identity and one item from the construct

‘Communication’. This seems reasonable as T1 and T2 are both centered around phenomena

where good internal communication can be assumed to be a prerequisite (collectively working

toward a shared goal and knowing the reason for features developed in the team, respectively).

The theme of the factor is interpreted as mainly representing the construct Team Identity, and

named accordingly. Factor 2, 3 and 4 loaded items corresponding to only one construct each,

and were therefore named ‘Number of Projects’, ‘Transformational Leadership’ and

‘Generative Culture’ respectively. Factor 5 contains the two items that are meant to measure

job satisfaction in the questionnaire, and one item that belongs to the construct ‘Team Identity’

- the item ‘I am proud of being part of my team’ (TI3). Factor 5 is still named ‘Job Satisfaction’,

since TI3 can intuitively be connected to job satisfaction.

Factor 6 contains items from four different theoretical constructs. This can be interpreted as a

new factor that we did not intend to measure, but that these items might reveal an undiscovered

construct and an interpretation is therefore necessary. ‘In my team, responsibilities are shared’

(GC2) correlated much more strongly with the variables in Factor 6 than with the rest of the

‘Generative Culture’ variables in Factor 4. The item TC1 ‘In my team, we put effort into

facilitating work for other teams.’ can furthermore be linked to GC2 through the common

theme of shared responsibility. AU1 and AU2 are both indications of automation in the

development process, in deployment and testing respectively. Finally, LM2 ‘In my team the

ambition is to keep the number of Work-In-Progress to a minimum’ - connected to the

theoretical construct ‘Lean Management’ - is theorized to be an indication of an efficient

development process. The rest of the items in Factor 6 can be interpreted connected to aim

towards efficiency as well, why Factor 6 subsequently is named ‘Efficiency (Automation and

Shared Responsibility)’.

55

Factor 8 and 9 both only contain items from one theoretical construct each and were

consequently named ‘E-Factor and Time Fragmentation’ and ‘Team Cohesion’. In Factor 9

‘Team Cohesion’, the two included items have opposite loading; TC2 (‘I have a good insight

into what other teams are doing.’) is negatively correlated with TC2 (‘I wish I had more insight

into what other teams are doing.’). This indicates that respondents that do not already

experience that they have good insight into other teams, generally wish that they had better

insight.

Some constructs that the questionnaire aimed to measure - Communication, Automation,

Architecture, and Lean Management - do not show up clearly in the factor analysis. While

Communication, Automation and Lean Management items partly loaded onto other reliable

factors, Architecture is not included anywhere. This may be due to reasons such as an

insufficient number of questions to measure these constructs, poorly phrased questions or other

design flaws. It could also be interpreted as support that this might not be a prevalent factor. In

any case, we can conclude that no support exists from the factor analysis that this construct has

an impact on the respondent's answers.

Conclusively, no factors from the factor analysis are connected purely to constructs belonging

to the Process category. These constructs were only measured by six items out of a total of 32

items, and only two items per theoretical construct, so this is likely primarily caused by the

survey design. As a result, no reliable conclusions can be drawn on regarding how this category

correlates with productivity more or less than the other categories.

These factors represent the most prevalent underlying aspects that explain the majority of the

variance in the survey data.

7.1.1 Factors influencing the Four Key Metrics
To analyze what factors influence the Four Key Metrics at Storytel, the factors generated from

the factor analysis are used. As section 6.4 (‘Comparison of the Four Key Metrics - Raw System

Data and Survey Estimates) supports, the estimated values of the Four Key Metrics in the

survey are sufficiently similar to those gathered from the raw system data that they can be

treated as a proxy for the raw system data. The survey data has provided a more holistic view

than what the raw system data would have contributed to. Subsequently, correlations between

these estimates and the factors validated by the factor analysis can generate valuable insight.

New factor variables with the corresponding factor scores for each respondent were created

automatically in Principal Axis Factoring using the Regression method. Regression was chosen

as this procedure maximizes the validity of the estimates (Distefano, Zhu and Mîndrilã, 2009).

The new variables were used to analyze potential correlations between the factors and the

respondents’ estimates of the Four Key Metrics. The correlations were analyzed using

Spearman’s rank correlation coefficient as neither the factor scores or the Four Key Metrics

estimates are normally distributed. The significant correlations are displayed in Table 9. The

smaller the p-value is, the stronger the evidence for the correlation is (Glen, 2021).

56

Four Key Metric Correlated factors Spearman Significance

Delivery Lead Time Factor 4 - Generative Culture rs = - 0.409**, p = 0.004

Deployment Frequency Factor 6 - Efficiency
(Automation and Shared

Responsibility)

rs = - 0.295*, p = 0.042

Mean Time To Restore Factor 2 - Number of Projects rs = - 0.359*, p = 0.018

Change Fail Rate - -

Table 9. Factors correlated to the Four Key Metrics (Regression method).
* p-value less than 0.05
** p-value less than 0.01

Surprisingly, among the 8 valid factors extracted in the factor analysis, only three significant

correlations were found between factors and the Four Key Metrics. This may be caused by

previously discussed flaws in the survey design (see Section 5.2 Factor Analysis), and it is

likely more factors that would have shown statistical correlations if there had been more items

covering them in the survey. However, only these three correlations can be conclusively

confirmed to have an impact on the Four Key Metrics at Storytel, based on our survey.

7.2 Investigating the correlated factors
In this section, results gathered from our survey, interviews, and raw system data regarding

factors influencing productivity at Storytel are presented to support the results from the factor

analysis correlation with the Four Key Metrics.

7.2.1 Generative Culture impact on Delivery Lead Time
The factor ‘Generative Culture’ shows a negative correlation with the metric Delivery Lead

Time (rs = - 0.409**, p = 0.004). This indicates that shorter delivery lead times within the Tech

Department are correlated with a higher degree of generative culture, i.e. a culture that

optimizes information flow (see items in Table 10).

Factor 4: Generative Culture

GC5 - In my team, failure causes inquiry so that we can learn from the experience. (-.775)

GC4 - In my team, cross-functional collaboration is encouraged and rewarded. (-.480)

GC6 - In my team, new ideas are welcome. (-.451)

GC1 - In my team, information is actively sought. (-.443)

Table 10. Items included in Factor 4 with corresponding factor loadings.

57

In our survey, the average score of the four items included in this factor indicates that Storytel’s

Tech Department can be classified as having a generative culture overall. All items have a

mean value above 4 out of 5 (average score 4.26), suggesting the average score is between

‘Agree’ and ‘Strongly Agree’. This indicates that the concentration in the organization is on

the mission, rather than on positions and individual people. Furthermore, this means they are a

performance-oriented organization within which risks are shared, novelty is implemented, and

cooperation is encouraged (Westrum, 2004). Notably, these organizational qualities are

reflected in one of Storytel’s mission statements regarding employees, which states; ‘Attract

and develop exceptional people by nourishing a diverse workplace built on trust, innovation,
and collaboration’.

Findings from HR survey data further corroborate the findings that the culture at Storyel’s Tech

Department is generative. According to Westrum (2004), a generative culture needs to promote

meaningful work and clarity to generate high-performing teams. HR survey data from 2020

shows that Storytel’s mission and vision statements are well-communicated and found to be

inspiring. Additionally, both of these have increased slightly since 2019. These are arguably

important components in promoting meaningful work (Vision & Mission - HR Survey Data,

2019-2020). In another survey from 2019, employees overall strongly agree that their work

feels meaningful and that they view it as ‘creating change for the better’ (Team Efficiency Tech

- HR Survey Data, 2019).

The item GC5 - ‘In my team, failure causes inquiry so that we can learn from the experience’

has a significantly larger factor loading (-.775) than the other items (the second largest factor

loading is GC4 with -.480); and subsequently can be inferred to have the largest degree of

correlation with Delivery Lead Time. Due to this, we looked for more information regarding

the Storytels’ Tech Department’s ability to learn from previous failures.

The capacity to learn from failures or mistakes within an organization can be connected to how

feedback is handled within the organization. From two HR surveys during 2019 about

leadership, we found that feedback is among the top-rated skills of which employees agree

managers could improve (Leadership at Storytel - HR Survey Data, 2019). Supporting this

finding, from ‘Transformational Leadership’ in our survey one item directly connected to

feedback (TL3 - ‘My manager regularly gives actionable feedback that helps me improve my

performance.’) received the lowest average score (3.2/5) out of the three items. Looking into

feedback in more detail, the numbers from an HR survey from 2020 tells us that feedback is

given to colleagues more often than to managers, but that employees are equally comfortable

giving it to both. However, the amount of feedback received from managers is generally less

than what employees desire (Feedback - HR Survey Data, 2020).

One initiative to learn from mistakes within app releases at the Tech Department is a meeting

happening one week after each app release. The meeting aims to evaluate and discuss pros and

cons with the recent release and to document improvement areas and learnings (Interview 10:
Tech Manager, 2021). For large issues or disruptions, there is an additional procedure

implemented in which a document called a ‘Post Mortem’ is filled out, typically by a senior

58

developer or a Tech Manager. This is performed to map specifically what went wrong, why it

happened, and what was done in order to prevent the same issue from occuring in the future.

(Interview 8: Test Lead, 2021).

While ‘Generative Culture’ is the factor that is found to have the largest impact on Delivery

Lead Time, and Delivery Lead Time is the metric that changed the most between 2019 and

2020, from 10 days to 19 days - none of the findings indicate that Storytel’s culture has changed

significantly during this period. While there are likely several components contributing to the

increase in Delivery Lead Time metric since 2019, the lack of a well-functioning feedback

culture might be a growing source of error as the Tech Department increases in size. Lastly,

the need of more reflective and retrospective procedures might grow bigger.

7.2.2 Efficiency, Automation and Shared Responsibility impact on Deployment
Frequency
The factor ‘Efficiency (Automation and Shared Responsibility)’ shows a negative correlation

with the metric Deployment Frequency (rs = - 0.295*, p = 0.042). This suggests that the items

included - spanning the theoretical constructs team cohesion, automation and lean management

- are indicated to have a combined impact on the frequency with which the Tech Department

deploys code to production. High scores on these items are connected to more frequent

deployments (see items in Table 11).

Factor 6: Efficiency (Automation and Shared Responsibility)

TC1 - In my team we put effort into facilitating work for other teams. (.759)

AU1 - What is, in your estimate, the percentage of tasks related to deployment that are automated in your team? (.649)

AU2 - What is, in your estimate, the percentage of tasks related to testing that are automated in your team? (.529)

GC2 - In my team, responsibilities are shared. (.519)

LM2 - In my team the ambition is to keep the number of WIP to a minimum. (.376)

Table 11. Items included in Factor 6 with corresponding factor loadings.

Both of the items that were intended to measure Automation (AU1 - ‘What is, in your estimate,

the percentage of tasks related to deployment that are automated in your team?’ and AU2 -

‘What is, in your estimate, the percentage of tasks related to testing that are automated in your

team?) are included in the factor that is found to have an impact on Deployment Frequency.

From interview material, this is not an unexpected finding.

According to several employees, the largest obstacle in reducing the interval between

deployments is the manual and time-consuming regression tests required before each release.

(Interview 8: Test Lead, 2021; Interview 10: Tech Manager, 2021). Data logged from the app

release processes indicates how time consuming the release-related activities are in the test

59

pipeline. During the first nine months of 2020, testers collectively spent approximately ten

times as many hours on release-related activities compared to iOS and Android developers

(Storytel, 2021d). These numbers support that manual regression testing is by far the most time

consuming activity, interfering with the initiative to decrease the release interval. Conclusively,

a lot of time is spent by the testers to assure quality during freeze time (when new code is no

longer pushed, and most testing activities are carried out). If test automation increased,

Deployment Frequency could increase.

Furthermore, deployment automation enables more reliable and risk-free deployment to

production (DevOps Research and Assessment, 2021). Interviewees emphasize the benefits of

introducing Deployment Monitoring and tools to assist troubleshooting which is now a time-

consuming activity that hinders developers, and especially Backend Developers, from

deploying often and in certain situations (Interview 15: Tech Manager 2021; Interview 14:
Developer 2021).

Another item included in this factor is LM2 - ‘In my team the ambition is to keep the number

of WIP to a minimum’ (factor loading: .376) which indicates that teams that implement this

practice at the Tech Department, in combination with the other factor items, generally have an

higher Deployment Frequency than other teams. Deployment Frequency is used as a proxy

measurement of batch size, and limiting WIP is connected to reducing batch sizes. This

subsequently enables faster cycle times and exposes potential obstacles to the flow of work

(Forsgren, Humble and Kim, 2018). However, according to Forsgren, Humble and Kim (2018),

this factor is only observed to have an impact on software delivery performance when it is

combined with a team’s use of visual displays of productivity and quality metrics. Interestingly,

from Jira data it was found that teams’ WIP does not correlate with lower cycle times (see

Appendix 6) and visualization on work flow is expressed by our survey respondents as lacking.

