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Abstract 

The current trend towards large-scale research projects with big quantities of data from multiple 

sources require robust and efficient data handling. This thesis explores techniques for 

automatizing research data pipelines. Specifically, two tasks related to automation within a long-

term research project in cognitive neuroscience are addressed. The first task is to develop a 

tool for automatic transcribing of paper-based questionnaires using computer vision. 

Questionnaires containing continuous scales, so called visual analog scales (VASs), are used 

extensively in e.g. psychology. Despite this, there currently exists no tool for automatic decoding 

of these types of questionnaires. The resulting computer vision system for automatic 

questionnaire transcribing we present, called "VASReader", reliably detects VAS marks with an 

accuracy of 98%, and predicts their position with a mean absolute error of 0.3 mm when 

compared to manual measurements. The second task addressed in this thesis project is to 

investigate whether machine learning can be used to detect anomalies in Magnetic Resonance 

Imaging (MRI) data. An implementation of the unsupervised anomaly detection technique 

Isolation Forest shows promising results for the detection of anomalous data points. The model 

is trained on image quality metric (IQM) data extracted from MRI. However, it is concluded that 

the site of scanning and MRI machine model used affect the IQMs, and that the model is more 

prone to classify data points originating from machines and institutions that have less support in 

the database as anomalous. An important conclusion from both tasks is that automation is 

possible and can be a great asset to researchers, if an appropriate level and type of automation 

is selected. 
Teknisk-naturvetenskapliga fakulteten, Uppsala universitet . Utgivningsort U ppsal a/Visby . H andledare: William Thom pson, Äm nesgranskar e: Anders Brun, Examinator: Elísabet Andr ésdóttir  



Populärvetenskaplig sammanfattning 

Det här arbetet har gjorts i samarbete med en forskargrupp inom fältet kognitiv 

neurovetenskap på Karolinska Institutet.  Med hjälp av olika tekniker för hjärnavbildning 

fokuserar forskargruppen på smärta och dess underliggande mekanismer. Ett av deras 

forskningsprojekt, kallat PrePain, bygger på storskalig och långvarig datainsamling. 

Genom att samla in data från funktionell magnetresonanstomografi (fMRT), enkäter, och 

nationella register, ämnar forskarna identifiera riskfaktorer som kan leda till utveckling 

av långvarig smärta. Studien är prospektiv, och stora mängder data från friska individer 

kommer samlas in under flera år för att se samband mellan riskfaktorer och framtida 

utveckling av kronisk smärta. Den långvariga och storskaliga datainsamlingen, samt det 

faktum att viss fMRT-data från externa forskargrupper kommer utnyttjas, ställer krav på 

effektiv datahantering. Det är inte bara inom projektet PrePain som effektiv och robust 

databehandling är angeläget, utan en generell utveckling ses inom vetenskapen mot allt 

mer storskaliga forskningsprojekt med data från multipla källor.  

För att effektivisera databehandlingen vill forskarna bakom PrePain bygga en pipeline, 

det vill säga skapa en seriestruktur av databehandlingselement. Målet är att automatisera 

tidskrävande och felbenägna datahanteringsmoment i pipelinen. 

Särskilt två uppgifter inom forskningsdatapipelinen behandlas i den här uppsatsen. För 

det första undersöks möjligheten att automatiskt avkoda de enkäter som fylls i av 

studiedeltagare. Enkäterna är pappersbaserade och innehåller så kallade visuella analoga 

skalor, förkortat VAS. En visuell analog skala representeras av en 100 millimeter lång 

linje, som används för självuppskattning av bland annat smärta. Studiedeltagare markerar 

sitt svar genom att sätta ett kryss eller streck på linjen. VAS är ett validerat psykometriskt 

mått, och trots att det är vanligt förekommande inom smärtforskning och psykologi, 

saknas verktyg för att automatiskt läsa av VAS-enkäter. I nuläget mäts varje enskild 

markerings position för hand med en linjal, och resultatet förs därefter in i en databas. Det 

nuvarande tillvägagångssättet är mycket tidskrävande och även felbenäget eftersom stor 

noggrannhet krävs. Med anledning av detta har ett delmoment inom det här projektet varit 

att utveckla tekniker för att automatiskt läsa av inskannade enkäter. Att extrahera 

information från digitala bilder ingår i forskningsområdet datorseende, på engelska 

computer vision.  

Den andra uppgiften inom projektets ramar är istället kopplad till en annan datatyp, 

nämligen magnetresonanstomografibilder (MR-bilder). Funktionell MR (fMRT) används 

för att kartlägga smärtsignaler i hjärnan. Brus och artefakter, det vill säga 

bildförvrängningar, är vanligt förekommande i MR-bilder. De kan till exempel orsakas 

av att studiedeltagaren rör sig under MR-skanningen. Det är viktigt att identifiera MR-

bilder av undermålig kvalitet, för att exkludera dessa från fortsatt analys. Ett existerande 

verktyg, MRIQC, extraherar kvalitetsmått från MR-data. Kvalitetsmåtten är dock så pass 



många att det är svårt att få en överblick över dem och göra en sammanvägd 

kvalitetsbedömning. Stora mängder data med kvalitetsmått finns att tillgå i en publik 

databas, vilket i det här projektet har utnyttjats för att träna en maskininlärningsmodell 

att detektera avvikande datapunkter. Maskininlärningsalgoritmen som har använts är en 

oövervakad teknik som heter isolation forest. Grundidén bakom isolation forest är att om 

anomalier antas vara få och skiljer sig från majoriteten av övriga data, är de också enklare 

att isolera.  

Resultaten från projektet visar att det är möjligt med automatisk avläsning av enkäter, 

samt att avvikelsedetektering i kvalitetsmåttsdata från MR-bilder kan användas som en 

indikation på MR-datas kvalitet.  Det system som i och med projektet har utvecklats för 

enkätavläsning har fått namnet VASReader. Med tanke på avsaknaden av liknande 

verktyg som läser av just VAS-enkäter, är förhoppningen att systemet kan användas även 

utanför PrePain-projektets ramar. VASReader har potential att bespara forskare mycket 

tidskrävande och monotont arbete, och frigör tid för dem att istället ägna sig åt sina 

forskningsämnen. VASReader innebär också att VAS-resultat registreras på ett 

systematiskt och exakt vis.  

Att utvärdera resultat från oövervakade maskininlärningsmodeller är svårt, eftersom inget 

rätt svar finns. Visualiseringar av isolation forest-resultat visar dock att synligt avvikande 

datapunkter klassificeras som anomalier, samt att det mått på avvikelse som fås ut av 

algoritmen speglar de underliggande kvalitetsmåtten. Modellen visar dock tendenser till 

att klassa datapunkter från vanligt förekommande MR-skannermodeller och institutioner 

som mer normala än datapunkter från MR-skannermodeller och institutioner som är 

mindre frekvent förekommande i databasen. Mer forskning krävs också för att undersöka 

sambandet mellan avvikande datapunkter och faktiskt bildkvalitet. 
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1. Introduction 

PrePain is a unique large-scale database project within neuroimaging at Karolinska 

Institutet, aiming to find baseline factors that predict development of chronic pain later in 

life. The goal of PrePain is to predict who is at risk of developing long-term pain with a 

combination of brain images, genetic data, registry data and questionnaire data. In the 

coming years, thousands of healthy volunteers will have their brains scanned to collect 

structural and functional brain images using magnetic resonance imaging (MRI). In 

connection with this, participants fill in questionnaires containing continuous scales, so 

called visual analog scales (VAS), as well as binary YES/NO questions. Large-scale and 

long-term data collection projects such as PrePain require efficient strategies to collect 

and process the data as multiple different researchers will be involved through the project. 

Due to the large-scale nature of the project, the researchers at the Pain Neuroimaging Lab 

at Karolinska Institutet wish to streamline the data management and build an automation 

pipeline in order to enhance efficiency and robustness. The pipeline should include 

elements such as collection of raw data from multiple sources, data conversion and 

standardization, preprocessing of MRI data, quality control, evaluation, error flagging 

and alerts when manual checks are needed. An outline of the pipeline can be seen below 

in Figure 1.  

The main focus of this thesis project is to develop a tool for automatic reading and 

recording of questionnaires. Today, the researchers need to measure and transfer results 

from questionnaires manually with a ruler, a task that is time-consuming, error-prone and 

requires exactitude. An automatic solution can improve robustness, efficiency, and enable 

the researchers to spend more time on their subjects of interest.  Despite their extensive 

usage within the research community, there exists no tool for automatic decoding of 

paper-based VAS questionnaires. A more extensively studied area that is related to the 

task of decoding VAS questionnaires is however the task of decoding marks from optical 

mark recognition (OMR) sheets. There is also done a significant amount of relevant 

similar work within the areas of image document processing, intelligent character 

recognition, and computer vision.  

In addition to the need of a document-to-dataframe routine for questionnaire data, the 

researchers wish to investigate methods for automatic quality control of functional 

Magnetic Resonance Images (fMRI). The researchers behind PrePain have the 

opportunity to acquire data from other research groups. The large amounts of imaging 

data that will be acquired, and the fact that parts of it comes from external sources, 

increase the need for automatic identification of subpar images. These may, if they are 

not identified, cause problems in downstream analysis. There already exists a tool for 

extracting quality metrics from fMRI data, called MRIQC, developed by Esteban et al. 

(2017). However, MRIQC returns more than 50 image quality metrics (IQMs), which is 

a sufficiently large number for it to be difficult for a human to get an overview and make 
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an overall assessment of the quality. MRIQC reports do give an overview of how the 

quality metrics in a group of images relate to the other images’ IQMs in that same group. 

Nevertheless, a tool that enables comparison of the retrieved IQMs with data from other 

scanning sites is thought to give a better indication of the quality. If substandard images 

are assumed to be few and different from most of the data, and this is reflected in the 

IQMs, an approach to identify and flag these images is by applying anomaly detection 

techniques using machine learning. Anomaly detection, or outlier detection, is the task of 

identifying observations that differ significantly from other data points, and examples of 

previous applications are fraud detection and intrusion detection.  

The overarching aim of this project is to investigate whether time-consuming and error-

prone manual tasks within cognitive neuroscience research can be automated by a 

pipeline.  More specifically, the following two research questions will be addressed: 

▪ Can questionnaires containing visual analog scales be read and decoded using 

computer vision? 

▪ Can MRIQC data with Image Quality Metrics be utilized to detect anomalies in 

fMRI images? 

The thesis project is hence divided into two separate subtasks, the first one within the 

field of computer vision, the second one within machine learning. The two subtasks’ 

methodologies, data, and results are thus presented separately in Section 3 and 4. Albeit 

the two tasks require differing methodologies, they are both parts within the more general 

task of automatizing research pipelines and analyzing different types of images (scanned 

documents and MRI images). An outline of the planned pipeline can be seen in Figure 1. 

The tasks related to the first research question is highlighted in yellow, and the task related 

to the second question is highlighted in blue. The project has been conducted in 

collaboration with the Pain Neuroimaging Lab at Karolinska Institutet (KI). Regular 

contact and updating about the progression of the project has taken place through weekly 

meetings with the multidisciplinary research group and supervisor at KI. Halfway through 

the project, a presentation was held for the researchers in the research group to 

communicate the purpose of the work and show preliminary results. The methods used to 

solve the task were also presented. Visits on site at KI provided an opportunity to observe 

and have conversations with the researchers about how they collect data. 

The project is delimited in that the questionnaire decoding tool is developed to work on 

the specific questionnaires used in the PrePain study. The resulting system is 

consequently not expected to work out of the box on all variations of questionnaires 

containing VASs. However, the intention is for the tool to be applicable to other 

questionnaires with some minor adjustments. The MRI quality control part of the project 

is delimited in that it is not an extensive comparison of different anomaly detection 

techniques, but rather an explorative data analysis (EDA) followed by evaluation and 

analysis of one selected machine learning model for outlier detection, called Isolation 

Forest, applied to both structural and functional MRI data. 
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Figure 1. An outline of the PrePain pipeline. The tasks related to this project are 

highlighted in yellow and blue. 
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2. Background 

This project involves both automation, specific components of image processing, 

computer vision and machine learning. For this reason, this background covers broad 

theories about system automation, as well as technical descriptions of computer vision 

algorithms and machine learning models. The data the automation tasks applies to – 

questionnaires and MRIQC image quality metrics, is also introduced. 

2.1 Appropriate Selection of Type and Level of System 
Automation 

The overarching aim of this project considers automatizing research pipelines. Thus, it is 

important to understand what automation means, the different types of automation that 

are possible, and how automation can be implemented and evaluated. Parasuraman et al. 

define automation as “a device or system that accomplishes (partially or fully) a function 

that was previously, or conceivably could be, carried out (partially or fully) by a human 

operator” (Parasuraman, Sheridan and Wickens, 2000). This definition entails that 

automation is not all-or-none, but a continuum of levels between no automation and full 

automation. Technical development in both hardware and software lead to the possibility 

to automate many previously human-performed tasks and operations in systems. In fact, 

there are few functions that cannot be automated (ibid). 

Automation not only replaces human activity, but changes it, and Parasuraman et al. argue 

for the importance of asking questions such as “which system functions should be 

automated?” and “to what extent?”. They present a framework for categorizing classes of 

functions and levels of automation, which is meant to aid appropriate selection of type 

and level of system automation (ibid).  

Parasuraman et al. suggest that automation can be applied to four broad categories of 

functions in a human-machine system: 

1) information acquisition  

2) information analysis  

3) decision selection  

4) action implementation  

These correspond to a simple conceptual four-stage model of human information 

processing, namely: sensory processing – perception/working memory – decision making 

– response selection (ibid).  

Sheridan et al. (1978) proposed a 10-point scale which describes different levels of 

automation for decision selection and action implementation, see Table 1. This scale helps 

illustrate the continuous nature of automation defined above. 
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Parasuraman et al. (2000) adopt and extend the scale by arguing that it is also applicable 

to the input functions; information acquisition and information analysis. Thus, the four 

classes of system functions, 1) – 4) above, can be automated to different degrees, each 

ranging from fully manual performance to full automation. 

Table 1. Levels of Automation of Decision and Action Selection (Sheridan, Verplank 

and Brooks, 1978; Parasuraman, Sheridan and Wickens, 2000) 

HIGH 10. The computer decides everything, acts autonomously, ignoring the human. 

 9. informs the human only if it, the computer, decides to 

 8. informs the human only if asked, or 

 7. executes automatically, then necessarily informs the human, and 

 6. allows the human a restricted time to veto before automatic execution, or 

 5. executes that suggestion if the human approves, or 

 4. suggests one alternative 

 3. narrows the selection down to a few, or 

 2. The computer offers a complete set of decision/action alternatives, or 

 

LOW 
1. 

The computer offers no assistance: human must take all decisions and 

actions. 

 

Along with which areas that can be automatized and the degree of the automation, there 

are also different criteria to evaluate the effectiveness of the automation. Parasuraman et 

al (2000) propose a model for automation design that is not based on technological 

capabilities or economic incentives. Instead, it considers two other evaluative criteria. 

The first evaluative criteria are the human performance consequences, and the second are 

automation reliability and costs of decision and action consequences (ibid). 

The primary evaluation criteria used to evaluate a certain level of automation is about 

assessing the associated human performance consequences of the resulting system. Four 

areas of human performance are considered; mental workload, situation awareness, 

complacency, and skill degradation. Well-designed automation systems should decrease 

mental workload, not increase it. Ways in which automation can expand rather than 

eliminate problems for the human operator are discussed by Bainbridge (1983) 

Implementing so called “clumsy” automation, which essentially does more harm than 

good, tends to happen when automation is difficult to initiate and engage in, thus leading 

to both physical and mental additional work for the human system operator. Situation 

awareness refers to the operators’ ability to get an overview of the system states and its 

information sources. If decision making is automated, it can be difficult for the operator 

to get a good picture of the system, as he or she is not actively participating in the process 

of evaluating information sources leading to a decision; hence the process becomes more 

“black boxed”. At the same time, appropriate and well-designed automation of 
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information acquisition and analysis may facilitate the human’s situation awareness. 

Complacency, or “over-trust” can occur when automation is high, but not perfectly 

reliable. Occasional automation fails can then go under the radar. Skill degradation can 

occur when a function is consistently handled automatically, and the human operator 

starts forgetting how to perform the function, i.e. their cognitive skills degrade.  Skill 

degradation, as well as complacency and reduced situation awareness, mainly pose a 

threat in the event of a system failure that requires the human to act. They can cause the 

operator to show “out-of-the-loop” unfamiliarity with highly automated systems 

(Parasuraman, Sheridan and Wickens, 2000).  

The secondary evaluative criteria proposed by Parasuraman et al (2000) are automation 

reliability and costs of decision/action outcomes.  An automated system’s reliability 

highly affects the human trust of it and subsequent use of it. If high reliability cannot be 

ensured, the benefits on mental workload and situation awareness described earlier are 

not likely to hold.  There are several methods to estimate automation reliability, such as 

software reliability analysis and fault testing. However, complexity and size of software, 

unpredictable failures, and faults arising from interaction with other existing systems 

impose difficulties in estimating and ensuring automation reliability. Mistrust in 

automated systems may lead to underutilization or disabling of the automated system. 

Only if information automation is highly reliable, high levels of automation are justified. 

(Parasuraman, Sheridan and Wickens, 2000). According to Lee and See (2004), people 

respond to technology socially, and because of this, trust influences reliance on 

automation. This is especially the case when complexity and unanticipated situations 

make a complete understanding of the automation impractical.  

Evaluating costs of decision/action outcomes is about weighting the risk associated with 

incorrect or inappropriate decisions or actions against the benefits of a particular level of 

automation. Parasuraman et al. here adopts a definition of risk as the probability of an 

error multiplied by the cost of that error. Decisions involving small risks are candidates 

for high levels of automation in decision selection and action implementation, while 

highly automated high-risk decisions and actions are only motivated in, for example, 

extremely time-critical situations (ibid). In the case of highly automated decision 

selection, it is suggested giving the human the “last saying “, i.e. forcing the user to 

consciously confirm the decision before the action is implemented (ibid). Data entry is an 

example of a viable candidate for high automation in decision selection, with some degree 

of human involvement for error trapping (ibid). Studies on flight management systems – 

FMSs –  in aircrafts have shown that a lower level of action automation in entering data 

into a computer (manual entry) had a higher error rate than a higher level of automation 

when the operator confirmed automated decisions by pressing an “accept” button to enter 

data (Hahn and Hansman, 2013). 
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2.2 Using Computer Vision to Extract Information from Images 

Computer vision (CV) is a scientific field of study engaged in questions concerning how 

computers can “see” and “understand” digital images (and video). The aim of computer 

vision is to extract useful information from images in an automated way. What useful 

information is varies from application to application, and CV has applications in various 

fields such as medical imaging, surveillance, autonomous vehicles, and optical character 

recognition (OCR). Computer vision is a multidisciplinary field, with relations to e.g. 

artificial intelligence, neurobiology, information engineering, and signal processing. It is 

also closely related to image processing, image analysis and machine vision, and a 

combination of techniques originating from these fields are used in computer vision. A 

commonly used library of programming functions for computer vision is OpenCV, short 

for Open Source Computer Vision Library.  

The task of automatically decoding questionnaires requires techniques from the fields of 

computer vision and image document processing. Even though the specific case of 

reading marks on VASs has not been explicitly addressed previously, it can to a great 

extent be solved using existing CV- and document image processing techniques. 

Especially relevant are methods for image preprocessing, skew correction, line detection, 

mark detection, shape detection etc. Previous research in image document processing in 

general, and OMR, OCR and ICR in particular, tackle many problems also encountered 

in solving the computer vision task of this thesis project. For this reason, an introduction 

to the fields of study that are relevant to this project will be given in Section 2.2.3, along 

with examples of previous relevant research. First, however, the PrePain questionnaires 

will be described shortly. Following this, the very basics of digital images and common 

operations on them are introduced. An understanding of how images are represented in 

computers is required to understand the techniques described in the coming sections. 

2.2.1 PrePain Questionnaires  

The main questionnaire used in the PrePain project consists of five binary answer 

questions and seventeen VAS questions. The questionnaire has two pages. The design of 

the questionnaires changed during the project, but the contents are identical. The changes, 

and the motivation behind them will be further described in Section 3. The initial 

questionnaire design is hereafter referred to as the first version, and a full version can be 

found in Appendix A. The altered questionnaire is hereafter referred to as the second 

version. It is found in Appendix B. 

The binary questions consist of a description, a question, and the two answer alternatives 

as seen in Figure 2 below. JA and NEJ (Eng. YES and NO) are the answer alternatives. 

In the first version no instruction for how to mark an answer is provided. 
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Figure 2. Four of the five binary questions with a common description as they were 

stated in the first version of the main questionnaire. 

The VAS questions are divided into two sections. The first section consists of an 

overarching question; “Are you feeling pain anywhere in your body right now?”, and 

eleven VASs of pain intensity for different areas of the body. The second section consists 

of six individual questions with one corresponding VAS of some measure each. An 

example from the second section can be seen in Figure 3 below. 

 

Figure 3. One of the six questions from the second VAS section as it was stated in the 

first version of the main questionnaire. 

2.2.2 Computer Vision Foundations  

Scanned document images can be decoded using computer vision. In computers, images 

are represented as matrices of pixel values. Images can thus be defined as a function f, 

mapping from R2 to R. In the case of grayscale images, each pixel can typically take an 

intensity value in the range [0, 255], where 0 is black and 255 white. The pixel value f (x, 

y) gives the intensity of the image at position (x, y). For colored images, the additive color 

model RGB, short for red, green and blue, is often used. For RGB images, f (x, y) is a 

vector of three values, each in range [0, 255], see formula 1. 

 f (x, y) = [

𝑟(𝑥, 𝑦)

𝑔(𝑥, 𝑦)
𝑏(𝑥, 𝑦)

]  (1) 

 

A simple, yet effective method for segmenting images is thresholding. In a grayscale 

image, thresholding can be used to create a binary image, partitioned into background and 

foreground.  There are various thresholding techniques. In simple thresholding, each pixel 
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in the image is replaced with a black pixel if the intensity of that pixel is less than a fixed 

threshold 𝑡ℎ𝑟𝑒𝑠, or else it is replaced with a white pixel. That is, 

 

 𝑑𝑠𝑡(𝑥, 𝑦) = {
𝑚𝑎𝑥𝑉𝑎𝑙, 𝑖𝑓 𝑠𝑟𝑐(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2) 

 

 

where 𝑠𝑟𝑐(𝑥, 𝑦) is the intensity of the pixel at (𝑥, 𝑦), and 𝑑𝑠𝑡(𝑥, 𝑦) is the new intensity 

of pixel (𝑥, 𝑦) (OpenCV: Basic Thresholding Operations, no date). The maximum pixel 

intensity 𝑚𝑎𝑥𝑉𝑎𝑙 is typically 255.  

 

The result of this operation is a binary image, consisting of only black and white pixels. 

An inverted binary thresholding operation (ibid.) can be expressed as  

 𝑑𝑠𝑡(𝑥, 𝑦) = {
0, 𝑖𝑓 𝑠𝑟𝑐(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠

𝑚𝑎𝑥𝑉𝑎𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (3) 

 

Inverted binarization is useful if one wishes to retrieve images in a binary format where 

black pixels have intensity 255, and white pixels intensity 0. Another thresholding 

technique is adaptive thresholding, which works better than simple thresholding for 

images with varying illumination. In adaptive thresholding, as opposed to using a global 

constant, the threshold for a pixel is based on the intensity values in the local 

neighborhood of that pixel (OpenCV: Image Thresholding, no date). 

 

Doing operations on images represented as matrices of pixels with intensity values form 

the very basis of how computers can gain a high-level understanding of images. State-of-

the-art techniques include usage of convolutional neural networks, machine learning 

models that convolve over images and extract features from them. Irrespective of the 

complexity of the computer vision method used for a task, they all build upon the data 

representation of digital images presented above. Neural network methods are not always 

the preferred option, inter alia due to their need of large quantities of training data. Often 

the complex methods are combined with basic image operations for preprocessing of 

images.  Common problems addressed in computer vision are different types of detection, 

recognition and identification. Optical mark recognition (OMR), optical character 

recognition (OCR) and intelligent character recognition (ICR) are three fields within the 

broader field of computer vision. To give an overview of the context in which the 

questionnaire decoding task of this project belongs to, a description of these fields, and 

previous work within them follows in the next section.  

2.2.3 Previous Work in OMR, OCR, and ICR 

Optical mark recognition or optical mark reading – often referred to as OMR – is the 

process of decoding human-made marks from document forms like surveys, tests or 
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election ballots.  OMR is for example used to read data from multiple choice question 

exams and questionnaires where answers are represented by crosses in boxes or filled-in 

bubbles (see e.g. Barney Smith, Nagy and Lopresti, 2009; Afifi and Hussain, 2017; Loke, 

Kasmiran and Haron, 2018).  

The traditional OMR systems, which are hardware-based and require designated OMR 

scanners, have increasingly been replaced by software optical mark recognition systems 

– SOMR systems (Loke, Kasmiran and Haron, 2018). Benefits in flexibility, time 

efficiency, and costs have been given as reasons behind this development (Fisteus, Pardo 

and García, 2013).  Unless otherwise stated, OMR techniques will hereafter mainly refer 

to software-based systems, as the methods used by traditional OMR scanners differ 

considerably from software-based OMR techniques. 

A distinction is made between OMR and optical character recognition (OCR). In general, 

OMR is used to recognize darkened marks at predefined positions (Loke, Kasmiran and 

Haron, 2018), while an OCR system analyzes the shape of marks in an image and the 

recognizes the characters (Butterfield, Ngondi and Kerr, 2016). Simply, OMR detects the 

presence of a mark, while OCR decodes the shape of the mark. A more advanced form of 

OCR is called ICR, intelligent character recognition. Machine learning models based on 

neural networks, such as convolutional neural networks (CNNs), long short-term memory 

networks (LSTMs) and recurrent neural networks (RNNs) are often used in ICR (Ptucha 

et al., 2019). Even though OCR formally includes deciphering of human-written 

characters, OCR today often refers to recognition of machine generated text while ICR 

refers to recognition of handwritten symbols (ibid).  

Previous computer vision research that is relevant for this project include Fisteus, Pardo 

and García’s paper introducing Eyegrade, a system for automatic grading of multiple 

choice exams (2013).  The system is composed by six sequential steps:  

1) Preprocessing by transforming the image to monochrome, and using adaptive 

thresholding;  

2) Line detection with Hough transform;  

3) Answer table detection by finding intersecting lines;  

4) Decision making;  

5) Exam model detection; and  

6) Student ID detection. 