Based on these findings, further efforts spent on visualizing metrics in teams where the practice

of limiting the number of WIP is implemented, could potentially increase process improvement

and throughput at Storytel even more.

Item GC2 - ‘In my team, responsibilities are shared’ is also included in this factor, and

consequently indicated to have an impact on Deployment Frequency. A team with a strong

sense of identity is signified by a joint feeling of ownership (Demarco and Lister, 1987), which

can be assumed to promote responsibility sharing within the team. In the three questions in our

survey that represent ‘Team Identity’, the average score is high (4.36/5), indicating that most

employees at the Tech Department feel a strong sense of team identity. This is further supported

by the HR Survey Data. Employees answers regarding having trust in that their teammates

follow through on their respective tasks are very highly scored. However, questions regarding

responsibility distribution, communication about delays, and visibility into projects within the

team are scored significantly lower (Team Efficiency - HR Survey Data, 2019). Sharing

responsibilities within teams when it comes to testing is important for possibilities to increase

Deployment Frequency. Storytel’s goal is not to completely eliminate manual testing in favor

of automation or outsourcing, as it adds value when developers are forced to look at the code,

add several sets of eyes to a problem and spread knowledge through testing (Interview 8: Test

60

Lead, 2021). Additionally, if all team members are involved in testing and facilitate the tester’s

responsibility for test coverage, the team can be more efficient. In conclusion, working on

responsibility sharing and communication within the teams could further drive software

delivery performance.

Finally, item TC1 - ‘In my team we put effort into facilitating work for other teams’ is

correlated with higher values of the metric Deployment Frequency. Being able to facilitate

work for other teams - for example by sharing experiences, having a shared code base and

assisting in solving problems for other teams - is dependent on having insight into what other

teams are doing. Theory suggests that insight into what other teams are working on and

corresponding transparency into one’s own team can promote cooperation, information flow

and cohesiveness between different teams within the organization, and in turn promote

organizational performance (Westrum, 2004).

The Monthly Tech Meetings used to be an informative session to increase insights in other

teams, but along with the Tech Department’s growth over the last year, the Clubs (knowledge

sharing area existing between teams for example the Test club, the iOS club and the UX club)

has become the most important platform to enable insights across team boundaries (Interview
3: Developer, 2020). From seven HR Surveys from 2019, employees score a question regarding

if they think that they have enough insight into what other teams are doing comparatively low

(Tech work scope retro - HR Survey Data, 2019). Data from our survey further supports a

comparatively low insight in other teams as item TC3 - ‘I wish I had more insight into what

other teams are doing.’ has a relatively high average score (3.96). Additionally, interview data

suggests that employees' level of insight into other teams have significantly decreased as the

organization has grown (Interview 2: Crew Coach, 2020; Interview 3: Developer, 2020). For

example, there are indications that general information and posts in Slack channels or other

communication tools is not reaching everyone in the department (Interview 13: Crew Coach,
2021). This aspect, in its connection with enabling teams to facilitate work for other teams,

may have a negative impact on efforts to increase the Deployment Frequency in the Tech

Department.

7.2.3 Number of Projects impact on Mean Time To Restore
The factor ‘Number of Projects’ shows a negative correlation with the metric Mean Time To

Restore (rs = - 0.359*, p = 0.018). This indicates that respondents involved in a larger number

of projects generally report a lower average Mean Time To Restore within their team (see items

in Table 12).

Factor 2: Number of Projects

NP2 - How many projects have you worked on during the last three months? (.911)

NP3 - How many projects have your team been involved in during the last three months? (.654)

Table 12. Items included in Factor 2 with corresponding factor loadings.

61

Initially, we found this finding to be counter-intuitive as, according to Demarco and Lister

(1987), one of the main obstacles for efficiency and productivity is time fragmentation; which

they describe as a consequence of when employees are involved in too many projects at once.

However, as Meyer (2014) suggests, task-, activity-, and context switches all have different

impacts on productivity, and can be of both positive and negative character for the individual

as well as for the team. As supported by our findings, task switches might be of a positive

character in relation to Mean Time To Restore.

To further investigate the effect of time fragmentation at Storytel, we can analyze the E-Factor,

claimed by Demarco and Lister (1987) to be an indicator of a productive work environment in

which employees are allowed a sufficient amount of uninterrupted hours. Based on our survey,

the E-Factor is calculated to be 46% (standard deviation 22 %) at the Storytel Tech Department.

This percentage is above the suggested benchmark of 40%, which indicates that the average

Tech Department employee works in an environment that allows them to get into an

uninterrupted flow and that consequently promotes effectiveness and reduced frustration.

However, the relatively large standard deviation of this item indicates that the E-Factor differs

a lot between employees.

We have an additional reasoning that supports the correlation between Mean Time To Restore

and Number of Projects that the restoring process is likely facilitated if the involved employees

have recent experience of working on the affected code, which is more probable if they are

involved in many projects. Employees involved in several projects at once have good insight

into the code that they are currently working on, and can subsequently help locate the problem

and find the solution more quickly if the issue is in one of these projects. Furthermore, they can

prioritize solving issues easier than developers working on only one project, as they have a

more holistic view. However, we have not had the opportunity to investigate this reasoning.

7.2.4 No factors impact Change Fail Rate
No factors are found to significantly correlate with the Change Fail Rate metric. Based on the

distribution of survey answers, this is likely due to the design of the question and its options.

Excluding respondents that opted out of giving an estimate by responding ‘I don’t know’

(almost 20%), 84% of employees report that the estimated Change Fail Rate in their team is

between 0-15% which means that there is a very low degree of variance in the answers.

Arguably, within the range of 0-15%, there are likely several factors impacting the Change Fail

Rate across the Tech Department. Consequently, we are left to analyze material from

interviews when it comes to what factors might have an impact on this metric.

Based on one interview in particular, there is an idea that Change Fail Rate is kept low because

of the commitment and skill of people at Storytel’s Tech Department rather than a fail-safe

process (Interview 8: Test Lead, 2021). This means that people feel a willingness to produce

quality and responsibility for a well-functioning service, and that this keeps the Change Fail

Rate low. The underlying reasons for this can be high job satisfaction, good mood and

meaningfulness among other things. Engaged employees that bring the best of themselves to

62

work produce better work results. If job satisfaction is high, people tend to be more engaged

and driven to deliver good work, which consequently results in a higher software delivery

performance. Job satisfaction is further correlated with employees feeling that their work is

meaningful (Forsgren, Humble and Kim, 2018).

First of all, both of the questions intended to measure job satisfaction in our survey scored

highly (The items JS1 - ‘I would recommend my organization as a place to work.’ and JS2 - ‘I

would recommend my team as a place to work.’ scored 4.64/5 and 4.59/5 respectively). From

HR surveys the eNPS score was calculated twice during 2020, equal to 42 in the first quarter

of 2020 and an increase to 49 in the last quarter. This reflects a really high and increasing Job

Satisfaction at Storytels Tech Department considering that 50 is a benchmark for ‘excellence’

(Madhavan, 2019). Furthermore, respondents reported a very high score to a question about

whether they would re-apply for their current job (Job Satisfaction - HR Survey Data, 2020).

Additionally, transformational leadership also has a significant effect on job satisfaction and

organizational commitment (Ali, Farid and Ibrarulla, 2016) and according to our survey, this

style of leadership is indicated to be prevalent at Storytel. The questions measuring the

transformational leadership of managers (items TL1, TL2 and TL3; see Appendix 10) scored

an average of 3.6/5. Hence, transformational leaders might also be an underlying reason for

committed, satisfied employees at the Tech Department, and subsequently a contributing factor

to a low Change Fail Rate.

Secondly, according to an interviewee, mood and attitude is suggested to be of large importance

for both individual and team performance at Storytel (Interview 15: Tech Manager, 2021).
While our expectations were that people would report generally feeling ‘worse’ at work during

the ongoing pandemic and that loneliness from remote work would affect the mood - the

weekly HR question ‘How was your week at work?’ score, assumed to infer the general mood

and wellness of employees, is not significantly lower during 2020 than 2019 (Weekly Tech

Question - HR Survey Data, 2019-2020). Lastly, from HR survey data it is confirmed that work

feels meaningful and in line with skills and interest at Storytel’s Tech Department. An

interesting hypothesis mentioned during interviews as to why recruiting to the Tech

Department at Storytel is easy is that the literature industry, compared to a lot of other tech

companies, is appealing when it comes to ‘doing something good’. This is supported by a high

score to the question ‘Do you see your work as creating change for the better?’ (Team Identity

- HR Survey Data, 2020). Conclusively, levels of job satisfaction, general mood and intrinsic

meaningfulness are high at the Tech Department, which could influence employees to feel

responsible and engaged to keep the Change Fail Rate low.

63

8. Results - Bottlenecks

To answer the third research question ‘What bottlenecks exist that hinder Storytel from being
a better performer?’, we have in this section analyzed interview and survey data. The impact

of the described bottlenecks on the Four Key Metrics is not statistically confirmed, but they

add context to what hinders Storytel from being a better performer in terms of software delivery

performance. The bottlenecks - defined as limiting resources equal to or less than the demand

placed upon them in a system - are described according to their effect on tempo metrics versus

stability metrics respectively, as well as a summary of those highlighted in the survey data.

8.1 Tempo metrics

We found that Storytel is currently a medium to high performer in Deployment Frequency,

depending on the service. There are several potential bottlenecks connected to this metric, and

in particular related to the app release process, in which they are decidedly a medium performer

with a three week deployment cycle. During 2020 and going into 2021, the Storytel Tech

Department has maintained an ambition to reduce the time between deployments and adapt to

a two week release cycle for the apps instead of three - but this aim is constrained by several

factors.

Along with the market growth, there is a growing amount of tasks related to each new app

release that employees from the Marketing and Communications departments’ need to finish,

which becomes more time-constrained with a reduced release cycle. Another technical time-

sensitive obstacle is the time needed to receive valuable feedback from users about bugs and

other problems to be able to incorporate it into the next release, as well as the minimum time

required for the Android version to be in their beta program for it to be of value. Additionally,

the app release cycle is further limited by the review processes of the AppStore and the Google

Play Store, which generally take up to a few days (Interview 10: Tech Manager, 2021).

Due to the aforementioned reasons, there are differing opinions on whether changing the

Deployment Frequency for the apps from three weeks to two is desirable. It would require a

joint effort from a lot of different employees in diverse roles to drastically change the current

process in order to reach this goal. One interviewee mentions that the present Deployment

Frequency may be a local optima for Storytel (Interview 10: Tech Manager, 2021).

From the raw system data it was found that the Delivery Lead Time has increased from 10 days

to 19 days from 2019 to 2020. Arguably, this change during 2020 has additionally counter-

acted the ambition to increase the Deployment Frequency to releasing every second week. One

interviewee expresses that although things are generally more time-consuming now than they

used to be in terms of producing and deploying features, the quality of the features and the

process have likely improved (Interview 13: Crew Coach, 2021), which suggests that it has

become increasingly difficult to compress the current time frame further without compromise.

The opportunities for Storytel to become a better performer within app-related Deployment

Frequency are inhibited by these bottlenecks.

64

Currently, not restricted to the app-related services, the architectural infrastructure at Storytel

is an additional bottleneck to improving Deployment Frequency and Delivery Lead Time. The

Tech Department has over the past few years been going through a platform migration from

their old legacy platform to the Google Cloud Platform, in order to, among other reasons,

transfer to using microservices and improve scalability and modularity (Interview 7:
Developer, 2021). The growth of the organization and rapidly increasing number of employees

made it eventually impossible to work all together in one single code base, and prompted the

need for microservices.

Before introducing microservices, when teams were working on the same code bases to a larger

extent, a release from one team led to an update for every other teams’ service as well. Before

releasing, some heads-up and checkups had to be performed in order to avoid implicating the

work of another team. Since not too long ago, this is not the required workflow anymore

(Interview 6: Crew Coach, 2021). This is mainly due to the increasingly microservices-based

architecture which enables reduced team dependencies, and can potentially subsequently allow

for both increased Deployment Frequencies and shorter Delivery Lead Times by making the

release process less laborious. It would additionally broaden opportunities for increased

automation in some aspects (monitoring and modular testing) (Interview 8: Test Lead, 2021;
Interview 14: Developer, 2021). Decisions on transferring to microservices have mainly been

decided in clubs and teams and this is how it will continue for now (Interview 7: Developer,
2021). However, there is a newly formed team at Storytel that is now mainly responsible for

completing the migration from the legacy platform to the Google Cloud Platform. The

upcoming and further architectural improvements can continue to provide opportunities for

better performances in Deployment Frequency and Delivery Lead Time.