Another example is Yan Ping Zhou and Chew Lim Tan’ s (2000) usage of modified 

probabilistic Hough line transform to detect and  recognize bar charts in document 

images. De Lima et al., (2016) present an algorithm that finds signature lines in 

documents. Their system begins with preprocessing using simple thresholding. This is 

followed by candidate line detection using Hough lines and “connected components” to 

merge detected lines belonging to the same line. The last step is classification using 

Histogram of Gradient (HoG) features and Euclidian distance measure (ibid.). Elias, 

Tasinaffo and Hirata (2019) propose a method to handle skew, translation, scale and 
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alignment using a reference document in which key points are found by a pattern 

matching algorithm. The intention is for the method to be used before OMR. 

A common feature in previous research is that the systems follow a similar workflow.  

With some deviations, the systems tend to be built as sequential processes containing the 

following main components: 1. Image document preprocessing; 2. Element detection, and 

3. Classification, see Figure 4. Another common feature is the usage of a reference 

document to handle skew, alignment and translation of the images. 

 

Figure 4. Common sequential workflow in computer vision systems,  

2.2.4 The Visual Analog Scale, VAS 

As there already exists OMR techniques for reading multiple choice questions, one 

possible solution for automatic reading of the PrePain questionnaires is to transform them 

to OMR sheets and use existing OMR solutions. However, what precludes that approach 

is the fact that the questionnaires contain continuous scales, VASs, that from a scientific 

perspective are not always replaceable by discrete scales.  

A visual analog scale (VAS) is a validated psychometric measurement used in 

questionnaires to, inter alia, assess chronic and acute pain. A visual analog scale is a line, 

often 100 millimeters long, representing a continuous scale with two anchors, one in each 

end. The anchors usually have words marking opposite ends of the scale, e.g. “no pain” 

1. Document 
preprocessing
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Matching with 
reference document

Skew correction
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grayscale

Thresholding

2. Element detection 
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Line detection

Shape detection
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and ”worst pain” (Reips and Funke, 2008; Delgado et al., 2018). Scores are recorded by 

measuring the exact position of a handwritten mark on the line with a ruler, and hence 

reading data from paper based VASs is very time consuming. The practical concerns of 

reading VAS:s are alleviated with computerized versions (Reips and Funke, 2008) and 

there exists tools for creating and reading digital VASs (Reips and Funke, 2008; Marsh-

Richard et al., 2009)  

Nonetheless, paper-based questionnaires are still used to a great extent. One reason for 

this is that response rates and adequacy of response rates are higher for paper based 

surveys (Nulty, 2008). A tool for automatic decoding of paper based VASs could improve 

efficiency and robustness in several research areas relying on collection of VAS data. 

Related research about automatic reading of questionnaires and similar documents such 

as exam answer sheets makes use of optical mark reading (OMR). OMR is used to read 

multiple choice questions, where answers are made by marking boxes or bubbles. 

However, OMR requires discrete scales or categorical answers, and research have shown 

that VASs have a number of advantages over discrete scales and the two formats are not 

always exchangeable (Reips and Funke, 2008). For example, a study from 2006 showed 

that there is a systematic difference between equally spaced online radio buttons and 

VASs and that they do not show linear correspondence (Funke and Reips, 2006). A major 

advantage of VAS is that VAS data is interval-scaled, while data from categorical scales 

is ordinal-scaled. This enables calculation of the arithmetic mean from VAS, data, while 

only median values can be extracted from discrete categorical scales. (Klimek et al., 

2017)  

2.2.5 Hough Line Transform 

As described above, VASs are represented by lines in the image. Accordingly, these must 

be recognized in the document before it is possible to recognize marks on the VASs. 

When looking for ways to detect lines in images, one eventually stumbles upon the Hough 

Line Transform or one of its variations. Originally patented in 1962, the technique has 

been covered in and extended upon in hundreds of research papers (Mukhopadhyay and 

Chaudhuri, 2015). 

 

In OpenCV, two variants of the Hough Line Transform are available. The standard 

version is implemented as a function HoughLines() and is explained in a tutorial. In 

short, a 2D line can be expressed with polar coordinates as 𝑟 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 𝑠𝑖𝑛 𝜃. Here, 

(𝑥, 𝑦) is a point belonging to the line we want to express and is chosen so that a 

perpendicular line can be drawn from this point to the origin. This perpendicular line has 

a length 𝑟, and an angle 𝜃 starting from the x-axis. Now, consider all possible lines 

passing through (𝑥, 𝑦). Each of these lines can be expressed in the same way, but the 

values of 𝑟 and 𝜃 will vary. If constraints 𝑟 > 0 and 0 < 𝜃 < 2𝜋 are imposed and all 

possible values of 𝑟 and 𝜃 for lines passing through (𝑥, 𝑦) are plotted as points in a plane 

𝑟-𝜃 we obtain a sinusoid in this new plane. If we pick a new point (𝑥1, 𝑦1) belonging to 

the same line and do the same process, we will obtain a second sinusoid in the 𝑟-𝜃 plane. 
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Since one of the possible lines passing through (𝑥1, 𝑦1) is the line we started out with, 

these sinusoids will intersect at a point (𝑟, 𝜃) corresponding to that line. The Hough Line 

Transform in OpenCV uses this fact to scan for lines in a binary image. For each white 

pixel, the sinusoid of the line family passing through it are drawn in the 𝑟-𝜃 plane. Since 

all white pixels belonging to the same line will yield a new intersection lines can be 

identified by setting a threshold for the least number of intersections (OpenCV, 2020f). 

 

However, only obtaining 𝑟 and 𝜃 gives no information of the length of the line, where it 

begins, or where it ends. The other variant available in OpenCV, implemented as 

HoughLinesP(), solves this problem and gives the extremes of the detected lines 

(OpenCV, 2020c). While OpenCV refers to this implementation as the Probabilistic 

Hough Line Transform (ibid.), their cited source instead calls it the Progressive 

Probabilistic Hough Transform and points out that it differs from the Probabilistic Hough 

Transform (Matas, Galambos and Kittler, 2000).  

2.2.6 Skew Correction 

When working with digitized documents, a skew angle is often introduced due to small 

misalignments during the scanning procedure, and correcting this skew is crucial in most 

document analysis systems (Boudraa, Hidouci and Michelucci, 2020). Horizontal 

elements, such as lines, will not be identified in systems that searches along the horizontal 

axis if the skew angle is too high (Yefeng, Huiping and Doermann, 2005). Boudraa, 

Hidouci and Michelucci (2020) describes and categorizes several existing methods that 

deal with this problem in documents where no ground truth is available. Projection profile 

analysis, nearest-neighbor, and Hough transform based methods among others are 

mentioned by the authors. 

While perhaps not as common when using a document scanner, document images may 

have perspective distortion. This type of distortion can be described as some parts of the 

document being larger due to being closer to the capturing equipment (Fisteus, Pardo and 

García, 2013). Perspective distortion can be rectified by finding a perspective 

transformation between the distorted plane and the undistorted plane and applying it to 

the image. The perspective transformation, or homography matrix 𝐻, is a 3×3 matrix so 

that 

 𝑠𝑖 [
𝑥𝑖

′

𝑦𝑖
′

1

] ~𝐻 [
𝑥𝑖

𝑦𝑖

1
]. (4) 

Here, 𝑠𝑖 is a scale factor and 𝐻 map points between the distorted and the undistorted 

plane. In OpenCV, the function findHomography() searches for 𝐻 given a set of 

corresponding points in the two planes (OpenCV, 2020a). 

To find corresponding points several algorithms exist. One such algorithm is ORB 

(Oriented FAST and Rotated BRIEF), which builds upon the FAST keypoint detector and 
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the BRIEF feature descriptor.  In this context keypoints, or features, in an image refers to 

corners, blobs, edges, and similar objects detectable by a keypoint detector algorithm. 

The descriptor algorithm in turn creates descriptions of these keypoints. BRIEF is robust 

against lightning, blur, and perspective distortion. The Rotated BRIEF variation, which 

is the one used in ORB, is in turn robust against rotation. This means that given two 

images of the same motive, ORB can detect the same keypoints in both images and create 

descriptors that match even if the images are of different perspectives (Rublee et al., 

2011). 

2.2.7 OMR Mark Detection 

The PrePain questionnaire entails that the person places marks on VAS lines and, in the 

second version of the questionnaire, in checkboxes. These marking have to be decoded. 

Existing OMR mark detection techniques used for decoding marks in answer boxes 

and/or bubbles include adaptive x-mark matching (Chouvatut and Prathan, 2014), 

projection profiles (Sattayakawee, 2013), pixel counting (Haskins, 2015), finder patterns 

(Chai, 2016), thresholding (S, Atal and Arora, 2013) and machine learning models like 

CNNs and bag of visual words (Afifi and Hussain, 2017). The plethora of mark detection 

methods in combination with different preprocessing techniques indicate that there are 

few general solutions. Methods are often tailor-made for a type of document or input 

field, and many OMR systems make use of a sequential combination of techniques. (see 

e.g. Loke, Kasmiran and Haron, 2018). Loke et al. mention several factors affecting the 

performance of a mark detection technique, e.g. whether the respondents are trained or 

untrained when filling in a sheet, what pen or pencil is used, and presence of artifacts 

caused by scanners and printers (2018).  

One of the simpler methods for mark detection is thresholding, described by (S, Atal and 

Arora, 2013). The authors present a system for designing, registering and evaluating 

forms. In this context, registration refers to handling the variance in rotation and 

translation of forms. This variance originates from manual error in aligning the 

documents during scanning, see Section 2.2.6. For their method to work, the position of 

all bubbles/boxes must be fixed to the same position in all scanned images before further 

processing of the forms (S, Atal and Arora, 2013). In this case, registration is 

accomplished by detecting square boxes in each corner of the form and first rotating and 

then translating the image. The answer boxes are then identified by detecting rectangular 

contours (rectangles containing groups of bubbles), and the relative position of the answer 

bubbles is known within these. To determine whether the bubble is filled or not, the 

average grayscale value of the smallest rectangular region bounding the answer bubble is 

calculated and compared to a threshold. The idea behind this is that the there is a 

significant difference between the average grayscale value of a filled bubble and that of 

an unfilled bubble. Completely black pixels have the minimum pixel value 0 and white 

pixels have the maximum value 255. A low average grayscale value thus indicates that a 

box is filled, while unfilled bubbles have a high grayscale average. If the average 

grayscale value, Vi, satisfies  
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 𝑉𝑖 <  𝑉𝑚𝑖𝑛 +  (𝑉𝑚𝑎𝑥 –  𝑉𝑚𝑖𝑛)  ∗  𝑝. (5) 

it is considered filled (S, Atal and Arora, 2013). If Vi instead fulfills  

 𝑉𝑖 >  𝑉𝑚𝑖𝑛 +  (𝑉𝑚𝑎𝑥 –  𝑉𝑚𝑖𝑛)  ∗  𝑞 (6) 

it is considered unfilled (ibid.). For each scanned image, 𝑉𝑚𝑖𝑛 denotes the minimum 

average grayscale value and 𝑉𝑚𝑎𝑥 denotes the maximum average grayscale value. The 

variables 𝑝 and 𝑞 are user-defined adaptive threshold factors where 0 < 𝑝 < 𝑞 < 1 

(ibid.). 

These comparisons will not work as expected if all bubbles are filled or unfilled. To 

handle this case, a threshold parameter based on the average of 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 is 

compared against the absolute max and min (ibid.).   

A problem discussed by the authors is that poorly erased marks are detected as marks 

(ibid). The method is more biased towards erroneously detecting erased filled in bubbles 

than erased cross marks (Loke, Kasmiran and Haron, 2018).  

Another simple yet successful method used to detect marked “hotspots “, i.e. bubbles or 

boxes, is called pixel counting (ibid.). Haskins (2015) concludes that the pixel counting 

method performs better than other more sophisticated methods in terms of accuracy, 

sensitivity, specificity and agreement (Cohen’s kappa). Haskins proposed method begins 

much like that of s. Atal and Arora (2013) with de-skewing and resizing of each scanned 

image by comparing it to a memorandum with reference squares in each corner. 

Thereafter, each hotspot is analyzed with a padding of 11 pixels on each side. The extra 

padding is kept partly to counter slight variances that remain despite de-skewing and 

rotation, and partly to keep information about the area around the box, e.g. whether it has 

been crossed over. For each pixel in the remaining hotspot, the average RGB value is 

calculated, and compared to an empirically derived threshold. Each pixel is then flagged 

as marked or un-marked and the percentage of marked pixels in each hotspot is in turn 

compared to a threshold to determine whether it is selected or not. Haskins (2015) use 

200 as threshold for each pixel to be considered marked and requires 20% of the pixels 

within a hotspot to be marked in order to classify it as selected. However, this method 

cannot distinguish between selected and de-selected hotspots, and the author suggests that 

a combination of pixel counting and another method better at detecting deselections 

would be needed to achieve this behavior (ibid.).  

A similar but slightly different approach to differentiate marks is based on the additive 

sum of all pixel values after adaptive thresholding. This method tends to detect more 

vague marks and lighter pixels (Loke, Kasmiran and Haron, 2018).  