8.2 Stability metrics

The amount of testing that is possible to automate, but is still largely being carried out

manually, is a bottleneck - especially in the app test pipeline (Interview 14: Developer, 2021).
For improvement in the Change Fail Rate metric and increase in throughput, the testing process

overall is a crucial phase in which improvements could be made. Testing and finding bugs is a

shared responsibility, however guided by the test club. Supportive in finding bugs are also the

users, to whom it is preferable to have a good communication channel. The routines and

strategies of communication channels from users differ among the services.

For the apps’ communication channel with its users, there is a customer service function at

Storytel that apart from helping customers - serve as a feedback collector together with the app

ratings. The customer service functions are working in different local teams with one global

customer support team facilitating coordination, where one person is responsible for the main

communication with the Tech Department (Interview 5: Customer Support, 2020). A weekly

meeting called the Bug Refinement Session was introduced a few years ago, which have

become useful in terms of prioritizing the bugs that are noticed by the end users - which without

65

the help of Customer Support is harder to figure out (Interview 8: Test Lead, 2021). The

meeting has probably improved Mean Time To Restore for bugs in general, but not for the

most urgent bugs causing a disruption or large impact on users. These are communicated in

Slack channels; however among other types of less prioritized issues, which arguably might

diminish their visibility to developers that need to personally keep track of these support

channels to quickly be alerted to fix urgent issues related to their code. If urgent issues happen

outside of office hours, an on-call club is notified (Interview 16: Tech Manager, 2021).

For internal and external web tools with employees and creators as users, there is no Customer

Support function. Several Slack channels are used to get in contact with each team, different

channels depending on the urgency of the support request. An improved cooperation process

with Customer Support for apps, and introducing more coordination among support errands

within internal and external web tools, could potentially scale down the size of this bottleneck

and increase the Mean Time To Restore in terms of reducing the time from an issue being

discovered until it is fixed.

Again, for some non-scheduled deployments there are plans to introduce routines to for

example include scheduled time for testing. If routines for testing and monitoring are in place

to catch problems before they are released into production, Change Fail rate could decrease.

Incorporated in these plans is furthermore to add versioning. Version control is connected to

quality assurance and testing, and could possibly decrease Mean Time to Recover, since finding

issues is facilitated.

8.3 Bottlenecks - data from our survey
In an open ended question in our survey phrased ‘In your opinion, what is the biggest bottleneck
slowing down the work in the Tech Department?’, 50 respondents shared their reflections.

Interestingly, the answers were quite diverse. Some comments reflect bottlenecks mentioned

in interview data, and additional bottlenecks are also mentioned.

Two of the most frequently mentioned bottlenecks in the survey are legacy codebases; source

code that is outdated and no longer supported, and technical debt; i.e. the future cost of

prioritizing fast delivery over high quality code. Legacy codebases and technical debt can be

viewed as interrelated as they both stem from prioritizing delivering new features fast over

maintaining and updating the underlying codebase and the existing features. This is further

commented on by one respondent who says that too little regard is given to the maintainability

of the systems and features that they build, which leads to error-prone solutions and a need for

frequent patches and bug fixes. Another respondent credits technical debt - expressed by the

large amount of features and services that need continuous maintenance - with leading to

increasing amounts of WIP, which often exceed the intended WIP limits within the team.

Conclusively, these bottlenecks relate to both tempo and stability metrics, as legacy codebases

and technical debt lead to decreased quality as well as additional time-consuming activities in

the test-pipeline.

66

Reflecting what was mentioned during the interviews, the app release cycle (i.e. the deployment

and test pipeline for apps) is mentioned by several respondents in the survey as one of the

biggest bottlenecks, as well as time-consuming assistance to Customer Support causing time

fragmentation, and the lack of automated testing.

An additional aspect mentioned in the survey data as a bottleneck is the differing definition of

‘Done’ in different Jira projects (briefly mentioned in Section 5.3.1 Obstacles in Four Key
Metrics estimation). ‘Done’ is either implying that the coding is completed on the ticket and it

is waiting for release, or ‘Done’ is implying that the ticket has been released to production.

This is interesting from a communication perspective, as teams may have very differing

routines due to their autonomy, which can lead to confusion and failure to agree. Connected to

this, several respondents mention communication explicitly as a bottleneck, and an even larger

group of respondents state that team interdependencies and unclear ownership is a major

bottleneck. These aspects can also be related to responses about the increasing size of the Tech

Department and teams as being hindrances. Additionally, communication with stakeholders is

also mentioned by several respondents. Among these comments are unclear ownership and

priorities, misalignment between vision and mission and the work, and unclear direction stated

as bottlenecks. Furthermore, a couple of respondents state that requests directly from

management can be interrupting, and stakeholder input can interfere with the roadmap and

planning. Overall, these communication issues likely affect Delivery Lead Time and

Deployment Frequency at Storytel, as they can detract from efficiency by causing delays in

decision-making or cause unnecessary work.

Finally, unclear and unrefined requirements for features is mentioned by a large number of

respondents as a recurring issue. This could be partly related to survey statements commenting

on how there are too few Product Managers, and the growing pains connected to an increasing

Product Manager organization. A couple of respondents state that too little time is spent on

planning and designing, which results in changes during development that requires

development having to start over, which would directly affect the Delivery Lead Time metric.

67

9. Conclusions
The following conclusion wraps this thesis up by outlining the major findings. Suggestions are

made on potential angles for future research.

9.1 Research Questions

Where does Storytel rank in the software development performance categories based on the
Four Key Metrics?

Based on this study, Storytel cannot be conclusively categorised into each of the Four Key

Metrics. However, estimates with varying degrees of certainty can be made across all of them.

In the Tempo metrics, Delivery Lead Time and Deployment Frequency, Storytel is overall a

medium to high performer. For the metric Delivery Lead Time, performance is conclusively

classified as medium at Storytel with an average lead time between one week and one month.

In the metric Deployment Frequency, Storytel corresponds to both high and medium

performers across different parts of the organisation. The deployments to the apps are made

every three weeks (medium performance) while other services generally deploy between once

per day and once per week (high performance).

Apart from the respective category classification, the main takeaways when it comes to Tempo

metrics is that the Delivery Lead Time has increased within the limits of the current

Deployment Frequency. Deployment Frequency routines are currently being introduced to

more services than the apps. For these actions, it could be valuable to be aware of the potential

adaptation to a certain Delivery Lead Time that comes along with a fixed and scheduled

Deployment Frequency. Since the chosen Deployment Frequency inherently equals a choice

of batch size and theory suggests that smaller batch sizes are better - as they accelerate

feedback, enable faster cycle times and reduce overhead and risk - one should adapt

Deployment Frequency to maximize these effects.

The stability metrics are a bit more inconclusive in comparison to the tempo metrics. In

particular the Mean Time To Restore metric for which we were unable to find appropriate data

to give conclusive findings on where Storytel places in this aspect of delivery performance.

However, the majority of estimates in our survey data indicate that Storytel’s Mean Time To

Restore is within the scope of a medium to a high performer (less than one day). Change Fail

Rate, while no data source could be found indicating an exact percentage, can be conclusively

categorised in the category of 0-15% due to what can be inferred from other broader findings.

Since this percentage spans all three top categories, the Change Fail Rate metric at Storytel

classifies them as a medium to elite performer.

While the Stability metrics were ambiguous to determine through raw system data, the

measuring attempts were not unfruitful in terms of insights and takeaways. When looking at

the lead time for critical and blockers bugs, the Mean Time To Restore was found to be too

68

slow to rank in the performance category table (worse than low performer, i.e. outside the range

of ‘1 week to 1 month’). Our conclusion is that inflation has likely occurred along with the

growth of the testing organizations that make the internal documentation outdated, meaning

that the majority of critical and blocker bugs are in fact not severe enough to require immediate

remediation, such as a hotfix. The findings from this attempt could also be misleading due to

fallacy in the assumption that most bugs in Jira are in production.

Our suggestions for future routines that would facilitate measurements is to clear out outdated

bugs in Jira, introduce a way to separate bugs that are currently in production from those that

are not, and to update the bug priority guidelines. We also see benefits of streamlining

cooperation with Customer Support, and find a better solution to the current procedure that

continually interrupts developers through Slack channels with requests, especially since there

is a wide range of urgency among these errands. Lastly, the Change Fail Rate is low,

hypothetically because of the skill and commitment of the people rather than the infallibility of

current process routines. There's a risk that this rate could increase along with an continuously

growing workforce and a consequent decreasing sense of individual responsibility among

employees.

Overall, Storytel spans different categories of performer in the different metrics depending on

where in the Tech Department you look. However, there are indications for each of the Four

Key Metrics that Storytel generally can be minimally classified as a ‘medium’ performer.

What human and technical organisational factors have an impact on Storytel’s software
development performance?

The factors that our statistical measures through factor analysis found to have an impact on the

Four Key Metrics were ‘Generative Culture’, ‘Efficiency (Automation and Shared

Responsibility)’ and ‘Number of Projects’.

While ‘Generative Culture’ is the factor we found to have the largest impact on Delivery Lead

Time and it is the metric that changed the most between 2019 and 2020, none of our follow-up

findings indicate that Storytel’s culture has changed significantly during this period. Findings

from HR survey data for example, corroborate that the culture at Storyel’s Tech Department is

generative. Looking more closely at one of the items which has a significantly larger factor

loading than the other items, on the subject of learning from failures, we find that lack of a

well-functioning feedback culture might be a growing source of error as the Tech Department

increases in size and that the need of more reflective and retrospective procedures could

increase.

The ‘Efficiency’ factor, spanning the theoretical constructs team cohesion, automation and lean

management, are indicated to have an impact on the Deployment Frequency. While automation

and lean management practices impact on Deployment Frequency were expected, items

covering shared responsibilities within teams and whether a team put effort on facilitating work

69

for other teams, was less anticipated. But HR survey questions regarding responsibility

distribution, communication about delays, and visibility into projects within the team are in

fact scoring significantly lower than other team identity questions. Moreover, interview data

suggests that employees' level of insight into other teams have significantly decreased as the

organization has grown, affecting the possibilities to facilitate work for other teams.

Determinedly, these items are not unreasonable to have had a negative impact on the

Deployment Frequency in the Tech Department.

The negative correlation that was found between ‘Number of Projects’ and the metric Mean

Time To Restore was initially found to be counter-intuitive due to the assumed negative effects

of time fragmentation, brought on by having many active projects, on performance. But from

our survey the calculated E-Factor is above the suggested benchmark which indicates an

environment that allows employees to get into an uninterrupted flow, supporting that task

switches might be of a positive character in relation to Mean Time To Restore. Further

supporting this correlation is that the restoring process is likely facilitated if the involved

employees have recent experience of working on the affected code, which is more probable if

they are involved in many projects. Lastly, that they can prioritize solving issues easier than

developers working on only one project, as they have a more holistic view.

We found no factors to significantly correlate with the Change Fail Rate metric. Consequently,

we are left to analyze material from interviews. One idea is that Change Fail Rate is kept low

because of the skill of people at Storytel’s Tech Department rather than a fail-safe process. The

underlying reasons for this can be high job satisfaction, good mood and intrinsic

meaningfulness among other things. According to HR Survey data, the eNPS score reflects a

high and increasing job satisfaction at Storytels Tech Department (49 in the latest measurement

from late 2020), close to the benchmark for ‘excellent’ (50). In fact, job satisfaction, mood and

perceived meaningfulness of work are found to be of high levels at the Tech Department, which

could influence the employees to feel motivated and responsible to ensure good quality of

work and in turn keep the Change Fail Rate low.

Among a lot of factors, the factors with a statistically supported impact on the Four Key Metrics

were expected to be more than three. Other factors might have been dismissed due to design

choices and lack of a larger response base. However, in line with the theory on influencing

factors on productivity, our factor analysis does support that human factors have an equally

large impact as technical factors.

What bottlenecks exist that hinder Storytel from being a better performer?

In contrast to the factor analysis correlations with the Four Key Metrics, the bottlenecks found

in interview data and from our survey spanned a lot of different theoretical constructs. The

most frequently mentioned bottlenecks are mainly related to the constructs Architecture,

Automation, Time Fragmentation and Communication.

70

As an effect of an environment that allows teams and developers to freely choose among tools

and programming languages and of residual legacy systems, there is a lack of common

architecture in the Tech Department. This also leads to irregular and in some cases non-existent

documentation and outdated code that is difficult to maintain. Giving architectural

considerations a greater focus and a higher priority - by better maintaining and supporting

existing codebases and accelerating migration from old legacy systems - can prevent this

bottleneck from becoming a larger issue, and help avoid increasing the technical debt.

A large number of people mention test-related issues and lack of automation in testing as

hindering Storytel from a better performance, as well as the app release cycle in general. While

bugs are not frequently mentioned as a bottleneck, support errands are - mainly relating to how

communication with Customer Support regarding bugs and issues in the apps leads to undesired

time fragmentation. Further investments in automation in the test pipeline and, as previously

mentioned, re-organizing how support errands are communicated to the Tech Department

could minimize their respective impact on software delivery performance.

Bottlenecks related to different aspects of communication were also found in both the interview

and survey data. Confusion and consequent issues seem to frequently occur due to unclear

responsibilities, differing routines, and complex interdependencies between teams.

Additionally, a similar lack of communication, unclear responsibilities and vague directions

from the Management organization is also reflected in the survey data. Related to this, unclear

requirements and inadequate planning which eventually leads to scrapped code and

consequently longer cycle times is also voiced as a concern in the survey data. These aspects

are arguably expected growing pains of a quickly expanding organization, but there is an

increasing need of addressing these issues fast as the Tech Department grows more complex.

As supported by Wagner and Ruhe (2018), efforts to increase the communication intensity

should be made alongside the increasing number of people in the organization, as this has been

found to positively correlate with successful projects. Improving communication channels and

clarifying responsibilities on all levels of the Tech Department can therefore be crucial to

improve software delivery performance.

In the Theory of Constraints, the focus is on identifying the one constraint that limits the whole

organization and suggests companies to restructure the rest of the organization around it,

adopting the common idiom "a chain is no stronger than its weakest link" (Goldratt and Cox,

2012). This thesis has not had the approach to find the one major bottleneck constraining the

system, rather potential bottlenecks in different parts of the organization, but this could be an

interesting future research among the found bottlenecks.

9.2 Limitations
A lot of findings that we initially intended to analyze further were ultimately outside of the

limited time scope of 20 weeks, and were excluded from the final report. Some of these

abandoned ideas are described below.

71

There was a section included in the survey specifically intended for those that had been

employed for 12 months or longer at Storytel that we called ‘Historical Perspective’. On a

Likert-scale from 1 to 5, respondents were asked to rank how different factors had changed

compared to 12 months ago. Due to time constraints and this section’s appraised relevance, we

did not analyze these results further and connect them to the other findings. We conclude in

retrospect that this could have provided interesting further context. A table with these survey

results are included in the Appendix 7). Connected to this limitation, an initial hypothesis

regarding impact on factors from a rapidly increasing workforce was not possible to investigate

further due to the method design and time constraints.

Additionally, another initial intent was to include a comparison between different teams and

roles within the Tech Department in regards to the Four Key Metrics and different factors

measured in the survey. This would have allowed for a more detailed analysis between why

software delivery performance might differ across the Tech Department. Another reason for

excluding this was due to the limited number of survey respondents; the number of employees

from each team would be too irregular (ranging between one and eleven respondents per team)

to be able to generalize survey findings. Lastly, information regarding productivity on team or

role level is more sensitive than on organizational level and would have required caution and

more confidentiality.

Connected to comparisons between teams, studying a more diverse set of workflow stages were

deprioritized. Actionable Agile proved to be an inefficient tool to load the large existing amount

of issues that prompted this limitation to be made. This could possibly possess interesting

information by for example making it possible to measure the time for each issue in “Waiting

For Release” to investigate how much faster Deployment Frequency could be if it was dictated

by finished code segments.

9.3 Sources of error
The fact that one team by accident was handling tickets in an unconventional way, and that

these issues were able to modify at least one graph as much as shown in the method section

5.3.2 Preprocessing of Raw System data sets (not as clear in other graphs), we needed to

examine if there were several similar kinds of deviations. The further examination was

unfruitful, but there could possibly exist similar discrepancies since they can be difficult to

find. This however supports the choice of looking into more than one type of graph (checking

WIP and throughput demonstrated this anomaly, but not the cycle time scatter plot). The steady

increasing amount of WIP, not following the increasing number of employees but rather close

to exponential, was an indication that more teams used the same routines as the team that never

classified issues as ‘Done’. However, after excluding these issues the WIP follows a pattern.

The number of WIP is doubled each year starting from 2018. In January each year, the WIP is

as follows: 500, 1K, 2K and finally 4K in 2021. Furthermore, it is brought up during interviews

72

that there is in fact a lot of work in progress going on at the moment. With these analyses being

made, we had to make the assumption that no other major discrepancies were to be found.

Another source of error could be that Actionable Agile only allows for showing trends, used to

estimate the average and mean values rather than median values. Since this is possible for the

Jira reports, we got an indication that the median value is a lot less than the average. Since it is

possible to exclude outliers in Actionable agile but not in Jira reports, theoretically, the mean

value should not differ much from the median value when outliers are excluded, but it would

have been interesting to examine. Unfortunately, this has not been possible to investigate

further and might therefore be a source of error. Again, this supports the ambition to look at

trends rather than numbers, since these will be sufficient no matter if mean or median values

are used.

Finally, the factor analysis on the survey data is an additional source of error due to the small

sample size. There are different rules of thumb when it comes to appropriate sample size in

factor analysis - some authors state that 100 subjects is minimally sufficient, and that the more

the better (Kline, 1994). Other authors base minimal sample size on the ratio between the

number of subjects and the number of items - ranging between 2 (Kline, 1994) and 10

(Nunnally, 1978) minimum subjects per factor being recommended. This ratio is approximately

2.5 in our study (29 items, 75 subjects). In summary, compared to most of the general

recommendations we found in factor analysis literature, the sample size in this study (75

subjects) is on the verge of being insufficient for a reliable factor analysis with reasonable

statistical power. We conclude that the results might not be replicated if the survey was to be

repeated.

9.4 Lessons learned
When starting off this project, there was a wish for creating and implementing a measurement

framework that could be reused. Soon it became clear that the infrastructure and change in

guidelines that would be needed was not possible to achieve during the available time frame.

Neither did the background information and sufficient knowledge for such an investment exist.

It became clear that this thesis would serve as the investigation for if, or ground work for why,

such an investment could be valuable. It would be necessary to make such a decision to cover

the whole tech organization, and how to structure work with labels and would not be a change

happening from one day to another.

As we have learnt more about Storytel’s processes, employees and inner workings during this

study, we have also grasped the complexities of trying to generalize values of the Four Key
Metrics across the Tech Department. In the beginning of the project, we had a simplified view

on what this task would entail. Because of the heterogeneous tools, tech-stacks, services and

work ethics of teams and crews, the Four Key Metrics might not be the most appropriate nor

accurate measure to try and place Storytel’s software delivery performance on an

organizational level. If the metrics were to be implemented in an automated and sustainable

73

way (the use of Actionable Agile and surveys are a time-consuming process with little recurring

possibilities), they could perhaps be more useful to track Storytels performance on team level.

If the goal is to measure on an organizational level, some generalizations among teams’ work

procedures will be needed. However, the Four Key Metrics already enable an estimate of

Storytel’s placing on the global scale of Software development organisations. If Storytel as a

company will continue to grow in size and number of markets, it might not only be desirable -

but necessary to introduce a measurement framework that can additionally provide insight into

how their productivity has changed over time.

9.5 Future research
The above limitations and sources of error all contain ideas that could be further evaluated and

investigated in future research. Though it might be sensitive for Storytel to compare teams, we

got indications during interviews that productivity differs among teams. To study why this

might be the case and to learn from each other is an interesting suggestion that could be

followed through with potentially great outcomes for Storytel. Both within and outside

Storytel, it would be interesting to perform a similar study with a greater sample size. The

survey material could also be used to compare performance between different companies’ Tech

Departments.

The initial work that was prepared and initiated, but brought out of scope, on analyzing

throughput is found in Appendix 8. Although measuring the throughput of issues at Storytel

generates interesting insight, it was decided that due to the overlaps between throughput and

the tempo metrics (Delivery Lead Time and Deployment Frequency) and the findings being

exclusively interesting internally at Storytel, throughput would not be a focal point of this

thesis. However, studies investigating resolved issues per employee over time suggest

correlations with remote work that would be interesting to examine further. A discussion that

tasks requiring concentration may be best undertaken at home, whereas other tasks involving

teamwork may be best undertaken in the office is proposed. Potential conclusions that would

be valuable for Storytel is that remote work is perhaps especially productive for developers to

a higher extent than other roles.

The main operative future research for Storytel is however, as mentioned, to implement an

autonomous and sustainable measurement of the Four Key Metrics. A Github setup script is

provided by Google’s DevOps Research and Assessment team (Graves Portman, 2020) for this

purpose that could be implemented, but there is a need to invest in the structure to get reliable,

comparable and generalized results with this approach.

If this option is not examined further, to complement the findings of this thesis and fill in the

gaps, there are changes going on at Storytel that will enable new measuring opportunities.

Inside the Customer Engagement Department for example, they are working on a solution to

follow up each customer support errand when bugs are fixed. This will likely enable a quick

and easy setup to track Mean Time To Restore that was not possible at the point of this thesis.

74

9.6 Final words
One interviewee said that feeling the company's well-being and productivity, influences

individuals to be more productive, meaning that the environment itself helps to motivate its

employees. Adding to the observation, the interviewee says that it has an inspiring effect when

something is suddenly released of which you had no idea that it was even in progress (Interview
14: Developer, 2021). This further supports the importance that communicative actions

regarding things happening in the organization, can be a positive context switch and

contributory to employees’ productivity. Apart from the hazards and growing pains of a fast

growing number of employees, this could be evidence of a synergy effect that has occurred

along with the increasing workforce. Furthermore, it is a good (non-statistical) example of

human factors having an equally large importance for productivity as technical factors.

With the result of greater understanding on how the Storytel Tech Department software

development process works, this thesis has mapped the Tech Departments productivity defined

by the Four Key Metrics by collecting data from internal systems, interviews and a survey. By

measuring these key metrics, divided into measurements of stability and tempo, a classification

has been made into one out of four performance categories. Furthermore, factors influencing

software delivery performance have been determined through factor analysis. Lastly,

bottlenecks potentially hindering performance have been deliberated. By creating a

performance baseline, teams can analyze and improve on their work processes. If performed

continuously - changes can be tracked and analyzed in order to improve the software

development process and ultimately achieve better business outcomes.

75

References

Actionable Agile (2021). Actionable Agile. [online] Available at: https://actionableagile.com/

[Accessed 20 Feb. 2020].

Al-Jabery, K.K., Obafemi-Ajayi, T., Olbricht, G.R. and Wunsch II, D.C. (2020).
Computational learning approaches to data analytics in biomedical applications. London:

Academic Press, An Imprint Of Elsevier.

Ali, S., Farid, F. and Ibrarullah (2016). ‘Effect of Transformational Leadership on Job

Satisfaction and Organizational Commitment’, Humanistic Management Network, Research

Paper Series, (2), DOI: 10.2139/ssrn.2713386.

Anderson, D.J. (2004). Agile Management for Software Engineering : Applying the Theory of
Constraints for Business Results. Upper Saddle River, NJ: Prentice Hall.

Android. (2021). Android. [online] Available at: https://www.android.com/ [Accessed 5 Mar.
2021].

Apple. (2021a). App Store. [online] Available at: https://www.apple.com/app-store/.

[Accessed 5 Mar. 2021].

Apple. (2021b). iOS. [online] Available at: https://www.apple.com/iOS/ [Accessed 5 Mar.
2021].

Atlassian (2019). Jira Cloud. [online] Atlassian. Available at:

https://www.atlassian.com/software/jira [Accessed 15 Feb. 2021].

Atlassian (2021). Epics. [online] Atlassian. Available at:

https://www.atlassian.com/agile/project-

management/epics#:~:text=What%20is%20an%20agile%20epic [Accessed 25 Feb. 2021].

Bellman, L. and Hübler, O. (2020). ‘Working from home, job satisfaction and work–life
balance – robust or heterogeneous links?’, International Journal of Manpower, DOI:
10.1108/IJM-10-2019-0458.

Bloom, N., Liang, J., Roberts, J. and Ying, Z.J. (2014). ‘Does Working from Home Work?
Evidence from a Chinese Experiment’. The Quarterly Journal of Economics 130(1), p.165–

218, DOI: 10.1093/qje/qju032.

Boktugg (2020). Bästa ljudbokstjänsterna 2020 – vi testar och jämför appar för att lyssna på
ljudböcker i mobilen. Available at: https://www.boktugg.se/ljudbocker/ [Accessed 26 Mar.

2021].

Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineering. Reading:

Addison-Wesley.