2.2.8 Shape Detection and Contour Approximation 

Geometric shapes in images, such as rectangles, triangles and circles, can be detected by 

identifying contours and approximating polylines to these. A contour can be described as 
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a curve joining all continuous points along a boundary having the same color or intensity 

(Mordvintsev and Abid, 2014). In 1985, Suzuki and Abe proposed two algorithms for 

extracting the topological structure of images. Contours, or borders, are found between 

background, connected components and holes, see Figure 5.  Contours can be identified 

using the built in function findContours() in OpenCV. The function retrieves 

contours from a binary image (OpenCV: Structural Analysis and Shape Descriptors, 

2018), and is based on algorithms presented by (Suzuki and Abe, 1985). Depending on 

which “contour retrieval mode” findContours() is called with, it returns either all 

contours, only the outer contours, or contours organized in a hierarchy of nested contours 

(OpenCV: Structural Analysis and Shape Descriptors, 2018). Each individual contour is 

represented as an array with the object’s boundary points (x, y) coordinates (Mordvintsev 

and Abid, 2014). 

 

Figure 5. Surroundness among connected components (b) and among borders (c). 

Adapted from Suzuki and Abe (1985). 

To further identify the shape of the retrieved contours, they can be approximated using 

the Douglas-Peucker algorithm. The Douglas-Peucker algorithm, or Ramer-Douglas-

Peucker algorithm, was developed within the field of cartography, and is an algorithm for 

reducing the number of points in a polyline/curve by approximating it to a similar curve 

with fewer points (Douglas and Peucker, 1973). The algorithm is initiated by drawing a 

line between the first and last point, these points are always kept. If the Hausdorff distance 

to the point farthest away from this line is greater than a chosen threshold ε, that point is 

kept. The algorithm then recursively calls itself with the first point and the farthest point, 

and then with the farthest point and the last point. In the case of approximating contours, 

the interpretation of the parameter ε is the maximum distance allowed between the actual 

contour and the approximated contour. In general, smaller ε give more accurate 

approximations, but require more points to describe the approximated curve. When the 

recursion is completed, i.e. no farthest point is farther away from the approximated line 

Contours 
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than ε, only the points that have been marked as kept are outputted. The OpenCV function 

approxPolyDP() is used to implement the Douglas-Peucker algorithm (OpenCV: 

Structural Analysis and Shape Descriptors, 2018). 

With an appropriate choice of ε, the shape of geometrical objects can be determined by 

calling approxPolyDP() and analyzing the number of edges required to approximate 

a contour. If three edges are needed, it is a triangle, if four, it is a quadrilateral, if five, it 

is a pentagon, etc.  This works even if the object’s shape is “imperfect”.  

2.2.9 Handwritten Digit Recognition with CNNs 

Aside from detecting lines, shapes and marks in the questionnaires, a numeric ID written 

by hand is a part of the second version of the questionnaire. Recognition of handwritten 

digits is included in the field of ICR. Convolutional neural networks, also called CNN: s 

or ConvNets, have shown great performance in image classification, object detection, 

character recognition etc. This is due to their ability to preserve spatial relations in the 

input data. A multitude of CNN architectures have been proposed for handwritten digit 

recognition, and CNN: s tend to outperform other classification algorithms such as K 

Nearest Neighbors, Support Vector Machines, and fully connected neural networks with 

backpropagation (Liu, Wei and Meng, 2020). The use of elastic distortion in augmenting 

the training data is found to be important in order to achieve low error rates, and deep 

nets perform better than shallow ones. (Deng, 2012) A recently proposed pure CNN 

architecture achieves a 99.87% accuracy on the MNIST data (Ahlawat et al., 2020). 

Another state-of-the-art CNN, EnsNet, which makes use of ensemble learning, achieves 

an accuracy of 99.84%. (Hirata and Takahashi, 2020) 

2.2.10 The MNIST Database 

Training of machine learning models require large amounts of data. The MNIST database, 

(Modified National Institute of Standards and Technology database) is a widely used 

large database containing handwritten digits. The MNIST database is freely available and 

has a training set of 60,000 images and a test set of 10,000 images (Lecun et al., 1998). 

It is commonly used to assess the relative performance achieved by different machine 

learning algorithms and preprocessing techniques (Deng, 2012). 

Each MNIST example is a 28×28 grayscale image in which the digit is size normalized 

to fit within an inner 20×20 pixel box. The inner 20×20 pixel box containing the digit is 

centered in the larger 28×28 image by its pixel mass center (Lecun et al., 1998).  
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2.3 Quality Control of MRI data  

The PrePain project involves collecting anatomical and functional MRI. MRI are 3D or 

4D images of the brain that are used to infer brain activity. MRI images also contain noise 

which can dramatically affect the data. An example is when a subject moves considerably 

during a scanning sequence, which can be problematic for subsequent analyses (Power et 

al., 2012; Van Dijk, Sabuncu and Buckner, 2012; Power, Schlaggar and Petersen, 2015). 

Thus, identifying subjects with high amount of noise is an important issue in MRI 

analyses. 

MRIQC (Magnetic Resonance Imaging Quality Control tool) is an open source project 

developed by the Poldrack Lab at Stanford University. MRIQC extracts IQMs (Image 

Quality Metrics) from MRI images, and is a contribution to the work of automating 

quality assessments of neuroimaging data. The main motivation behind quality 

assessment is that low quality MRI data may lead to faulty conclusions when analyzing 

neuroimaging data (Esteban et al., 2017). MRI images are seldomly artifact-free, and 

artifacts can be patient related, signal processing dependent as well as hardware (machine) 

related. (Erasmus et al., 2004) 

Exclusion of low-quality images has traditionally been done through visual inspection by 

experts, which is both time-consuming and affected by inter-rater differences. In addition 

to this, the trend towards large-scale studies with large datasets from multiple sites has 

increased the need for reliable, robust and efficient automated quality control (Esteban et 

al., 2017) 

MRIQC returns a set of image quality metrics (IQMs) extracted from MRI images, which 

are grouped in four broad categories:  

▪ Measures based on noise measurements 

▪ Measures based on information theory 

▪ Measures targeting specific artifacts 

▪ Other measures 

See Table 13 in appendix C and Table 14 in appendix D for complete lists of the IQM 

features. The IQMs will be further described in Section 4.1. 

In addition to introducing MRIQC in their article from 2017, Esteban et al. evaluate two 

families of binary classifiers’ ability to predict the quality (exclude/accept) of new MRI 

data from unseen sites. Labeled data was retrieved by letting two experts visually inspect 

MRI data and assign quality labels (exclude/doubtful/accept). The labeled MRIQC data 

was then used to train classifiers through supervised learning. An accuracy of 76% was 

at best obtained by a random forest classifier, when evaluated on data from an unseen 

site. The authors conclude that the classification is susceptible to what they call “site-

effects” and that the trained classifier does not generalize well to data from new sites. The 

site-effects are explained by the fact that IQMs are highly correlated with the site the MRI 
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image data comes from, and that this accounts for much of the variability in the data 

(Esteban et al., 2017). 

In Improving out-of-sample prediction of quality of MRIQC, the site-effects in the IQMs 

are analyzed further and confirmed by t-SNE plots (Esteban, Poldrack and Gorgolewski, 

2018). The labeled data used in the 2017 experiment showed a very high inter-rater 

variability, which the authors suspect to be caused by annotation errors. A label 

binarization step in the 2017 experiment in which all data points labeled “doubtful” by 

the experts were mapped as “accept” in the binary classification was therefore revised in 

2018, which lead to an accuracy improvement of 10% (Esteban, Poldrack and 

Gorgolewski, 2018). T-SNE projections show that IQMs are highly structured around 

their site of origin, even when the features are site-wise normalized. What is more, the t-

SNE analysis does not reveal any clear relation between the IQM features and manual 

quality ratings, which according to the authors suggest that 1) there is a need for better 

features that are more representative of quality, and 2) the problem of automated quality 

classification is not reliably solved with simple models (Esteban, Poldrack and 

Gorgolewski, 2018). 

Unless the user actively opts out, anonymized quality metrics (IQMs) are uploaded to a 

publicly accessible web server each time MRIQC is run (Esteban et al., 2019). IQMs 

extracted from MRI images are collected in the crowdsourced database MRIQC Web-

API1. The intention is for it to be used for training human experts as well as machine 

learning algorithms (ibid.). The purpose of the data collection is to “build normal 

distributions for improved outlier detection” (Running mriqc — mriqc 0.1 documentation, 

no date). A MRIQC user also has the opportunity to rate the image quality and motivate 

the rating with descriptive words. If this is done, and the user does not actively oppose, 

the rating is also uploaded to the MRIQC database. According to Esteban et al, the 

ultimate goal of the database is to develop a fully automated quality control tools that 

performs better than human experts in identifying subpar images. The focus of quality 

control (QC) is to identify outliers and flag images that, due to their poor quality, may 

pose a threat to downstream analysis (Esteban et al., 2019). 

In functional Magnetic Resonance Imaging (fMRI) studies, the standard way to generate 

images is by using Blood Oxygenation Level Dependent (BOLD) contrast (Shah et al., 

2010). While MRI studies brain anatomy, fMRI studies brain function. BOLD signals are 

an indirect measure of functional brain activity. As a complement, a high-resolution T1-

weighted anatomical image is often used to map activations onto. In addition to T1-

weighted images, usually only referred to as T1, there are T2-weighted images. Both T1 

and T2 are basic pulse sequences in MRI.   

 

 
1 Available at mriqc.nimh.nih.gov 
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2.3.1 Anomaly Detection 

As stated by Esteban et. al (2019), the purpose of collecting anonymized MRIQC data 

in a database is to develop automated quality control, with focus on identifying and 

flagging outliers. This is referred to as anomaly detection. Anomaly detection, or outlier 

detection, is the task of identifying observations that differ significantly from the 

majority of the data. When the task is to decide whether a new observation is an outlier 

or not, the term novelty detection is commonly used.  Anomaly detection techniques can 

be divided into three major groups: supervised, unsupervised and semi-supervised. 

Supervised learning techniques require labeled data (anomaly/normal), while 

unsupervised models learn from unlabeled data. In semi-supervised techniques, only 

some of the data is labeled, an example is when all training data is assumed to belong to 

the normal class.  

Several definitions of what an outlier is exists. Hawkins defines an outlier as “an 

observation which deviates so much from other observations as to arouse suspicions that 

it was generated by a different mechanism (Hawkins, 1980). Barnett and Lewis defines it 

as “an observation (or subset of observations) which appears to be inconsistent with the 

remainder of that set of data” (Barnett and Lewis, 1994).  

Outliers may arise from data entry errors, experimental errors, data processing errors, or 

variability in measurement. However, they need not be caused by errors, some are simply 

natural novelties in data. There are different types of outliers, e.g. single point outliers, 

contextual outliers and collective outliers. Outliers in n-dimensional space are referred to 

as multivariate outliers, while univariate outliers are extreme data points in the 

distribution of one variable. 

2.3.2 Isolation Forest 

An unsupervised machine learning algorithm for anomaly detection is isolation forest, 

also called iForest. It was first introduced in 2008 (Liu, Ting and Zhou, 2008), and further 

evaluated in 2012 (Liu, Ting and Zhou, 2012). Isolation forest differs from many other 

statistical-based, classification-based and clustering-based anomaly detection techniques 

in that it does not construct a profile of normal instances. Instead, it is based on the idea 

of anomalies being few and different, and thus susceptible to isolation. Liu et. al define 

the term isolation in this context as “separating an instance from the rest of the 

instances”(Liu, Ting and Zhou, 2008). Isolation forest is a tree-based ensemble method. 

Since outliers are assumed to be few and different, an inherent characteristic is that when 

a tree structure is constructed to isolate every single instance in a data set, outliers are 

closer to the root of the tree while normal observations are found at a greater depth. 

Anomalies are simply easier to isolate. See Figure 6. An anomalous instance requires 

fewer random partitions to be separated than a normal one and hence has a shorter average 

path length when building an ensemble of isolation trees, iTrees. 
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Figure 6. Isolating a normal point, xi, requires twelve random partitions (left). Isolating 

an anomalous point, x0, requires fewer random partitions, in this case four (right). 

Adapted from Liu, Ting and Zhou (2008) 

An isolation tree is defined such that a data sample 𝑋 =  {𝑥1, . . . , 𝑥𝑛} of 𝑛 instances from 

a 𝑑-variate distribution is recursively divided by selecting an attribute 𝑞 and a split value 

𝑝. The recursion progresses until 𝑖) the tree reaches a height limit, ii) |𝑋|  = 1, or iii) all 

data points in X have the same value.  Each node in an isolation tree has exactly two or 

zero child nodes. This kind of trees are referred to as proper binary trees 

Since isolation trees are proper binary trees, the path length ℎ(𝑥) of a point 𝑥 is equal to 

the number of edges 𝑥 traverses from the root node until termination at an external node. 

The average path length is calculated in the same way as for unsuccessful search in binary 

search trees (BSTs). The average path length 𝑐(𝑛) of unsuccessful search in a BST is 

given by the equation  

 c(n)  =  2H(n −  1)  − 
2(𝑛 − 1)

𝑛
, (7) 

 

where 𝐻(𝑖) is estimated by 𝑙𝑛(𝑖)  +  𝛾 , where 𝛾  is the Euler–Mascheroni constant2. The 

anomaly score, which is a rank of degree of anomaly of an instance 𝑥, is defined as  

 
  

s(x, n) =  2
− 

E(h(x))

c(n) , 
(8) 

 
2 𝛾 =  0.5772156649  

Normal Anomaly 
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where 𝐸(ℎ(𝑥)) is the average path length ℎ(𝑥) from a collection of 𝑛 instances. From 

this follows that  

• when E(h(x))−>  c(n), s −> 0.5; 

• when E(h(x))−>  0, s −>  1; 

• and when E(h(x)) −>  n −  1, s −>  0. 

This means that: 

i) if instances have an anomaly score 𝑠 close to 1, they are most definitely 

anomalies; 

ii)  if 𝑠 is much smaller than 0.5, the instances can be regarded as normal and  

iii) if 𝑠 ≈ 0.5 for all instances, there is no distinct anomaly in the sample (Liu, Ting 

and Zhou, 2008).  

A problem for many anomaly detection techniques, and machine learning models in 

general, is that they suffer from “the curse of dimensionality”. One manifestation of this 

is that since data becomes sparse in high-dimensional space, distance is no longer a 

meaningful measure. According to Liu et al., iForest is not exempted from the curse of 

dimensionality, and it is therefore recommended to select an attribute subspace to reduce 

the dimensionality before constructing iTrees. Two other common problems in anomaly 

detection is swamping and masking. Isolation forest overcomes these effects by sub-

sampling. In fact, isolation forest work best on small sample sizes. Isolation forests are 

therefore trained on sub-samples from random selection of instances without 

replacement. In the testing stage, test instances are passed through isolation trees in an 

iForest and the anomaly score 𝑠, calculated with Eq. 8, is returned as a measure of degree 

of anomaly (Liu, Ting and Zhou, 2008).  

Difficulties in earlier attempts to use supervised machine learning models on labeled 

MRIQC data to train a classifier to predict quality from MRIQC data indicate that it is 

not a simple task, and that the relationship between IQM features and actual quality is 

complex. Despite this, there is a desire among researchers to use MRIQC data to get an 

indication of the quality of the image, and above all, to identify images that are of such 

low quality that they can harm further analysis of the data. If it is assumed that 1) images 

with substandard quality are exceptions, and not the normal case; and 2) these 

abnormalities are reflected in the MRIQC IQMs, outlier detection through Isolation 

Forest appears to be a viable way to identify these anomalous data points. 
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3. Automatic Decoding of VAS Questionnaires 

In chapter 3 the methodology and results from the questionnaire decoding subtask is 

presented. Section 3.1 is a step by step description of the problems and the proposed 

solution for each problem. In section 3.2 the results are presented. 

3.1 Methodology and Data 

In this section, the methods used to decode the questionnaires are presented. The PrePain 

questionnaires that were used in practice at the start of the project were originally not 

designed for machine reading. Parts of the questionnaire design complicated the 

automatic decoding. For example, the fact that the VAS lines were dashed contributed to 

difficulties for precise line detection. Furthermore, the layout of the binary answers was 

not compatible with previous work within OMR. Due to this, the results of the first 

attempts of automatic decoding of the questionnaires did not suffice.   

In this situation, two alternatives were considered: 

1. Improve the methods. 

2. Improve the input data. 

Given that previous research have shown great performance in OMR detection of answer 

boxes, and that relatively small changes in the questionnaires  were required to adapt them 

to computer vision methods, it was decided to go for the second option; to improve the 

questionnaires. 

In addition to aiding the task of automatic decoding, as the data recording would now be 

handled automatically, a need for identifying each questionnaire with an ID emerged 

which lead to the addition of an ID field on the first page of the questionnaire. This 

broadened the scope of the project, as it required implementation of a method for 

handwritten character recognition. All changes in the layout of the questionnaire are 

described further in the following sections and summarized in Section 3.2.1. Both the first 

version of the questionnaire and our proposed design is found in Appendix A and B. 

The VASReader system follows a sequential workflow and consists of five main modules, 

see Figure 7 below. The methods are based on the existence of a reference questionnaire 

for alignment and skew correction. The empty reference questionnaire is used for all types 

of object detection. The recognition of VAS marks, checkbox marks, and handwritten 

digits, is then performed in the skew corrected filled-in questionnaires, using the 

coordinates retrieved from object detection in the reference document. In Figure 7, the 

methods that are applied to the reference document are marked by an R, and methods that 

are applied to a filled in questionnaire are marked by an Q. Each step of the VASReader 

system will be described further in the following sections.  
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Figure 7. Overview of the five sequential steps of VASReader. The main methods used 

in each step are summarized in the gray boxes. Methods applied to the reference 

document are marked with an R, while methods applied to the filled-in questionnaire 

images are marked with a Q 

3.1.1 PrePain Questionnaire Data 

When developing VASReader, 40 anonymous filled out questionnaires (first version) 

were provided by KI as example data. From these it became evident that patients do not 

necessarily fill out the VAS questions with crosses even if instructed, many different mark 

variations were observed. Furthermore, not all the filled-out questionnaires originated 

from the same original document. VAS line lengths varied a bit between different 

versions but were otherwise largely identical. 

In the second version of the questionnaire, all lines were solid and of equal length, 

checkboxes were used for binary questions, and a field for filling in a questionnaire ID 

(MRI number) was included in the top left corner of the first page. In addition to that, the 

second version was identical to the first one.  

To evaluate the performance of VASReader, 29 filled-in questionnaires of the second 

version were collected and manually measured with a ruler. It should be mentioned that 
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this test data, in contrast to the first 40 questionnaires that were provided by KI, were not 

filled in by actual study participants. The data was thus “fabricated”, but to get a variance 

in handwritings, pens used etc., a diverse group of persons were asked to fill in 

questionnaires. Some questionnaires were also on purpose filled-out in ways observed 

from the first set of data from real participants. Variations in mark shapes (circles, crosses, 

lines), different handwritings, sizes and cases of multiple answers were included.  

3.1.2 Skew Correction  

When first conceptualizing how to get a computer to find the correct elements in a 

scanned document, the decision to try to use the original document as a template was 

made. The reasoning behind this was that it would be comparably easy to test and evaluate 

different element detection methods on an empty document, and then be able to use 

information about detected elements when searching in a scanned document. However, 

to use that information the elements would have to be in the same place in the scanned 

document. As scanned documents were assumed to always have a small skew angle and 

be slightly misaligned, both these problems would have to be solved to be able to use 

information from the template. Any conventional skew correction technique would only 

solve the skew angle problem. Therefore, a feature matching and homography technique 

based on the core principles described in Section 2.2.6 was explored instead. 

OpenCV provides a tutorial to find objects in images. In the example, a specific food box 

is identified in a stack of different boxes by using a clear picture of the box design as a 

reference. This is done by using feature detection in both images, matching the features, 

and finding the homography matrix to in turn find the object location adjusted for 

perspective distortion (OpenCV, 2020d). This was used as a guideline for how to perform 

feature matching. Initially, a distorted version of the PrePain questionnaire document was 

created using Microsoft Paint. By using the code from the tutorial, many features could 

be matched between the original questionnaire and the distorted version. The detected 

features consisted mainly of edges and letter serifs. 

To correct for skew and distortion the homography matrix transformation can be applied 

to the distorted image using the OpenCV function warpPerspective() (OpenCV, 

2020e). Using this technique in conjunction with the procedure described above, the 

resulting output is an image with the following properties: 

▪ The output image is scaled to the same resolution and aspect as the original 

template image. 

▪ No skew angle is present in the output image. 

▪ All objects, such as lines as text, are aligned with the original template image with 

almost pixel-perfect precision. 

▪ Perspective distortion is eliminated, although some artefacts remain in a heavily 

distorted input image. 
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Given the previous assumption that scanned questionnaires would be misaligned and have 

a slight skew angle, this combination of properties is very advantageous as all problems 

are addressed. 

 

The OpenCV tutorial uses the patented feature detector and descriptor SIFT, which is still 

available for testing purposes (OpenCV, 2020c). A faster alternative to SIFT is ORB 

(Rublee et al., 2011), previously discussed in section 2.2.6. However, when using ORB 

with the PrePain questionnaire only a small number of features is detected by default, 

leading to an unusable result. To overcome this, the maximum number of features 

detected by ORB had to be increased to an excessive amount. Using 50 000 as the 

maximum number, the same overall result could be achieved as with SIFT. The 

performance however decreased. 

3.1.3 Line Detection 

Finding lines in the PrePain questionnaire was initially straightforward. By experimenting 

with the HoughLinesP() function in OpenCV (OpenCV, 2020c), previously described 

in Section 2.2.5, all the VAS lines could easily be detected in an empty questionnaire. 

The main issue however was that too many lines were detected. The function can be tuned 

to allow for gaps in a line (ibid.), which was necessary as the VAS lines were dotted. This 

caused another problem; text serifs would be tied together into lines where none should 

be detected. A second problem was that the square brackets indicating the endpoints of 

each line were included in the line, possibly making each line longer than intended. A 

third problem was that for each VAS line five or more lines were detected, one for each 

pixel in the line width. 

To solve the main problem with too many lines overall, predefined areas were created by 

manually zooming in on textless areas were lines should be detected. As lines were always 

appearing in the same place due to the skew correction step described above, predefined 

coordinates could be used for zooming. The third problem was subsequently solved by 

creating bins of adjacent lines and always picking the middle one out of each bin. 

The second problem proved a bigger issue. Brackets were included in most detected lines, 

but not all. Picking the middle line thus led to varying line lengths. To overcome this 

problem the brackets had to be excluded altogether. By using a kernel of some shape the 

morphological operations erode and dilate can shrink or grow elements of an image based 

on the kernel shape (OpenCV, 2020b). Eroding, and then dilating, around a horizontal 

line shaped kernel removed all vertical elements in the line areas. Removing brackets 

resulted in all detected lines in each bin being the same length. 

When tuning the line detection algorithm on filled out questionnaires it became evident 

that pencil strokes could prolong the detected line, a mark close to or at the ends of a line 

was interpreted as being part of the line. As this could impact the measurement it was 

decided that line coordinates should be obtained from the reference document, rather than 

the filled-out questionnaires. This approach relies heavily on the skew correction step 
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working properly as lines need to appear in the same pixel locations across different 

scanned questionnaires.  

3.1.4 VAS Mark Detection  

When lines have been correctly recognized, the subsequent step is to detect handmade 

marks on the VAS lines. Several factors contribute to the complexity of this task. To 

begin with, there is a great variance in how marks are made. The solution for VAS mark 

detection had to consider a number of challenges, which we first list. 

The first challenge was that some participants mark their answers by X-shaped crosses, 

others by horizontal lines or circles. Some marks even resemble the Greek letter alpha 

(deriving from making a cross without lifting the pen). The size of the marks also varies. 

Moreover, different pens and pencils are used, with different thicknesses and intensity. 

X-shaped crosses are seldom positioned with the intersection between the two “X-legs” 

exactly at the line, and thus intersects the line in two points. With this comes challenges 

such as how to distinguish a cross intersecting the line at two points from two separate 

horizontal marks.  

The second challenge that emerged was whether to record the first intersection, the 

second, the mean between the two, or the middle of the cross. It also became evident that 

many marks in the extremes of the VAS are positioned outside of the line, in the area 

between the line and the brackets. It was thus not sufficient to only search for marks on 

the line, but necessary to also be able to detect marks to the left and right of the line.  

The third challenge was how to handle multiple marks on the same VAS, which occurs 

when participants regret their first answer and instead of erasing it make a new, sometimes 

stronger, mark.  All in all, the above described challenges helped shape the requirements 

on the mark detection algorithm. The requirements specification is presented below in 

Table 2. 

Table 2. Requirements on the VAS mark detection algorithm 

The mark detection module of VASReader is expected to: 

▪ Detect marks of varying shapes and sizes 

▪ Flag when the line is ambiguously marked, e.g. if there is more than 

one mark on the line 

▪ Detect marks to the left and right of the line 

▪ If possible, detect the intersection of an X-mark even if it not placed 

exactly on the line, else, detect the first intersection with the line. 

▪ Detect if the line is unmarked. 
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To meet the challenges, the mark detection module is built as a combination of three main 

methods that, when combined, form a robust and flexible mark detection algorithm. The 

three methods complement each other as each method is specialized in handling a subset 

of the cases described above.  Furthermore, they are internally prioritized in a thought out 

way. See Figure 8. Method one, x_detect, is specialized in finding x-shaped marks. 

Method two, bracket_detect, is specialized in finding marks close to the brackets. Method 

three, mark_detect, is the most general method, detecting marks of any shape intersecting 

with the VAS line. The third method, mark_detect, also has built in functionality for 

flagging ambiguously marked lines. If none of these three methods is able to detect a 

mark, the line is flagged as unmarked.  Each method will be presented further in the 

following three sections. 

 

Figure 8. VASReader’s VAS mark detection recognition module is composed by three 

separate methods. 

3.1.5 VAS Mark Detection Method 1: x_detect 

In the case where a participant puts an x-shaped mark it proved quite common that the 

center point appeared slightly above the VAS line, while only the legs of the x-shaped 

mark touched the line. It was assumed that the center point, or internal intersection point, 

was the intended mark location in all cases. The x_detect method was devised to identify 

the center point of x-shaped marks and project it onto the VAS line. 

First, a rectangular search area around each line is defined. A line search is then performed 

with HoughLinesP(), resulting in a large collection of pixel-wide lines making up the 

x. As it is possible to fit intersecting pixel-wide lines in a single pencil stroke, lines are 

separated into two bins based on their angle sign, resulting in one bin for each leg. To 

further avoid lines stemming from the same pencil stroke being assigned to different bins, 

lines with angles close to zero or ±90 are discarded. All lines in each bin are then 

compared to all lines of the opposite bin, and intersection points are stored. Finally, the 

mean intersection point is compared with the median intersection point. If these are 

sufficiently close, the horizontal x value of the mean intersection point is chosen as the 
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mark location. If they are not sufficiently close, the mark is flagged as being ambiguous 

and no answer is given. 