Bryman, A. and Nilsson, B. (2011). Samhällsvetenskapliga metoder. Stockholm: Liber.

76

Construx Software (2016). Measuring Software Development Productivity | Steve
McConnell. YouTube. Available at:

https://www.youtube.com/watch?v=x4IboMnTdSA&t=3472s [Accessed 13 Nov. 2020].

Conway, M. (1968). ‘How Do Committees Invent?’ Datamation 14(4), p.28–31.

Dalen, M. (2008). Intervju som metod. Malmö: Gleerups Utbildning.

Delibr (2020). Feature Refinement Tool for Product Managers. [online] Delibr. Available at:

https://www.delibr.com/ [Accessed 21 Jan. 2021].

Demarco, T. and Lister, T. (1987). Peopleware: Productive Projects and Teams. New York:

Dorset House Publishing.

DevOps Research and Assessment (DORA) (2021). DevOps capabilities. [online] Google

Cloud. Available at: https://cloud.google.com/solutions/devops/capabilities [Accessed 17

Feb. 2021].

Dillman, D.A. (1991). The Design and Administration of Mail Surveys. Annual Review of

Sociology, 17(1), p.225–249. DOI: 10.1146/annurev.so.17.080191.001301.

DiStefano, C., Zhu, M. and Mîndrilã, D. (2009). ‘Understanding and Using Factor Scores:
Considerations for the Applied Researcher’. Practical Assessment, Research, and Evaluation,

14(1), p.20. DOI: 10.7275/da8t-4g52.

Djurfeldt G., Larsson, R. and Stjärnhagen, O. (2010). Statistisk verktygslåda 1 :
samhällsvetenskaplig orsaksanalys med kvantitativa metoder. Lund: Studentlitteratur.

Eriksson, L.T. and Wiedersheim-Paul, F. (2014). Att utreda, forska och rapportera.

Stockholm: Liber.

Esaiasson, P., Gilljam, M., Oscarsson, H, Towns, A.E. and Wängnerud, L. (2017).

Metodpraktikan : konsten att studera samhälle, individ och marknad. 5th ed. Stockholm:
Wolters Kluwer.

Field, A.P. (2009). Discovering statistics using SPSS. 3rd ed. London: Sage.

Forsgren, N., Humble, J. and Kim, G. (2018). Accelerate: The Science Behind DevOps:
Building and scaling high performing technology organizations. Portland, Oregon: IT

Revolution.

GitHub. (2019). The elusive quest to measure developer productivity - GitHub Universe
2019. YouTube. Available at: https://www.youtube.com/watch?v=cRJZldsHS3c [Accessed 12

Nov. 2020].

Github. (2021). Github. Available at: https://github.com/ [Accessed 15 Feb. 2021].

Glen, S. (2021). P-Value in Statistical Hypothesis Tests: What is it? Available at:
https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/p-value/

[Accessed 26 Mar. 2021].

77

Goldratt, E.M. and Cox, J. (1984). The Goal: A Process of Ongoing Improvement: a Process
of Ongoing Improvement. Great Barrington, MA: North River Press.

Google Cloud (2019). Cloud Computing Services | Google Cloud. [online] Google Cloud.

Available at: https://cloud.google.com/ [Accessed 9 Mar. 2021].

Google Play. (2021). Google Play [online] Available at: https://www.play.google.com/
[Accessed 9 Mar. 2021].

Graves Portman, D. (2020). Using the Four Keys to measure your DevOps performance.
[online] Google Cloud Blog. Available at: https://cloud.google.com/blog/products/devops-

sre/using-the-four-keys-to-measure-your-devops-performance [Accessed 14 Oct. 2020].

Harpaz, I. (2002). ‘Advantages and disadvantages of telecommuting for the individual,

organization and society’. Work Study, 51(2), p.74–80. DOI: 10.1108/00438020210418791.

Hinton, P.R., Mcmurray, I. and Brownlow, C. (2014). SPSS explained. London; New York:
Routledge, Taylor & Francis Group.

IBM (2019). SPSS Statistics - Overview. [online] Ibm.com. Available at:

https://www.ibm.com/products/spss-statistics. [Accessed 1 Mar. 2021].

IBM (2021). IBM Knowledge Center. [online] www.ibm.com. Available at:

https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/tutorials/fac_telco_km

o_01.html. [Accessed 1 Mar. 2021].

Kline, P. (1994). An easy guide to factor analysis. East Sussex, United Kingdom: Psychology

Press.

Knekta, E., Runyon, C. and Eddy, S. (2019). ‘One Size Doesn’t Fit All: Using Factor
Analysis to Gather Validity Evidence When Using Surveys in Your Research.’ CBE—Life
Sciences Education 18(1). DOI: 10.1187/cbe.18-04-0064.

Lindstedt, I. (2017). Forskningens hantverk. Lund: Studentlitteratur AB.

Litwin, M.S. (1999). How to Measure Survey Reliability and Validity. Thousand Oaks: Sage.

Mabel, O.A. and Olayemi, O.S. (2020). ‘A Comparison of Principal Component Analysis,
Maximum Likelihood and the Principal Axis in Factor Analysis.’ American Journal of
Mathematics and Statistics, 10(2), p.44–54. DOI: 10.5923/j.ajms.20201002.03.

Madhavan, S. (2019). Employee Net Promoter Score: A Good Measure of Engagement?

[online] www.hrtechnologist.com. Available at:
https://www.hrtechnologist.com/articles/employee-engagement/employee-net-promoter-

score-a-good-measure-of-engagement/#:~:text=An%20eNPS%20score%20can%20range

[Accessed 1 Mar. 2021].

Mathew, J. (2007). ‘The relationship of organisational culture with productivity and quality:
A study of Indian software organisations.’ Employee Relations, 29(6), p.677–695. DOI:

10.1108/01425450710826140.

78

Meyer, A.N., Fritz, T., Murphy, G.C. and Zimmermann, T. (2014). ‘Software developers’
perceptions of productivity.’ Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2014. p.19-29. DOI:

10.1145/2635868.2635892.

Miro (2021). Miro. Available at: https://miro.com [Accessed 15 Feb. 2021].

Nunnally, J.C. (1978). Psychometric theory : 2nd ed. New York: Mcgraw-Hill.

Øredev Conference (2015). Troy Magennis - AGILE METRICS - BEYOND BURN
UP/DOWN’S ONTO METRIC DRIVEN COACHING | Øredev 2015. [online] Vimeo.
Available at: https://vimeo.com/144824390 [Accessed 11 Nov. 2020].

Osborne, J.W. (2014). Best practices in exploratory factor analysis. Charleston,

SC: CreateSpace.

Oswald, A.J., Proto, E. and Sgroi, D. (2009). ‘Happiness and Productivity’. Journal of Labor
Economics, 33(4), p.789–822. DOI: 10.1086/681096.

Pakdamanian, E., Shiyamsunthar, N. and Claudio, D. (2016) ‘Simulating the effect of
workers' mood on the productivity of assembly lines.’ 2016 Winter Simulation Conference
(WSC), Washington, DC, USA, 2016, p. 3440-3451. DOI: 10.1109/WSC.2016.7822374.

Petersen, K. and Wohlin, C. (2011). Measuring the flow in lean software development.

Software: Practice and Experience, 41(9), p.975–996. DOI: 10.1002/spe.975.

Rafferty, A.E. and Griffin, M.A. (2004). ‘Dimensions of transformational leadership:

Conceptual and empirical extensions.’ The Leadership Quarterly, 15(3), p.329–354. DOI:

10.1016/j.leaqua.2004.02.009.

Schwarz, J. (2011). Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture
03: Factor Analysis Outline. 8 Concepts of Factor Analysis. 12 Factor Analysis with SPSS: A
detailed example. 16. Lecture notes, Lucerne University of Applied Sciences and Art,
Lucerne [online] . Available at:

http://www.schwarzpartners.ch/Applied_Data_Analysis_2011/Lect%2003_EN.pdf [Accessed

1 Mar. 2021].

Sedlak, P. (2020). ‘Employee Net Promoter Score (eNPS) as a Single-item Measure of
Employee Work Satisfaction. An Empirical Evidence from Companies Operating in Poland.’

Contemporary organisation and management. Challenges and trends, p.347–357. DOI:
10.18778/8220-333-2.21.

Slack (2021). Welcome to your new HQ. [online] Slack. Available at:

https://slack.com/intl/en-se/ [Accessed 1 Mar. 2021].

Spada, M.M., Hiou, K. and Nikcevic, A.V. (2006). ‘Metacognitions, Emotions, and

Procrastination.’ Journal of Cognitive Psychotherapy, 20(3), p.319–326. DOI:
10.1891/jcop.20.3.319.

79

Statistics Solutions (2013). Confirmatory Factor Analysis. [online] Statistics Solutions.
Available at: https://www.statisticssolutions.com/confirmatory-factor-analysis/. [Accessed 23

Feb. 2021].

Stevens, J. (2002). Applied multivariate statistics for the social sciences. Mahwah, N.J.:

Lawrence Erlbaum Associates.

Storytel Service Status Log. (2021) Storytel. Available at:

https://status.storytel.com/pages/history/54febea209f0ba2f5b000009 [Accessed 21 Jan.
2021].

Storytel AB. (2019a). Annual Report 2019. Available at:

https://investors.storytel.com/en/annual-report-2019-storytel-ab-publ/ [Accessed 15 Nov.
2020].

Storytel AB. (2019b) Sustainability Report 2019. Available

at: https://investors.storytel.com/en/wpcontent/uploads/sites/2/2020/02/storytel-annual-
report-2019-storytel-ab-publ-200402.pdf [Accessed 15 Nov. 2020].

Straub, D., Gefen, D. and Boudreau, M.-C. (2004). Validation Guidelines for IS Positivist

Research. Communications of the Association for Information Systems, 3(1), p.380-427. DOI:

10.17705/1CAIS.01324.

SurveyMonkey (2018). Likert Scale: What It Is & How to Use It | SurveyMonkey. [online]
SurveyMonkey. Available at: https://www.surveymonkey.com/mp/likert-scale/. [Accessed 6

Dec. 2020].

The Agilist. (2014). Little’s Law. Available at:

https://theagileist.wordpress.com/2014/10/15/littles-law/ [Accessed 19 Feb. 2021].

Trost, J. (2012). Enkätboken. 4th edition. Lund: Studentlitteratur AB.

Wagner, S. and Ruhe, M. (2018). ‘A Systematic Review of Productivity Factors in Software

Development.’ Cornell University arXiv. DOI: 1801.06475.

Watad, M.M. Will, P. (2003). ‘Telecommuting and organizational change: a middle-

managers’ perspective.’ Business Process Management Journal. 9(4), p.459-472. DOI:
10.1108/14637150310484517.

Westrum, R. (2004). ‘A typology of organisational cultures.’ Quality and Safety in Health
Care, 13(2), p.ii22–ii27. DOI: 10.1136/qshc.2003.009522.

Yong, A.G. and Pearce, S. (2013). ‘A Beginner’s Guide to Factor Analysis: Focusing on
Exploratory Factor Analysis.’ Tutorials in Quantitative Methods for Psychology, 9(2), p.79–

94. DOI: 10.20982/tqmp.09.2.p079.

80

Internal documents (unavailable without a Storytel-account):

Storytel (2021a). Tech Recruitment Tracking. Internal document. [Last Accessed 4 Mar.

2021]. Unpublished.

Storytel (2021b). Global Core Metrics Explanation Document. Internal document. [Last

Accessed 4 Mar. 2021]. Unpublished.

Storytel (2021c). Onboarding Day - tech team. Internal document. [Last Accessed 4 Mar.

2021]. Unpublished.

Storytel (2021d). App Release Retrospective. Internal document. [Last Accessed 5 Mar.

2021]. Unpublished.

Storytel (2021e). App Train Release Strategy. Internal document. [Last Accessed 5 Mar.

2021]. Unpublished.

Storytel (2021f). App Release Train Schema. Internal document. [Last Accessed 5 Mar.

2021]. Unpublished.

81

Interviews:

No.

Role

Date

1 Product Manager Nov 27, 2020

2 Crew Coach Dec 1, 2020

3 Developer Dec 2, 2020

4 Tech Manager Dec 7, 2020

5 Customer Support Dec 15, 2020

6 Crew Coach Jan 8, 2021

7 Developer Jan 8, 2021

8 Test Lead Jan 11, 2021

9 HR Jan 12, 2021

10 Tech Manager Jan 18, 2021

11 Customer Support Jan 18, 2021

12 Developer Jan 25, 2021

13 Crew Coach Jan 25, 2021

14 Developer Jan 27, 2021

15 Tech Manager Feb 1, 2021

16 Tech Manager Mar 7, 2021

82

Appendix

Appendix 1. Questions in questionnaire
Demographics

- Which team do you belong to?