In general, x_detect is very accurate for clearly written x-shaped marks. It does not 

identify marks of other shapes. However, it often identifies a mark even if it is crossed 

over, potentially giving a false positive. If a crossed over mark is replaced with a new 

mark, no answer will be given and the ambiguous flag will be set. 

3.1.6 VAS Mark Detection Method 2: bracket_detect 

Participants who want to mark an extreme value in a VAS, i.e. 0 or 100 mm, tend to place 

their mark on or near the side bracket. It is consequently necessary not only to search for 

marks on the actual line, but also to the left and right of it.  The technique used for 

detection of marks close to the brackets is very similar to the method used to classify a 

checkbox as marked or unmarked, see Section 3.1.9. Since the line coordinates are 

known, a rectangular area containing the bracket and its closest surrounding area is sliced 

from the skew corrected image to the right and left of each line. This image is inverted 

and binarized as described in Eq. 3. The resulting images are seen in Figure 9. The ratio 

between the two bracket images’ pixel sums is thereafter compared to a threshold. The 

comparison determines whether any of them is sufficiently enough stronger marked than 

the other. See Figure 10. 

  

Figure 9. A marked bracket (left) and an unmarked bracket (right) 

 

Figure 10. Two marks recognized by bracket_detect (in green) 

 

3.1.7 VAS Mark Detection Method 3: mark_detect 

The third method, mark_detect, searches for marks by finding peaks in column pixel sums 

in the areas above and. below the line respectively.  The intuition behind the method is 

that when there is a mark intersecting the line, the sum of pixel intensities above and 

below that intersection is going to be significantly higher than it is elsewhere above and 
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below the line. Figure 11 is an example of a mark, and in Figure 12, the pixel intensity 

column sums below and above the line are shown in two graphs. As can be seen, there 

are clear peaks in column sums where the line has been marked. If there are peaks both 

above and below the line, the mark’s position on the line is estimated as the mean between 

the first peak in the area above the line, and the first peak in the area below the line. In 

contrast to x_detect, this gives the position of the first intersection with the line, and not 

the intersection between the cross’ two lines in the case of an x-shaped mark. 

 

Figure 11. A mark on the line recognized by mark_detect (in red) 

 

Figure 12. Plot of column sums of pixel intensities above and below the line shown in 

Figure 11. The peaks are shown by an x 

The method also reacts on ambiguous markings, e.g when there are multiple peaks with 

a distance greater than a set threshold allowed_distance. An example can be seen in 

Figure 13 below, where the mark intersects the line in two places. The corresponding 

columns sum plots are seen in Figure 14. The peaks have a significant distance in x-

direction. It should be noted that the cross intersection of this mark is still recognized by 

x_detect, but the line is flagged as ambiguously marked by mark_detect.  

 

Figure 13. An ambiguous mark intersecting the lines in two places 
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Figure 14. Plot of column sums of pixel intensities above and below the ambiguously 

marked line shown in Figure 13 above. 

3.1.8 VAS Mark Detection Workflow 

As all methods have different characteristics, strengths, and weaknesses, a decision 

mechanism is used to decide on a final answer. First, all three methods each provide a 

mark location estimate and a flag out of three possible states: ok, no mark, or ambiguous. 

No estimate is given if no mark was found. The final mark location estimate and its flag 

are given from a priority list and a set of rules: 

▪ The final mark location estimate is given if at least one of the methods report an 

estimate with the ok flag. The final answer flag is also initially set to ok in this 

case. 

▪ Consequently, if no method provided an answer with the ok flag, the final answer 

estimate is not given, and the final answer flag is set to no mark. 

▪ Which estimate to choose, if there are more than one with the ok flag, is decided 

from the priority order: x_detect comes first, bracket_detect comes second, and 

mark_detect comes last. 

▪ If at least one answer is flagged as ambiguous, the final answer flag is changed to 

ambiguous regardless if an estimate is given. 

The reasoning behind the priority order stems from the different characteristics of the 

detection methods observed during development. In case of x-shaped or alpha shaped 

marks, x_detect generally outperforms mark_detect as the latter will always pick the first 

intersection with the VAS line, rather than the internal intersection at the center. For any 

mark shape located close to the brackets, bracket_detect correctly identifies which 

extreme to choose. For line shaped marks, mark_detect generally provides a good 

estimate. Furthermore, x_detect and bracket_detect should in theory not detect marks that 

are more accurately estimated by subsequent methods. 

Non-extreme circle shaped marks or crossed over marks replaced with a new mark of any 

shape are not well handled by any of these methods. By making use of flags, it was 

decided to still provide a guess estimate where possible. An ambiguous flag indicates that 

human interaction is required, while still not requiring manual measurement if the guess 

is sufficient. 
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3.1.9 Checkbox Detection and Checkbox Mark Recognition 

In addition to the VASs, the PrePain questionnaire contains five questions with binary 

answers (JA/NEJ), (Eng. YES/NO). One question is positioned at the top of the first page, 

and the remaining four questions are grouped together after the first VAS section. See 

Figure 15 and 16. In the first version of the questionnaire, used in practice at the start of 

this project, these were designed to be marked by being circled, see Figure 17. Initially, 

a technique for recognizing the answers from the binary questions by comparing pixel 

sums in the areas around the two answer alternatives was implemented but did not show 

satisfactory results. It became evident that there was a variance in how the answers were 

marked. Sometimes the answer was marked with a circle, sometimes with a cross, and 

sometimes by underlining. See Figure 18 for different variations. The JA and NEJ were 

placed close to each other, making it difficult in some cases to discern which one was 

marked, as circular marks could encircle one alternative and cross the other.  In addition 

to this, two of the “JA NEJ” areas were positioned with short distance in y-direction to 

each other, and marks belonging to one question sometimes overlapped the marks of the 

questions above or below. See Figure 19 for an example. 

 

Figure 15. One of the five binary questions in the first version of the main 

questionnaire. 

 

Figure 16. Four of the five binary questions in the first version of the main 

questionnaire. 

 

Figure 17. Marked answers in the first version of the main questionnaire. 
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Figure 18. Varying types of binary answer marks in the first version of the main 

questionnaire. 

 

Figure 19. Left: Marks overlapping both JA (YES), NEJ (NO) and another question’s 

answer area. Right: Both JA (YES) and NEJ (NO) are marked. 

Two alternatives were considered to handle the encountered problems described above. 

The first one being improving the computer vision method, the second one being 

altering the questionnaire to make it more compliant with machine reading.  

Thus, a new design of the binary questions that is more in line with previous work 

within OMR and mark recognition was proposed to the researchers. Using checkboxes, 

which is common practice in OMR, eased the task of decoding the binary answers, see 

Figure 20 and Figure 21. 

 

Figure 20. One of the five binary questions in the second version of the main 

questionnaire. 

 

Figure 21. Four of the five binary questions in the second version of the main 

questionnaire. 

The two possible answers JA (Eng. YES) and NEJ (Eng. NO) are mutually exclusive 

options. For example, a person either experiences pain or not, it does not experience pain 

at the same time as it does not experience pain. The answers are at least intended to be 

mutually exclusive, however in practice there exists cases when both answers are marked, 
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see Figure 19. An answer is considered marked if its checkbox is sufficiently enough 

more strongly marked than the alternative answer’s checkbox. If none of the checkboxes 

is more marked than the other, i.e if both are empty or about as much marked, the question 

is considered unanswered. 

Decoding the answers from the binary questions is therefore done by computing the ratio 

between the pixel sums of the two checkboxes and comparing this to a threshold.  The 

first step in the checkbox answer decoding is to detect the checkboxes in the reference 

document, and this is done by finding contours and approximating polylines with the 

douglas-peucker algorithm. See Figure 22. The procedure is similar to identifying digit 

boxes, described in Section 3.1.11 but with other parameters. The checkbox coordinates 

are used to slice checkbox images from the skew-corrected questionnaires, which are 

binarized before computing their pixel intensity sums. A checkbox image pair 

(𝑖𝑚𝑔𝑌𝐸𝑆, 𝑖𝑚𝑔𝑁𝑂) is considered to have been marked YES if:  

 
𝑠𝑢𝑚(𝑖𝑚𝑔𝑌𝐸𝑆)

𝑠𝑢𝑚(𝑖𝑚𝑔𝑁𝑂)
>  𝑡ℎ𝑟𝑒𝑠, (10) 

and marked NO if  

 
𝑠𝑢𝑚(𝑖𝑚𝑔𝑌𝐸𝑆)

𝑠𝑢𝑚(𝑖𝑚𝑔𝑁𝑂)
<  

1

𝑡ℎ𝑟𝑒𝑠
. (11) 

In the case  
1

𝑡ℎ𝑟𝑒𝑠
≤

𝑠𝑢𝑚(𝑖𝑚𝑔𝑌𝐸𝑆)

𝑠𝑢𝑚(𝑖𝑚𝑔𝑁𝑂)
≤ 𝑡ℎ𝑟𝑒𝑠, the question is considered unmhär säger jag 

binarized men sen säger jag no thresarked or not sufficiently distinctly marked. The above 

described method was chosen over other alternatives, e.g. pixel counting and the 

thresholding method described in Section 2.2.7, for several reasons. To begin with, it is a 

suitable method considering the questions are both binary and mutually exclusive; only 

one answer is supposed to be marked. Furthermore,  in contrast to what is the case in 

many existing OMR-techniques described in Section 2.2.7, the checkboxes cannot be 

expected to be filled in completely. There are no such instructions, and the method thus 

needs to detect vaguer marks, and marks of different shapes.. The requirement on a 

checkbox to be significantly more marked than its neighboring checkbox prevents small 

noise in the image from leading to faulty predictions. By not relying on pre-defined 

absolute pixel sum thresholds, but instead comparing pixel sum ratios between nearby 

checkboxes, slight changes in background illumination will not affect the prediction. The 

decision not to use thresholding before making the comparison, is based on the fact that 

the nearby checkboxes in each pair can be assumed to have similar brightness. As each 

checkbox images is only compared to its neighboring checkbox, partially erased answers 

are not uncorrectly predicted as marked as long as the other alternative is more strongly 

marked.  
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The above described comparisons will not suffice if either of the checkbox images have 

pixel sum zero. This is avoided by including the edges of the checkboxes in the 

comparisons. This way, it is ensured none of the pixel sums are zero. The situation where 

an unmarked box is predicted to be marked because it contains a few pixels deriving from 

noise but still has a pixel sum proportionally much greater than its unfilled neighboring 

checkbox is also avoided. 

Adjusting the threshold value affects the behaviour of the method. High thresholds 

require more distinct marks while lower thresholds pick up more faint marks. A too low 

threshold results in a higher tendency to pick up noise as marks. The empirically derived 

threshold used as default in VASReader is 1.4, meaning a checkbox must have a pixel 

sum of at least 140% of its neighbouring check box’s pixel sum in order to be classified 

as marked. See Figure 23 for an example. 

 

 

Figure 22. Checkboxes detected in the questionnaire (in blue) using contour 

approximation. 
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𝑠𝑢𝑚(𝑖𝑚𝑔𝑌𝐸𝑆)  
=  73186 

 

 

 

 
𝑠𝑢𝑚(𝑖𝑚𝑔𝑌𝐸𝑆)

𝑠𝑢𝑚(𝑖𝑚𝑔𝑁𝑂)
 

=  2.3674 
 

2.3674 > 𝑡ℎ𝑟𝑒𝑠 
= 1.4 

→ 
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑌𝐸𝑆 

according to Eq. 10  

 

 

𝑠𝑢𝑚 (𝑖𝑚𝑔 𝑁𝑂)
=  30912 

 

 

Figure 23. Example of inversion, pixel summation and pixel sum ratio calculation for a 

checkbox pair. 

3.1.10 Associating the Questionnaires with an ID 

During the project an unsolved question emerged:  how each questionnaire can be 

associated to the correct participant effectively. The question was both what kind of 

identification to use, and how to associate each questionnaire with an id and later associate 

this id with the participant in the research analysis pipeline. Due to the sensitive nature of 

the data handled in the PrePain project (e.g. personal number, genetic information), the 

participants’ personal integrity is critical. Identifying the participant by personal 

information such as social security number is not an option.    

A possible solution would be to associate each questionnaire with the unique five-digit 

MRI number which is retrieved from each unique MRI scanning session. This would not 

reveal any personal information and could later in the data analysis pipeline be connected 

to the correct participant by the researchers.   

The natural following question was then how this MRI number would be linked to each 

questionnaire. Alternatives considered were e.g. if the responsible researcher could 

somehow include this ID in the questionnaire scanning process, e.g. by naming the pdf 

file, or if the number could be written on the questionnaire and recognized by computer 

vision. To write the MRI number by hand on the questionnaire was considered the 

preferred option by the researchers, leading to the least extra-work.  The idea was for this 

number to be read automatically with ICR. Thus, a new task within the framework of the 

project became to investigate whether handwritten digits could be reliably recognized and 

imgYES 

 

imgNO 
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used to identify each questionnaire. The fact that the MRI number would be filled in by 

the responsible researcher and not the study participant was thought to facilitate the 

recognition task, considering the researcher would be aware of the fact that the digits 

would then be machine read. As mentioned by Loke et. al., whether or not the respondent 

is trained or untrained is one of the factors affecting the difficulty of an OMR-, OCR-, or 

ICR-task (Loke, Kasmiran and Haron, 2018).  