- What is your primary role?

- How long have you been at Storytel in total?

- How many projects are you working on right now simultaneously?

- How many projects have you worked on during the last three months?

- How many projects has your team been involved in during the last three months?

Historical perspective
- How has communication changed within your team? It is…

- How has communication changed between teams? It is…

- How has your job satisfaction changed? It has…

- How has the responsibility distribution changed in your team? It is…

- How has the responsibility distribution changed in the Tech Department? It is…

- How has your team's ability to deploy features independently from other applications

or services changed? It has…

- How has the ability to independently test an application without requiring an

integrated environment changed? It has…

- In your opinion, how has Storytel's Tech Department's productivity changed? It has…

- How has your individual productivity changed? It has…

- [Optional Comment] - If you want to further comment any of your answers above,

please do so here.

Culture
- In my team, information is actively sought.

- In my team, messengers are not punished when they deliver bad news.

- In my team, responsibilities are shared.

- In my team, cross-functional collaboration is encouraged and rewarded.

- In my team, failure causes inquiry so that we learn from the experience.

- In my team, new ideas are welcomed.

- In my team, we put effort into facilitating work for other teams.

Teams
- I have a good insight into what other teams are doing.

- I wish I had more insight into what other teams are doing.

Job Satisfaction
- I would recommend my organization as a place to work.

- I would recommend my team as a place to work.

83

Leadership
- My manager challenges me to see problems from new perspectives.

- My manager notices me.

- My manager regularly gives actionable feedback that helps me improve my

performance.

Team Identity
- I know the reason for all features we develop in my team.

- My team is collectively working towards the same goals.

- I am proud of being a part of my team.

Communication
- Communication is efficient in my team.

- How often do you interact with members from other teams for inspiration and/or

assistance for a task you are working on?

Time
- How many hours is your average work day?

- How many complete/full hours without interruptions do you have on an average

workday to spend on your main tasks?

- Switching between tasks can be good in terms of being productive.

- How many consecutive uninterrupted hours would I prefer to have on a regular

working day?

Architecture

- Features developed in my team can be tested and deployed without being dependent

on other teams.

- Security testing is generally done during the early phases of development.

Automation
- What is, in your estimate, the percentage of tasks related to deployment that are

automated in your team?

- What is, in your estimate, the percentage of tasks related to testing that are automated

in your team?

Flow
- I have access to visual displays showing the status and/or flow of work within my

team by some metrics.

- What metrics are available in your team?

- What metrics are not available today, but you would like to have access to in your

team?

- In my team, the ambition is to keep the number of WIP (work in progress) to a

minimum.

- In your opinion, what is the biggest bottleneck slowing down the work in the Tech

Department?

84

Productivity
- In your estimation, how often does your team deploy code to production (not

necessarily to end users)?

- In your estimation, how long does it take for your team to go from code committed to

code successfully running in production (not necessarily reaching end customers)?

- In your estimation, how long does it generally take for your team to restore service

when a service incident or a defect that impacts users occur?

- In my team, what percentage of changes deployed to production result in degraded

service (e.g. lead to service impairment or service outage) and in turn require

immediate remediation (e.g., require a hotfix, rollback, fix forward, patch)?

85

Appendix 2. Final list of the 29 survey items for factor analysis
Category Theoretical Construct Items

Culture Generative Culture (GC) GC1 - In my team, information is actively
sought.

GC2 - In my team, messengers are not
punished when they deliver bad news.

GC3 - In my team, responsibilities are shared.

GC4 - In my team, cross-functional
collaboration is encouraged and rewarded.

GC5 - In my team, failure causes inquiry so
that we learn from the experience.

GC6 - In my team, new ideas are welcomed.

Team Cohesion (TC) TC1 - In my team, we put effort into
facilitating work for other teams.

TC2 - I have a good insight into what other
teams are doing.

TC3 - I wish I had more insight into what other
teams are doing.

Job Satisfaction (JS) JS1 - I would recommend my organization as a
place to work.

JS2 - I would recommend my team as a place
to work.

Transformational Leadership (TL) TL1 - My manager challenges me to see
problems from new perspectives.

TL2 - My manager notices me.

TL3 - My manager regularly gives actionable
feedback that helps me improve my
performance.

Team Identity (TI) TI1 - I know the reason for all features we
develop in my team.

TI2 - My team is collectively working towards
the same goals.

TI3 - I am proud of being a part of my team.

Communication (C) C1 - Communication is efficient in my team.

C2 - How often do you interact with members
from other teams for inspiration and/or
assistance for a task you are working on?

86

Environment Number of Projects (NP) NP1 - How many projects are you working on
right now simultaneously?

NP2 - How many projects have you worked on
during the last three months?

NP3 - How many projects has your team been
involved in during the last three months?

E-Factor & Time Fragmentation
(EF)

EF1 - E-Factor

EF2 - Switching between tasks can be good in
terms of being productive.

EF3 - Fraction desired uninterrupted hours

Process Architecture (AR) AR1 - Features developed in my team can be
tested and deployed without being dependent
on other teams.

AR2 - Security testing is generally done during
the early phases of development.

Automation (AU) AU1 - What is, in your estimate, the
percentage of tasks related to deployment that
are automated in your team?

AU2 - What is, in your estimate, the
percentage of tasks related to testing that are
automated in your team?

Lean Management (LM) LM1 - I have access to visual displays showing
the status and/or flow of work within my team
by some metrics.

LM2 - In my team, the ambition is to keep the
number of WIP (work in progress) to a
minimum.

Table 13. Factors and corresponding items included in the survey.

87

Appendix 3. Obstacles in Four Key Metrics Estimation
This is a comprehensive explanation of the obstacles in estimating the Four Key Metrics. The

tempo metrics are Delivery Lead Time and Deployment Frequency, and the stability metrics

are Mean Time To Restore and Change Fail Rate.

Obstacles related to Tempo Metrics

● Autonomous teams: At the Storytel Tech Department, teams have a very high degree

of autonomy. As a consequence of this, the way different teams work often differ

significantly from each other. As a consequence, there were difficulties in trying to

extract values of the Four Key Metrics. There are few routines, procedures, and

standards that span the entire tech organization, which makes generalization difficult.

● Organizational restructurings: Another obstructing factor in finding reliable data from

a longer period of time was due to Storytel’s multiple organizational restructurings and

refactorings happening because of a very rapid growth of the organization. Some teams

are only a few months old and cover new focus areas, some were previously part of a

larger team that was split into different focus areas.

● Workflow stages: Determining what workflow stages from Jira to include when

measuring Delivery Lead Time proved to be challenging. As there are no standardized

guidelines at Storytel regarding what workflow stages a ticket should pass in Jira, data

gathered from Jira is not to be treated as exact nor completely reflective of the truth as

there are inconsistencies in how data is handled. Rather, the system data should be

viewed as an indication of what the reality is at Storytel, and as a way to analyze trends

over time. Multiple examples of different workflow procedures exist. For example

‘Waiting For Release’ is not part of all teams workflow-stages. This is the result of

letting all teams decide upon their own flow themselves.

● Consideration of batch size: The metric Delivery Lead Time is, in this report, measured

from the time a programmer initiates development on a ticket until the ticket is marked

as ‘Done’. There was an attempt to only measure the time until development is marked

as finished, i.e. excluding ‘Testing’ and ‘Waiting For Release’. Since the fixed app

releases happen every third week regardless of when an app-related ticket is completed,

involving the part when a ticket is ‘Waiting For Release’ could be considered

uninteresting. Especially, since web releases can happen at any point in time, or at least

in shorter intervals, the comparison between these numbers would be ambiguous.

However, the decision made was to not adjust the metric due to strategic decisions

regarding batch size in the organization. Based on the theory, Delivery Lead Time

should be measured until code is in production. To be able to use the metrics for

historical comparison and to find and map improvement areas, it is reasonable to not

adapt the measure for special arrangements.

88

● Defining the end: Furthermore, the most interesting comparison is not the exact

numbers over time, but the overall trend. Looking at the Delivery Lead Time that for

example involves time-consuming testing is still relevant for developers, since it

involves significant and meaningful information that affects the entire team delivery.

The responsibility for a developed feature should not end when development is marked

as finished, as a part of the shift left approach and team identity (see Section 3.3.1
Culture Factors and 3.3.3 Process Factors). Measurement is supposed to serve as a

benchmark for improvement, and attempts to shrink Delivery Lead Times should be a

joint effort, therefore it would not make sense to exclude the bottlenecks, e.g. the test

pipeline.

● Definition of ‘Done’: Measurements in Jira include a significant amount of error due to

differences in what the workflow stage ‘Done’ implies in different Jira projects. Some

teams define ‘Done’ as development having finished on that ticket, but that it has not

necessarily been deployed into production. Other teams use it to mark a ticket that has

successfully been released to production, however not necessarily reached by end-

customers because of the stagewise rollout and use of the feature flag system. A feature

flag can indicate that a feature should be accessible to all users in all markets, some

markets or none. Furthermore, the workflow stages and their meaning for each team,

have also changed over time (Interview 6: Crew Coach, 2021).

● Ticket size: Another difficulty in measuring Delivery Lead Time is the difference

between teams when it comes to the size of a ticket in Jira. The most explicit guideline

described regarding this is one Crew Coach describing that if a ticket is estimated to

take more than two workdays, it should be split into smaller subtasks (Interview 6: Crew
Coach, 2021). The tickets are structured differently between teams, and especially

between different tech stacks. Similar estimates are given by several interviewees,

however there is no guiding documentation covering several different teams.

● Generalization between services: When discussing the two key metrics that indicate

tempo - Delivery Lead Time and Deployment Frequency - these vary among on the

different services at Storytel. For defining Deployment Frequency, the biggest issue

was that it was not possible to give one single estimate that generalizes the entire

department. The different services within Storytel have a lot of different routines and

procedures when it comes to deployment, and this had to be presented separately.

Obstacles related to Stability Metrics

● Definition of a failure: When discussing the two key metrics that indicate stability -

Mean Time To Restore and Change Fail Rate - the numbers are heavily dependent on

defining what constitutes a failure. A failure could be a bug that the customer rarely

notices (or believes is a design choice), a bug that actually impacts the user but has a

work-around, a bug that impacts the user that does not have a workaround, or it could

be related to degraded performance, downtime, partial or whole system disruption.

89

Several options were considered but none of the attempts were sufficient in estimating

the Mean Time to Restore. The options are presented below.

● Hotfixes: According to Forsgren, Humble and Kim (2018), a failure in the primary

service or application is something that results in either degraded service or a need for

remediation such as a patch, roll-back or a hotfix. A hotfix is a software patch that is

delivered to a system as an urgent measure (Storytel, 2021e), and Storytel tries to

perform hotfixes as rarely as possible. This is closely connected to the use of their

release schedule and a wish to use the regular workflow in order to assure quality.

● Requests for hotfixes: Hotfixes are described within Storytel as very disruptive to the

work of developers and testers, and that they can cause additional work for other

departments as well. Even requests for hotfixes could therefore be viewed as indications

of a degraded service with required remediation, but these are more difficult to find

reliable data on. Communication regarding whether a hotfix should be performed or not

is carried out in a particular channel on Slack between developers and it is not explicitly

logged in Jira or anywhere else. Frequently, there are internal requests for hotfixes after

a release that are mutually dismissed after discussion due to the preference in fixing

them during the next scheduled release, if the matter is not deemed sufficiently urgent.

● Critical and Blocker bugs: According to internal guidelines, the need for a hotfix is

dependent on if there is a bug causing enough impact for customers. They have

benchmarks that suggest that a large impact could equal for example more than 200

tickets in one day for Customer Support, or two specific bug priorities. To prioritize

bugs, Storytel uses a prioritizing schedule in Jira that includes (in order): Irrelevant,

Trivial, Minor, Major, Critical and Blocker. Critical and Blockers are issues that are

said to be candidates for hotfixes, while others in general can wait to be fixed until the

next release. (Storytel, 2021e) Bugs can be found during ‘Freeze’-time, in the external

review process at Google Store and App Store, in Beta testing, or when the release is

deployed to customers.

● Bugs in production: An issue we came across was that Storytel had no option to separate

bugs that are in production. It was concluded based on employee estimates, that the

large majority of bugs are in production. Some employees mentioned that there are

likely some open bug tickets in Jira that are connected to functionalities that are no

longer active, and therefore should not be regarded as active bugs. However, these bugs

are estimated to be in a small minority of all of the thousands of bugs logged in Jira and

therefore unlikely to significantly skew the data.

● External disruption log: Another option was to look at system disruption qualified into

the status.storytel.com page which is updated continuously for internal and external

usage. This page covers the system status for the website, Android and iOS apps and

‘other apps’ and reports whether the degradation in service is operational, partially

disrupted or full service disruption. The history can easily be analyzed using the updates

90

from when an issue is found, and measured until it is marked as resolved. This is not

countable as failure in the sense that ‘bad’ code was released. These disruptions more

often happen as a result of indexing, unforseen client calls or the size of databases. For

example, the last couple of disruptions has been connected to the usage of the local

server platform, which could be classified as a result of technical debt. Technical debt

refers to the costs of additional rework caused by choices of temporary easier solutions

instead of more time consuming but better approaches.

Option 1: Measure the lead time in Jira for bugs with priority critical or blocker

Option 2: Measure the lead time for the disruptions qualified into status.storytel.com

Option 3: Create a timeline for hotfixes based on information from slack.

Option 4: Create a timeline for requests of hotfixes based on information from slack

The first option was eligible due to its reasonable simplicity, and to avoid the time-consuming

action to read through and manually evaluate Slack channels for information that would be

required for option 3 and 4. This was carried out, but proved to not indicate failures that caused

disruption of enough size. The second option was thereafter tested, but concluded faulty.

Option 3 and 4 are still unexplored.

The Change Fail Rate is, similar to the Mean Time To Restore metric, particularly difficult to

define as the central question becomes what constitutes a failure. If failure is defined as those

deployments that require hotfixes, then the Change Fail Rate for Storytel’s app services could

be obtained by taking the total number of hotfixes performed divided by the total number of

releases over the same period of time. A broader definition of failure would include not only

performed hotfixes, but additionally requested and discussed hotfixes that were not released.

As previously discussed, the difficulty in obtaining this data is that it is logged in different

places - mainly Slack channels. Similar to the definition and method used for Mean Time to

Restore, the Change Fail Rate was calculated by counting the number of critical and blocker

bugs, then divided with the total number of tickets in Jira. Since we came to be mostly

interested in a comparison between 2019 and 2020, the division of monthly throughput for all

issues vs bugs was used instead of looking at the total number of issues in Jira.

91

Appendix 4. HR surveys

Survey

Sent 2019

Sent 2020

Diagnose and engagement drivers week. 6, 14, 23, 32, 41, 49 -

Diversity week. 20 week. 22

Vision & Mission week. 18 week. 6

Wellbeing Tech - week. 8, 39, 48

Friday Package Tech once a week once a week

NPS - week. 10, 41

Personal development week. 12, 45 week. 26

Leadership at Storytel week. 8, 47 -

Leadership - week. 20

Feedback - week. 43

Team Efficiency Tech week. 47 -

Tech work scope retro week. 5, 9, 13, 18, 23, 32, 41 -

Working remotely - week. 14

Working remotely 2.0 - week. 15, 16

Working remotely 2.2 - week. 18, 21, 24, 26

Remote work at Storytel - week. 24

92

Appendix 5. Attempts of measuring Mean Time To Restore

First attempt

As discussed in section 6.2.1 Mean Time To Restore, the first attempt to define a failure was at

first in this thesis a bug labeled critical or blocker. From interviews, the expectation was that

there was an upper limit to how long restore time was for Storytel’s app related bugs. The limit

was the length of one routine deployment cycle, e.g. three weeks. For example, when a request

for a hotfix has been denied, the fix is instead released in the next scheduled deployment.

Looking at the numbers from the system data (first attempt), this does not seem to cohere.

The Cycle Time Scatter plot was used, looking at the dataset with bugs, filtering out critical

and blockers (420 bugs). Unlike the Delivery Lead Time metric and regular issues, labels (not

referring to prioritization) are frequently used. This allows the analysis to be performed

separately for app related bugs, labeled iOS or Android, and non-app related bugs. Reading the

green line in figure 19 showing the average, the findings reveal that app related bugs are solved

quickly in terms of coding (between one and two days, previously more than five days during

2019).

Figure 19. Cycle time scatterplot for critical and blocker app related bugs, workflow stages ‘To Do’ and ‘In

Progress’ included.

From the corresponding graph over non-app related bugs, perhaps related to backend, it is

found to take on average four days to solve bugs codewise. Reasons could be that non-app

related bugs may be more complex and therefore more time consuming, or that there is less

stress when the affected users are internal and the outage is less costly (in terms of money or

customer satisfaction, for example through bad app ratings). However, when a solution exists,

it takes less time for non-app related bugs to be deployed into production than for app related

bugs. This gives an average cycle time for critical and blocker bugs of 44 days for finishing

85% of the bugs, see the green average line in Figure 20. These numbers involve the workflow

stages from ‘Backlog’ to ‘Done’. ‘Backlog’ and 'To Do' is added unlike in the Delivery Lead

93

Time metric, since theoretically a bug with high priority should not have to wait long before

being picked up. Surprisingly, this is a lot more than one release interval.

Figure 20. Cycle time scatterplot for critical and blockers, all bugs.

Furthermore, the trend has increased. The time bugs are in 'Backlog' has decreased (from about

two weeks to one week), which could be due to the fact that the test club has a motivating

influence on developers to fix bugs. However, the time for deployment has increased from

slightly more than two weeks (steady during 2019) to almost one month (starting to increase in

January 2020, see the green line advocating the average in Figure 21), resulting in a cumulative

increase in cycle time. On one hand, the test club has made the number of filed bugs grow. One

the other hand, there are a lot more developers available. Why especially the time to deploy

bugs has increased has not been possible to investigate further due to time constraints.

Figure 21. Cycle time scatterplot for critical and blocker app related bugs, not including 'Backlog'.

94

Since the Mean Time To Restore is much longer than expected, there are reasons to believe

that the definition of a failure is faulty. This definition was chosen based on internal

documentation stating that Blockers and Critical priority bugs are candidates for hotfixes, while

others can wait for the next release train. According to theory, Mean Time To Restore should

reflect ‘how long it generally takes for a team to restore service when a service incident or a

defect that impacts users occurs’. A challenging aspect of this metric is to evaluate what

‘impacts a user’. It does not make sense that the Mean Time To Restore is 44 days while

codewise fixing the bug generally does not exceed 5 days, if the majority of the critical and

blocker bugs had a large user impact (by expectations, at least not longer than one release

interval of three weeks). If this number was correct, Storytel would not even qualify as a Low

Performer. Consequently, we conclude that the majority of critical and blocker bugs do not

have a large enough user impact to serve as the definition of failure in the context of the Mean

Time to Restore metric. We believe an inflation has occurred within the prioritization among

bugs and that there are only some of the critical and blocker bugs that would have been

interesting for us to analyse, however there are no labels that exist to seperate them from the

others. Performing the same analysis and only including the blocker bugs is unfortunately still

unexplored.

Second attempt

Since the scanning of slack channels to find the critical and blocker bugs that results in a request

for hotfix or actual hotfix were not possible due to time constraints, the second attempt was to

look into data where we knew the disruption and failure was large. However, this data does

only involve the app-related services and were also found inefficient to make an estimation of

Mean Time To Restore.

When there is a system disruption affecting a lot of users, it rarely has to do with a new app

release - it is usually connected to server issues. If this happens it could be the case that even

the customer support is not able to reach their systems, which is why there exists an external

system outage log to use both internally and externally (Storytel Service Status Log, 2021).

When looking at this history from 2016, see Figure 22, one can say that the average downtime

is around 5h before restoration. Confirming that major system disruptions are generally much

shorter, the median average downtime is 1h. Based on this data, the Storytel Tech Department

would be a high performer if looking at average Mean Time To Restore, and close to elite if

looking at the median.

95

Figure 22. Mean Time To Restore according to disruption history at status.storytel.com

Even if this data source gives a result closer to the estimates in the survey data, it was concluded

after discussion that these outages are almost always related to infrastructure outages outside

of Storytel, for example connected to the server platform. In these situations the developers

usually work together with the vendors to take care of the issues. But more often, issues are

fixed by Storytels own developers - why this disruption data does not serve as a proper source

to measure the Mean Time To Restore metric, and was also rejected.

If relying on interviews and internal documentation, that Mean Time To Restore would never

exceed one release cycle of three weeks, and the Storytel Tech Department would therefore be

a low performer.

96

Appendix 6. WIP per team
Discussions on what effects a high WIP can have on cycle time is interesting. As can be seen

in Table 11, two teams have an average number of WIP items per employee exceeding 10. One

of them has the second longest cycle time, while the other one has the second shortest cycle

time. The average number of WIP items per employee is 5.85. This can confirm the statements

from interviews that there are a lot of projects running in parallel. However, we can not confirm

that this has a direct effect on cycle time. According to the literature review, the WIP should

be kept low to increase Cycle Time but it is also affected by throughput (The Agileist, 2014).

The table is sorted on Cycle Time in ascending order, and no correlation can be found towards

the WIP/employee column.

Team Cycle Time

(days)
WIP (items) Average number of

WIP items per
employee

Team A 9 168 11,2

Team B 11 18 1,8

Team C 12 106 7,5

Team D 14 52 3,25

Team E 15 71 3,9

Team F 16 26 3,25

Team G 16 18 1,2

Team H 21 79 4,9

Team I 21 172 7,8

Team J 21 254 17

Team K 29 13 2,6

Table 14. Overviewing Jira delivery cycle times, WIP, number of employees and the average number of WIP per
employee.

97

Appendix 7. Historical perspective

During the last 12 months...

Question

N

Min

Max

Mean
Std.

Deviation
Adjectives on Likert

scale

How has communication changed within

your team?

40

3

5

4.13

.563

Worse/Better

How has communication changed
between teams?

40 2 4 2.93 .656 Worse/Better

How has your job satisfaction changed?

40 2 5 3.53 .816 Decreased/Increased

How has the responsibility distribution
changed in your team?

39 2 5 3.62 .847 Less clear/More clear

How has the responsibility distribution
changed in the Tech Department?

39 1 4 3.05 .916 Less clear/More clear

How has your team's ability to deploy
features independently from other
applications or services changed?

39 2 5 3.59 .993 Decreased/Increased

How has the ability to independently test
an application without requiring an
integrated environment changed?

38 1 5 3.21 .811 Decreased/Increased

In your opinion, how has Storytel's Tech
Department's productivity changed?

39 1 5 3.56 .912 Decreased/Increased

How has your individual productivity
changed?

39 1 5 3.56 .882 Decreased/Increased

Table 15. Summary of survey answers given in the ‘Historical Perspective’ section, answered by employees who
have been employed at Storytel for 12 months or longer. The answers were given on a five-point Likert scale.

98

Appendix 8. Initiated analysis of throughput
Throughput as complementary data
The metric with the highest rating to assess productivity among developers in a study by

Meyers et al. (2014) is “The number of work items (tasks, bugs) closed”. This supports that

complementary to the Four Key Metrics, it can be valuable to look at throughput. While the

Four Key Metrics with tempo and stability categories are chosen to avoid measuring quantity

in terms of lines of code or number of features, throughput still serves as an interesting

foundation for discussion. Furthermore, why WIP and throughput are not metrics themselves

is because cycle time can be directly derived from WIP and Throughput (The Agileist, 2014).

Several measurements on the same aspect of the process would cause imbalance, why

throughput is used as a reference, but not as a measurement. From looking at the throughput

data in an exploratory point of view, it was found that monthly throughput has significantly

increased over the last years for all types of issues.

Looking at the throughput run chart in Figure 23 based on all issues from all teams in Jira, it

can be seen that throughput is steady during 2019 (the green line indicates an average on

approximately 200 resolved issues per month). In 2020, this number increases rapidly to a new

average at around 1200 resolved issues per month. The throughput decreases during the

summer and winter holidays but is during 2020 never below 900 issues per month.

Figure 23. Graph showing the throughput run chart for all issues, for 2019-2020.

In Figure 24. the same type of data is presented but now it includes 2018. A similar but smaller

increasing trend is shown between the year 2018 and 2019. The increases are not gradual, but

steep. According to interviews, in 2018 a lot of focus was placed on maintenance and strategic

development, rather than on developing new features. Meanwhile, competitors caught up with

Storytel when it came to features. Therefore, in the next 1.5-2 years there was an increased

focus on launching new markets and developing new features (Interview 14: Developer, 2021).
These accounts seem to be aligned with what can be seen in the data from 2018-2019, assuming

99

that there are fewer tickets connected to strategic development. However, it seems insufficient

to explain the large increase in throughput happening instantly in the beginning of 2020.

Figure 24. Graph showing the throughput run chart for all issues, including 2018-2020.

That the increase in resolved issues has only to do with the amount of recruited employees is

dismissed, as the workforce is growing at a significantly slower pace than the amount of

resolved issues, visualized in Figure 25. The number of employees are plotted in the same

graph as the throughput for 2018 and 2020.