Consequently, a field with five squares intended to contain a digit each was added in the 

top left corner of the questionnaires’ first page, see Figure 24 and Figure 25. The digit 

squares were complemented with a short instruction to the participant not to fill in the 

field. In order to distinguish the MRI number field from the parts of the questionnaire 

which the participants are supposed to fill in, the MRI-number field was given a light 

gray background. Luckily, handwritten digit recognition is a well-studied subject, and 

there already exists a publicly accessible large database with handwritten digits, the 

MNIST database. 

 

Figure 24. Field for filling in MRI-number in the top-left corner of the questionnaire’s 

first page 

 

Figure 25. Example of a filled-in MRI number in a scanned questionnaire 

3.1.11 MRI Number Recognition 

The method for recognizing the MRI-number we propose is to train a convolutional neural 

network on the images in the MNIST database and use it to predict each digit in the MRI 

number. 

The MNIST database, (Modified National Institute of Standards and Technology 

database) is a widely used large database containing handwritten digits. The MNIST 

database is freely available and has a training set of 60,000 images and a test set of 10,000 

images (Lecun et al., 1998). It is commonly used to assess the relative performance 

achieved by different machine learning algorithms and preprocessing techniques. (Deng, 

2012) 
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Each MNIST example is a 28×28 grayscale image in which the digit is size-normalized 

to fit within an inner 20×20 pixel box. The inner 20×20 pixel box containing the digit is 

centered in the larger 28×28 image by its pixel mass center (Lecun et al., 1998).  

As previously described, the images in the MNIST database have been pre-processed to 

a very specific format, and for a MNIST-trained CNN to be able to predict new data 

successfully, the new data should conform to the MNIST image format. One could of 

course think of alternatives to this approach, such as augmenting training data to an extent 

so that the model generalizes better to different data formats. As the pre-processing of 

MNIST images is well-described, the first approach was selected, i.e. “MNISTifying” the 

MRI digit box images before predicting the digit in the image with a MNIST-trained 

CNN.  

 

 
 

Figure 26. MRI number recognition workflow 

 

The first step in recognizing the MRI number is to detect the MRI digit boxes in the 

reference questionnaire and extract the coordinates of these boxes, sorted from left to 

right. This is done through contour approximation, described in Section 2.2.8, 

implemented with the OpenCV functions findContours() and approxPolyDP() 

on the binarized grayscale reference image. To avoid detecting the binary question 

checkboxes or any other unwanted shapes, a minimum and maximum area is set for the 

contours retrieved from findCountors(), see Figure 27. A list of digit box 

coordinates (𝑦_𝑠𝑡𝑎𝑟𝑡, 𝑦_𝑒𝑛𝑑, 𝑥_𝑠𝑡𝑎𝑟𝑡, 𝑥_𝑒𝑛𝑑) sorted from left to right is returned. 

 

 

Figure 27. Digit boxes detected (in blue) in reference questionnaire 

The digit box coordinates are used to slice five digit box images from each skew-corrected 

questionnaire. Each grayscale digit box image is preprocessed according to a six-step 

procedure. The preprocessing procedure is constructed based on the description of 

MNIST images provided by Yann LeCun, Corinna Cortes and Chris Burges (MNIST 

1. Digit box 
recognition

Shape detection 
& contour 

approximation

2. Digit image 
preprocessing

MNISTification

3. Digit 
prediction

CNN trained on 
the MNIST 

dataset
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handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges, no date). As 

the goal is to make the image conform to MNIST format, the process can be called 

“MNISTification”. Figure 28 illustrates the output of each step with an example image. 

Each digit box image is: 

1. Inverted and binarized 

2. Cropped slightly to remove possible edges remaining from rectangle sides 

3. Cropped to only contain digit 

4. Resized so digit fits in inner 20×20 box while aspect ratio is kept. 

5. Padded with black pixels 

6. Shifted so that center of mass is centered in the outer 28×28 box. 

In step 1 the image is inverted and binarized using simple thresholding. As can be seen 

in Figure 28 a) and b), some pixels from the digit box’s sides remain in the sliced image. 

To remove these, the image sides are slightly cropped (see Figure 28 step 2). The crop 

ratio is chosen sufficiently small to avoid losing any pixels belonging to the digit. The 

image is then cropped again, by removing all completely black rows and columns 

surrounding the digit, see step 3 in Figure 28. Left is only the digit without any padding, 

and this is resized to fit in a 20×20 square, while keeping the aspect ratio, see step 4 in 

Figure 28. The digit is then padded with black pixels to obtain an image size of 28×28, 

see step 5 in Figure 28. Finally, the center of mass of the image is calculated and the 

image is shifted to center this in the bounding 28×28 image. The shift is implemented as 

an affine transformation which is a linear transformation followed by a vector addition,  

 𝑇 = 𝐴 ∙ [
𝑥
𝑦]+ 𝐵, or 𝑇 = 𝑀 ∙  [𝑥 𝑦 1]𝑇 , (12) 

with the affine matrix  𝑀 = [
1 0 𝑠𝑥

0 1 𝑠𝑦
], where 𝑠𝑥 denotes the shift in x and 𝑠𝑦 the shift 

in y. 𝑋 = [
𝑥
𝑦] is the vector representation of the 2D image to translate.  

The shift is barely seen in the specific example in Figure 28, step 6. A more visible shift 

can be seen in Figure 29, in which the digit’s position is shifted downwards.  

The label, i.e. digit value, of the MNISTified digit box image is predicted by feeding it to 

a convolutional neural network.  

The network is a sequential combination of convolutional layers, max-pooling layers, and 

dense layers.  The network architecture is illustrated in Figure 76 in Appendix F. The 

CNN was trained on the previously described MNIST data set, containing 60 000 training 

images and 10 000 test images. Analysis of the training- and validation loss and accuracy 

as a function of epochs have been used to select an appropriate number of epochs, that 

gives high accuracy without overtraining the model. An accuracy of 99.41 is at best 

obtained by this CNN.   
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a) 

1.Binarization and inversion 

 

 

 

 

b) 

  2.White edge removal 

 

d) 

 

 

 

3. Padding removal 

 

 

 

 

c) 

4. Resizing to fit in 20×20   

 

e) 

 

 

5. Pad with black pixels to obtain 

28×28 image 

 

 
f) 

 

 

g) 

 

 

 

 

 

6.Mass center shift 

 

Figure 28. Pre-processing of digit box images 
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Figure 29.  Step 6. The digit’s position is shifted downwards so that the center of mass 

of pixels is positioned in the center of the 28×28 image 

3.1.12 Report Generation for Manual Evaluation 

To be able to visually validate the questionnaire decoding system’s outputted results, a 

visual report is created for each questionnaire, clearly showing the predictions that the 

system has made. The cost of faulty measurements and predictions is that incorrect data 

is saved and used for further analysis. A way of reducing this risk is to demand manual 

inspection of visual reports before data is saved. Compared to complete manual 

transcription, this method decreases the researchers’ mental workload, as they in most 

cases only need to accept the output of the computer vision tool. However efficient and 

flexible the system can be made, there are cases when a computer cannot correctly decode 

handwritten marks. This is especially the case when a line is marked several times or 

when marks are crossed over. In some of these cases, a human is able to interpret 

ambiguous or multiple marks. In other cases, it is difficult for a human too to make a 

measurement. See Figure 30 for an example of a VAS where it is difficult for a computer 

and/or human to record marks. Lines with ambiguous marks are flagged. If the VAS mark 

detection module manages to identify a mark, it is still proposed as a suggestion to the 

human operator. The visual inspection helps increasing the situation awareness and 

decrease the risk of erroneous measurements going under the radar.  

 

Figure 30. An example of an ambiguously marked line which is difficult both for a 

human and a computer to interpret. This kind of line will be flagged as ambiguously 

marked.  
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3.1.13 Evaluation Metrics 

A set of evaluation metrics has been used to evaluate the performance of the developed 

system. The task of decoding the questionnaires can in turn be decomposed into several 

smaller and evaluable subtasks. These are depicted in Figure 31 below. The VAS mark 

flagging, binary question answer marks, and MRI number identifications are classical 

classification tasks and will be evaluated with conventional metrics, see Table 3 and 

Figure 32. The VAS measurement is evaluated by comparing the measurements to 

human-recorded results (using a ruler). For each mark that is recorded by both the system 

and the human, i.e. each true positive, the difference between the automated computer 

vision system’s output and the manually measured mark is calculated. 

 

Figure 31. Decomposed evaluable subtasks within the project’s first task 
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Figure 32. Confusion Matrix 

Automatic 
Questionnaire 

Decoding

VAS

VAS mark 
position 

prediction

VAS mark 
flagging

Binary 
Questions

Checkbox mark 
recognition

MRI Number

Digit 
classification

MRI number 
prediction



43 
 

Table 3. Evaluation Metrics for Classification 

Metric Formula Interpretation 

Accuracy 
𝑡𝑝 + 𝑡𝑛 

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Proportion of all 

predictions that are 

correct. 

Sensitivity 

(recall) 

𝑡𝑝 

𝑡𝑝 + 𝑓𝑛
 

 

Proportion of actual 

positive class 

correctly predicted. 

Specificity 
𝑡𝑛 

𝑡𝑛 + 𝑓𝑝
 

Proportion of actual 

negative class 

correctly predicted. 

Precision 
𝑡𝑝 

𝑡𝑝 + 𝑓𝑝
 

Proportion of 

positive predictions 

actually positive 

F1-score 

2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

The harmonic mean 

of the precision and 

recall.  

 

 

Table 4. Evaluation Metrics for VAS Measurement Prediction 

Metric Formula Interpretation 

Mean absolute 

error 

MAE 

∑ |𝑦�̂� − 𝑦𝑖| 𝑛
𝑖=1

𝑛
 

Average difference 

between 

VASReader’s 

prediction and 

human’s 

measurement 

Root mean 

squared error 

RMS 

√
∑ (𝑦�̂� − 𝑦𝑖)2 𝑛

𝑖=1

𝑛
 

 

Penalizes large errors 

Max absolute 

error 
max (|𝑦1̂ − 𝑦1| , … , |𝑦�̂� − 𝑦𝑖|) The greatest error. 
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3.2 Results 

In this section, the results related to the questionnaire decoding task are presented.  In 

section 3.2.1, the resulting system is described along with a description of the changes 

made to the questionnaires along the course of the project. This is followed by more 

detailed descriptions of the results of each addressed subtask in section 3.2.2 -3.2.6. 

3.2.1 VASReader 

The result of the implementation of above described methods is a computer vision system 

we call VASReader. It is a tool specifically developed to decode VAS questionnaires. In 

this section, examples from resulting visual reports are shown, which clarify the behavior, 

capabilities, and weaknesses of VASReader. The evaluation metrics for each individual 

evaluable subtask are also reported.  The results show that it is possible to automatically 

decode VAS questionnaires– if the design of the questionnaire allows it, and if an 

appropriate level of automation is selected. Full automation is in this case, and in many 

other cases, not the appropriate solution when taking into account human performance 

consequences and automation reliability and costs of decision and action consequences.  

The full list of changes in the questionnaires are  

▪ Using solid lines instead of dashed, to ease line detection. 

▪ Using checkboxes for binary questions instead of answer alternatives intended to 

be encircled. 

▪ Adding an ID field in the top left corner to enable associating the questionnaire to 

the correct participant. 

 

Albeit the changes in the questionnaire design are small, they facilitate the automatic 

decoding significantly. See Appendix A and B to view changes. 

3.2.2 Reports Generated for Manual Evaluation 

An example report from VASReader is seen in Figure 33. VASReader results are painted 

or written on the image in colors.  

To show which mark detection technique has been used, the three methods described in 

Section 3.1.5, 3.1.6 and 3.1.7 are color coded in the report. VAS marks detected the first 

method – x_detect, are shown in red, marks detected by the second method –

bracket_detect, are shown in green, and marks detected by the third method – mark_detect 

are shown in blue. Identified lines are colored yellow. See Figure 34. Each mark is flagged 

as OK, NO_MARK or AMBIGUOUS_MARK. Ambiguously marked flag can still 

include a “best guess”, if an x-shaped mark or bracket mark is detected. See Figure 35. 

Unmarked lines are flagged with NO_MARK, see Figure 36. Binary question answers 

are shown in text next to the checkboxes, see Figure 37. Predicted MRI digits are printed 

below the MRI number field, see Figure 38. 
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Figure 33. Example of a report from VASReader 

 

 

 

 

Figure 34. Marks detected by “mark_detect” in blue, by “x_detect” in red, and by 

“bracket_detect” in green. 

 

 

Figure 35. Example of a line that is flagged as ambiguously marked. As “x_detect” still 

detected an x-shaped mark on the line, it is given as a suggestion 

 

 

Figure 36. Example of a line flagged as unmarked. 



46 
 

 

 

 

Figure 37. Recognized binary question answers are printed in green next to the 

checkboxes. 

 

  

Figure 38. Predicted MRI digits are printed below the MRI number field. 

3.2.3 Skew Correction 

In Figure 39, the result of the implemented skew correction method is illustrated. The left 

image has a visible skew angle deriving from misalignment in the scanning procedure. 