Figure 25. Resolved issues over time (excluding epics) plotted in the same graph as tech tracking,

number of employees.

100

In Figure 26, 2020 is looked into in more detail, plotting the number of resolved issues per

employee. Starting off low after winter holidays, in January and February the average is 5

issues per employee. It does not reflect the idea that a larger pile of issues are marked ‘Done’

and rolled out in deployment after winter holidays. In March 2020, the number of resolved

issues reached an all time high, and this number held steady until summer at 8 issues per person.

During summer, the number resolved issues are naturally lower due to employee vacations, but

not lower than during January and February. After summer, September is starting off less steep

before October when the number grows to 7, however not as high as during spring. During the

winter holidays, the number of resolved issues per employee decreased again.

Figure 26. Resolved issues per employee during 2020

September is probably scoring lower since almost a whole week is spent on the yearly

conference attended by all employees, and naturally fewer issues are resolved during this time.

In January and February people were working at the office as usual. Interestingly, coinciding

with the highest number of resolved issues per employee during 2020 in March, the global

pandemic forces new routines to be implemented and all employees start working from home.

The guidelines become less strict during summer, and during the autumn the approach is to let

employees work at the office every other week according to schedule. Simultaneously,

employees answer HR surveys about remote work, and almost half of the respondents estimate

that their efficiency has improved while working from home, while the second largest majority

indicate that it has remained the same. Only a relatively small percentage indicate that their

efficiency has decreased while working from home. (Remote work at Storytel - HR Survey

Data, 2020).

101

However, the major increase in resolved issues per person during 2020 is likely not solely

caused by the implementation of remote work; the increase in resolved issues from January and

February 2020 (before remote work was initialized), compared to 2019, supports that other

reasons are involved, see Figure 27. One potential contributing factor is that the amount of

teams have increased incrementally during 2019 and 2020. Going from being 3 teams to 11

could reasonably increase the amount of issues. Hypothetically, there is a larger need for

transparency coming with an increased workforce and lots of new employees, that prompts

smaller and more detailed tickets, i.e. more issues. Especially when working remotely and

onboarding of new employees is performed in parallel. Investments in launching new markets

and new features could also explain an overall increase, but not the big step between 2019 and

2020. These investments happened incrementally already during 2019.

Figure 27. Resolved issues per employee during 2019-2020.

What can moreover be seen in Figure 27 is that the expectation that resolved issues per

employee would have decreased along with the rapidly increasing workforce, is not supported.

This was theorized due to studies showing that adding more people to software development

projects generally makes them more time-consuming, because of the time it takes for new

recruits to learn about the project and the complexity of the involved tasks, as well as the

increased communication overhead (Brooks, 1995). The number of resolved issues per

employee shows the opposite of this, with an increase from 2-4 issues per person during 2019

to between 6-8 during 2020. One interviewee mentioned that this might be due to synergy

effects connected to the large increase in workforce, which seems to be supported (Interview
14: Developer, 2021).

102

Apart from a large WIP per person (see Appendix 6. WIP per team) among other things showing

that Storytel has a lot of projects running in parallel, the high throughput shows that the amount

of finished issues each month have also increased. From Little’s law (The Agilist, 2014) we

define the relation between WIP, throughput and cycle time (see section 3.5 Throughput and
finding bottlenecks). Conclusively, at Storytel the throughput per employee has increased

significantly between 2019 and 2020, but the amount of WIP per employee has grown at an

even faster pace - resulting in a longer cycle time and in turn an increased Delivery Lead Time.

Factors influencing Throughput
We have only been able to hypothesize what factors might have influenced the increased level

of throughput at Storytel, without investigating these hypotheses further through additional

data collection due to time constraints. These hypotheses are described below.

Working remotely

The increased degree of remote work due to the pandemic is hypothesised by us to have had a

positive impact on the level of throughput at Storytel. As described in Section 3.3.2
Environment Factors, introducing remote work can increase performance in some task areas,

especially in individual tasks that require a larger degree of concentration (Bloom et. al., 2014).

This hypothesis could be further investigated through HR Survey Data, as several surveys were

sent out to Storytel employees in 2020 regarding working remotely during the COVID-19

pandemic.

Along with the pandemic, guidelines for almost all Storytel employees were to work from home

during March until August. Then a few months followed where employees were allowed at the

offices every other week according to schedule. In November 2020 the guidelines were

tightened again and remote work was the only option for the employees of the Tech

Department. Several surveys were sent out to the employees along with the transition to remote

work. This data shows that stress levels decreased in level in the beginning of when employees

started working remotely; however the stress level increase again later during the year. The top

five feelings reported by employees about working remotely are, in order: productive, focused,

lonely, efficient and relaxed. Furthermore, the findings show that while a small percentage of

employees were working remotely already before the pandemic, a majority of respondents want

to continue working from home in the future, to some degree. As previously mentioned,

compared to office work, almost half of the respondents report that they experience an increase

in efficiency. (Remote work - HR Survey Data, 2020).

In summary, the remote transition has been rather smooth for Storytel since a lot of teams were

distributed among different offices already, and a large percentage of employees report that

they feel more efficient and productive. Respondents mention the ease of booking meetings

and speedier decision making due to not being limited by booking physical meeting rooms, the

positive aspects of reduced commute time, fewer distractions, and easier time management.

However, the most frequently mentioned downsides are the negative aspects of less social

interaction with co-workers, difficulties in limiting work hours, as well as some people

reporting being more distracted rather than less when working from home. (Remote work- HR

103

Survey Data, 2020). Overall, working remotely may be a contributing factor to the increase in

throughput, however it is difficult to measure.

E-factor

A potential reason as to why remote work has had an impact on throughput, is because it offers

more uninterrupted hours and allows employees to get into a ‘flow’. It is argued that when

there is a low number of uninterrupted hours in proportion to total hours, approximately below

40%, this can imply reduced effectiveness and frustration among employees. A number above

40% indicates an environment that allows employees to get into a flow they need to (Demarco

and Lister, 1987). Looking at the data from Storytels Tech Department, the calculated E-factor

equals 46%. Unfortunately, there are no numbers outside of our survey to compare the E-factor

historically. It would have been interesting to know whether or not the current E-factor of 46%

is now above the benchmark due to remote work, and that it was below 40% before working

remotely - or if it has never been below the benchmark. The survey question we do have

regarding preferred uninterrupted hours compared with actual uninterrupted hours, still implies

that employees generally desire more uninterrupted hours than they currently have. However,

if the E-factor passed the benchmark of more uninterrupted hours during working remotely, it

would be a potential explanation for the increased throughput.

There is a balance in regarding what facilitates communication and what can be classified as a

distraction. Several interviews confirm that the need of flow is important. Different solutions

for how to achieve flow are reported - including scheduling focus hours, reading emails on

scheduled times (as seldom as twice a week) and approval to occasionally skip daily standups

if it disturbs flow (Interview 3: Developer, 2020; Interview 12: Developer, 2021; Interview 13:
Crew Coach, 2020; Interview 14: Developer, 2021). However, they mention the difficulties in

how to manage Slack; to keep it from becoming a distraction, while also being reachable. It is

easier for management to encourage always being up to date with the latest posted information

(in more than one place) rather than to limit distractions. While there is an expectation to be

approachable, it is left for each employee's own responsibility to for example actively pause

and mute notifications from Slack (Interview 14: Developer, 2021).

104

Appendix 9. Results from Factor Analysis
Factor 1: Team Identity

TI1 - My team is collectively working toward the same goal. (.806)

TI2 - I know the reason for all features developed in my team. (.483)

C1 - Communication is efficient in my team. (.391)

Factor 2: Number of projects

NP2 - How many projects have you worked on during the last three months? (.911)

NP3 - How many projects have your team been involved in during the last three months? (.654)

Factor 3: Transformational Leadership

TL3 - My manager regularly gives med actionable feedback. (-.910)

TL1 - My manager challenges me to see problems from new perspectives. (-.849)

TL2 - My manager notices me. (-.696)

Factor 4: Generative Culture

GC5 - In my team, failure causes inquiry so that we can learn from the experience. (-.775)

GC4 - In my team, cross-functional collaboration is encouraged and rewarded. (-.480)

GC6 - In my team, new ideas are welcome. (-.451)

GC1 - In my team, information is actively sought. (-.443)

Factor 5: Job Satisfaction

JS2 - I would recommend my team as a place to work. (-.872)

JS1 - I would recommend my workplace as a place to work. (-.651)

TI3 - I am proud to be a part of my team. (-.495)

Factor 6: Efficiency (Automation and Shared Responsibility)

TC1 - In my team we put effort into facilitating work for other teams. (.759)

AU1 - What is, in your estimate, the percentage of tasks related to deployment that are automated in your team? (.649)

AU2 - What is, in your estimate, the percentage of tasks related to testing that are automated in your team? (.529)

GC2 - In my team, responsibilities are shared. (.519)

LM2 - In my team the ambition is to keep the number of WIP to a minimum. (.376)

Factor 8: E-factor and Time Fragmentation

EF3 - Fraction Desired Uninterrupted Hours (-.558)

EF1 - E-Factor (-.367)

Factor 9: Team Cohesion

TC3 - I wish I had more insight into what other teams are doing. (.725)

TC2 - I have a good insight into what other teams are doing. (-.352)

105

Appendix 10. Overview of Survey Responses

Item Item
code

N Min Max Mean Std.
Deviation

Skewness

Kurtosis

In my team information is

actively sought.

GC1 75 2 5 4.13 .777 -.593 -.072

In my team responsibilities

are shared.

GC2 75 2 5 4.27 .875 -1.176 .823

In my team cross functional

collaboration is encouraged

and rewarded.

GC4 73 1 5 4.15 .953 -1.004 .586

In my team failure causes

inquiry so that we learn from

the experience.

GC5 75 2 5 4.16 .839 -.736 -.108

In my team new ideas are

welcomed.

GC6 75 2 5 4.61 .655 -1.765 3.026

In my team we put effort into

facilitating work for other

teams.

TC1 75 1 5 3.61 .943 -.138 -.393

I have a good insight into

what other teams are doing.

TC2 75 1 5 2.68 1.080 .345 -.322

I wish I had more insight into

what other teams are doing.

TC3 75 2 5 3.96 .845 -.475 -.336

I would recommend my

organization as a place to

work.

JS1 75 3 5 4.64 .584 -1.404 1.018

I would recommend my team

as a place to work.

JS2 75 1 5 4.59 .773 -2.374 6.700

My manager challenges me to

see problems from new

perspectives.

TL1 74 1 5 3.50 1.010 .000 -.377

My manager notices me. TL2 75 1 5 3.99 1.121 -1.156 .797

My manager regularly gives

actionable feedback that helps

me improve my performance.

TL3 75 1 5 3.20 1.241 -.261 -.839

I know the reason for all

features we develop in my

team.

TI1 75 1 5 4.13 1.107 -1.253 .893

106

My team is collectively

working towards the same

goals.

TI2 75 1 5 4.33 .875 -1.584 2.778

I am proud of being a part of

my team.

TI3 75 2 5 4.65 .688 1.985 3.249

Communication is efficient in

my team.

C1 75 1 5 3.80 .959 -.813 .645

How often do you interact

with members from other

teams for inspiration and/or

assistance for a task you are

working on?

C2 75 1 5 3.25 1.152 -.789 -.155

How many projects have you

worked on during the last

three months?

NP2 73 1 6 2.25 1.310 1.432 1.813

How many projects has your

team been involved in during

the last three months?

NP3 68 1 6 2.66 1.410 .794 .199

E-Factor EF1 75 .10 .88 .4613 .22446 .100 -1.002

Switching between tasks can

be good in terms of being

productive.

EF2 75 1 5 2.15 1.023 .632 -.333

Fraction Desired

Uninterrupted Hours

EF3 73 .13 4.00 .9225 .58981 2.372 9.371

Features developed in my

team can be tested and

deployed without being

dependent on other teams.

AR1 73 1 5 3.86 1.032 -.967 .771

Security testing is generally

done during the early phases

of development.

AR2 72 1 5 2.33 .949 -.011 -.541

What is, in your estimate, the

percentage of tasks related to

deployment that are

automated in your team?

AU1 59 1 5 2.93 1.244 -.257 -.893

What is, in your estimate, the

percentage of tasks related to

testing that are automated in

your team?

AU2 58 1 5 2.55 1.216 .027 -1.378

107

I have access to visual

displays showing the status

and/or flow of work within

my team by some metrics.

LM1 70 1 5 3.01 1.257 -.208 -.914

In my team, the ambition is to

keep the number of WIP

(work in progress) to a

minimum.

LM2 71 1 5 3.27 1.095 .048 -.664