Note e.g. how the lines are not horizontal.  The right image shows the image after the 

homography matrix transformation described in Section 3.1.2. The result is a skew 

corrected image in which all shapes are aligned with the reference questionnaire (found 

in Appendix B.1). The full generated visual report for this specific questionnaire is shown 

in Figure 40, and as can be seen, all measurements and predictions are accurate despite 

the apparent skew angle in the input image. 
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Figure 39. Result of skew angle correction from feature matching and homography 

matrix transformation technique. Left: original input image with an apparent skew 

angle. Right: image after skew correction. Note specifically the angle of the VAS lines. 

 

Figure 40. Visual report of questionnaire in which a significant skew angle was present 

in the input image. Due to successful skew correction, all elements are correctly 

identified and “VASReader” predictions are accurate. 
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3.2.4 VAS Mark Detection and Prediction 

VASReader detects mark with an accuracy of 98%, when compared to manual 

measurements. As can be seen in the confusion matrices in Figure 42, and the evaluation 

metrics in Table 5 and 6, VASReader is able detect and measure 661 out of the 672 marks 

with a mean absolute error of 0.30 mm. The maximum absolute error is 2.90 mm, and 

that specific case can be seen in Figure 41 below. The difference can be explained by the 

fact that VASReader has detected the first intersection between the line and the mark, 

while the human has measured the intersection between the x’s two legs.   

 

Figure 41. VAS mark with maximum difference between VAS-Reader prediction and 

human measurement (2.90 mm) 

 

 

Figure 42. Confusion matrix of VAS mark flags 

 

Table 5. VAS Mark Detection Evaluation Metrics   

 Precision Recall F1-score support 

MARK 0.99 0.98 0.99 384 

NO MARK/  

AMBIG. MARK 
0.92 0.98 0.95 109 

Accuracy   0.98 493 
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Table 6. VAS Measurement Evaluation Metrics for True Positives  

Metric Result 

Mean absolute 

error 

MAE 

0.30 (mm) 

MAE standard 

deviation 
0.41 (mm) 

Root mean 

squared error 

RMS 

1.78 (mm) 

Max absolute 

error 
2.90 (mm) 

 

3.2.5 Binary Questions 

VASReader predicts binary question answers with an accuracy of 97%, see Table 7. 

Confusion matrices are found in Figure 43. The F1 scores of labels YES and NO is 0.99 

and 0.98 respectively. However the F1 score of NO ANSWER is much lower, only 0.6. 

This is mainly explained by the class’ low support, only four unanswered questions 

existed in the dataset, and out of these, one was missclassified. A total of 145 questions 

were included in the test data.  

 

Figure 43. Confusion matrix recognition of binary question answers. Normalized values 

to the right 
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Tab1e 7. Evaluation Metrics for classification of binary question answers 

 Precision Recall F1-score Support 

NO ANSWER 0.5 0.75 0.6 4 

YES (JA) 0.99 1.0 0.99 69 

NO (NEJ) 1.0 0.96 0.98 72 

Accuracy   0.97 145 

 

3.2.6 MRI Number Recognition 

The MRI digit prediction an accuracy of 97%. Although this is an ok accuracy, the fact 

that each MRI number contains five digits, results in an MRI number prediction accuracy 

of 0.97^5 = 0.86. This is not sufficient for reliable automation, and until the 

performance is increased, it is of extra importance possible misclassifications are 

corrected when visually inspecting the VASReader report. Luckily, this is not a difficult 

or time-consuming task for the researchers. The test data included a total of 145 digits, 

and more data would be needed to evaluate the performance. From the confusion matrices 

in Figure 44, it is evident that nines and twos, threes and fives, and threes and twos are 

most difficult to distinguish from each other. The precision, recall, F1-score and support 

for each class (digit) is seen in Table 8. 

Inspection of the misclassified digits show two causes of misclassification.  To begin 

with, a portion of the misclassified digits are misclassified simply because their shape 

resembles the shape of another digit, and the CNN is thus unable to correctly classify the 

digit, see Figure 45 a) and c). However, a more common source of misclassification is 

that the digit is not completely contained within the digit box. If parts of the handwritten 

digit are outside the box or on the border of the box, this information is lost when cropping 

out the digit box image. This is the case in Figure 45 b) and d), and the images fed to the 

predictor thus lacks the bottom lines of the digits and are hence misclassified.  
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Figure 44. Confusion matrix for handwritten digit recognition with a MNIST-trained 

CNN. Normalized values to the right 

 

Tab1e 8. Evaluation Metrics for classification of handwritten digits Accuracy 

highlighted in green 

 Precision Recall F1-score Support 

0 1.0 1.0 1.0 5 

1 1.0 1.0 1.0 26 

2 0.94 0.88 0.91 17 

3 0.96 0.92 0.94 25 

4 1.0 1.0 1.0 11 

5 0.94 0.94 0.94 16 

6 1.0 1.0 1.0 6 

7 1.0 1.0 1.0 14 

8 1.0 1.0 1.9 11 

9 0.88 1.0 0.93 14 

Accuracy   0.97 145 
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a) 

 

b)  

 

 

c)  

 

 

d)  

 

Figure 45.  Misclassified digits in red rectangles. a) and c) are misclassified because 

their shapes resemble the shape of another digit class. b) and d) are misclassified 

because they are not completely contained within the box, and the bottom parts of the 

digits are thus not included in the image fed to the CNN. 
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4. MRIQC Anomaly detection 

In this chapter, the methodology and data related to the task of identifying anomalies in 

MRI data is presented. The MRIQC data is described in section 4.1.1. This is followed 

by a description of how the anomaly detection technique Isolation Forest is implemented 

and evaluated in section 4.1.2  - 4.1.4. The obtained results are presented in section 4.2. 

4.1 Methodology and Data 

In this section, a more thorough description of the MRIQC data is given, followed by a 

description of the implementation of Isolation Forest on said data.  The anomaly detection 

method chosen to be explored, Isolation Forest, is only one of many outlier detection 

techniques. This is thus not a thorough comparison of performances of different outlier 

detection techniques, but rather an attempt to make a small contribution to the work of 

automating quality assessment of MRI images, with the hope of being able to contribute 

with some insights about MRIQC data and its outliers. Isolation Forest is however not 

chosen at random; the methodology selection follows from an explorative data analysis 

of MRIQC data.  An understanding of the dataset, its features and distributions, is the 

basis of this choice, together with factors such as a favorable time efficiency.  One 

advantage with iForest is that it does not require an assumption of the data being normally 

distributed, which we shall see is not always the case. 

As mentioned in Section 2.3, there are different types of MRI data. T1 and T2 are 

structural images, BOLD images are functional. Due to this, they have different IQMs. 

The IQM features for T1 data are presented in Table 13 in Appendix C, and the IQM 

features for BOLD data are presented in Table 14 in Appendix D. The researchers at the 

Pain Neuroimaging Lab at KI are interested in applying outlier detection to BOLD and 

T1 images, as these are the ones that they use in their analysis. It is primarily the 

functional BOLD images that are important to analyze in this project, as they are utilized 

for functional brain activity analysis. The T1 images are first and foremost used as a 

complement to the functional data for the initial planned analyses, e.g. for registration 

(alignment) of the fMRI data. Although it is possible to use structural data in standalone 

analyses to study variables such as cortical thickness or folding, such studies are not 

currently planned within PrePain.  

4.1.1 MRIQC Data 

A snapshot of the database (‘MRIQC WebAPI - Database snapshot’, 2019) has been used 

to gain insights about the data and to apply the anomaly detection method. The database 

snapshot is associated to the article Crowdsourced MRI quality metrics and expert quality 

annotations for training of humans and machines (Esteban et al., 2018). In addition to, 

for instance, one dataset with curated T1 records and one with curated BOLD records, 

there is also one dataset containing ratings. This will be discussed further soon. Besides 

the IQM metric columns shown in Table 13 and 14 in Appendix A and B, there are also 
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several features containing meta information. As previous research have shown “site-

effects”, i.e. that IQMs are highly affected by the scanning site they originate from, two 

of these meta features are regarded as specifically interesting two explore, namely the 

scanning institution the record comes from, and the machine model that has been used for 

the scan. Furthermore, the MR Research center at KI uses a 3 Tesla scanner3, and as 

different magnetic field strengths could possibly affect the IQMs, another meta feature of 

interest is the MRI machine’s magnetic field strength. The meta features chosen to keep 

for further analysis are shown in Table 9. The remaining meta features’ impact on IQMs 

and anomaly score is not analyzed in this project. 

Table 9. Selected Meta Data Features  

Feature 
Data 

type 
Interpretation 

bids_meta.MagneticFieldStrength float64 
Magnetic field strength of MRI 

machine (Tesla) 

bids_meta.ManufacturersModelName string 
Manufacturer’s model name of 

MRI equipment.  

bids_meta.InstitutionName string Scanning site 

 

A researcher that runs MRIQC and obtains reports of image data is given the possibility 

to rate the image quality. If a researcher rates an image, the rating is uploaded to the 

MRIQC WebAPI along with the anonymized IQMs. Possible ratings are: 

1. Exclude 

2. Poor 

3. Acceptable 

4. Excellent 

 

The rating also includes an explanatory comment. Some examples are ‘head motion’, 

‘Very low SNR’, or ‘motion artifacts in dorsal (check coronal view)’.  

 

Although this initially seemed promising for a supervised learning approach, it turned out 

that most records in the datasets do not have any ratings, and, that there only existed 

ratings for T1 images, and none for BOLD.  

 

After removing duplicate entries and data points with missing IQM metric values, the 

cleaned BOLD dataset has 62473 rows, and the cleaned T1 data set has 50883 rows. The 

cleaned rating data set has 1058 rows. When joining the ratings table with the T1 and 

BOLD datasets respectively4 , it became evident that out of the 50883 TI data points, only 

430 had ratings. None of the BOLD records were associated to a rating. The distribution 

 
3 GE 750 Discovery 
4 On the unique identifier md5sum 
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of the rated T1 images is shown in Figure 46. As can be seen, the majority of the images 

with a rating were rated as “poor” or “exclude”, implying that MRIQC users prioritize to 

rate low quality images. The distribution of ratings is unlikely to be representative of the 

distribution of image quality in all T1 data points, considering only 0.85% of all T1 

records had ratings. The fact that most datapoints were not associated to a rating lead to 

the decision of exploring an unsupervised learning technique for anomaly detection. 

 

Figure 46. Distribution of ratings in rated T1 data. Only 0.85 of all T1 datapoints are 

associated to a rating, and out of them, the majority have ratings 1 (=Exclude) or 2 

(=Poor) 

To get a better understanding of the data and to be able to interpret the results, the MRIQC 

anomaly detection process starts with an exploratory data analysis (EDA), introduced by 

Tukey (1977). This is followed by an implementation of isolation forest on TI and BOLD 

data from the MRIQC database. The trained model is also used to retrieve anomaly scores 

for a small set of TI and BOLD data from KI of healthy subjects (N=44). The results are 

visualized and further analyzed through plots, mainly using t-distributed stochastic 

neighbor embedding (t-SNE). As MRIQC data previously have shown clear site-effects, 

the relation between anomaly score, scanning site, and machine model is investigated 

through t-SNE plots.  Not all records contain meta information. For this reason, only the 

subsets of T1 and BOLD datasets containing meta information are used in some 

visualizations. A subset of the T1 dataset that comes from MRI scanners with magnetic 

field strength of 3 Tesla is used for training the iForest on T1 data. The reason behind this 

is that the EDA showed a systematic difference in IQMs from machines of different Tesla 

values. The distribution of magnetic field strength can be seen in Figure 47 below, and 

boxplots grouped by magnetic field strengths in Figure 48 show an example of how a 

feature value differ between these. All datasets that have been used for analysis are seen 

in Table 10 and Table 11 below. 
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Figure 47. Distribution of Magnetic Field Strength in T1 data 

 

 

Figure 48. Boxplot of ‘tpm_overlap_csf’ in T1 data, grouped by magnetic field strength 

(Tesla) show a systematic difference between machines of different magnetic field 

strengths.  
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Table 10. Datasets containing BOLD data  

Dataset  Size Usage 

MRIQC Database snapshot of BOLD 62473 

EDA  

+  

Train Isolation Forest  

Subset of MRIQC Database snapshot 

of BOLD containing meta features  
12456 

Visualize results and investigate 

relationship with meta features 

BOLD data from KI 44 
Test iForest’s predictions of KI 

data 

 

Table 11. Datasets containing T1 data  

Dataset  Size Usage 

MRIQC Database snapshot of T1   50883 EDA 

Subset of MRIQC Database snapshot 

of T1 from 3 Tesla machines  

(containing meta features) 

21572 

Train Isolation Forest 

 + 

 Visualize results and investigate 

relationship with meta features 

 

 T1 data from KI 
44 Test iForest’s predictions of KI data 

 

4.1.2 Standard and Altered Implementation of iForest 

In addition to the standard implementation of iForest, a slightly altered version of iForest 

is explored. The IQM features differ from each other in that some are wanted high, others 

low, and still others should move within a normative range. For example, high values are 

better for snr, which stands for signal-to-noise ratio, low values are better for qi_1 (AFNIs 

quality index), while ICV (intracranial volume) values should move in a normative range. 

See Table 13 and 14 in Appendix C and D. Since iForest does not give any information 

of in which way the point is anomalous, an unusually artifact-free and noise-free record 

is probable to get a higher anomaly score than a medium quality image, simply because 

it is anomalously good. One way to handle the problem of not being able to determine 

whether a data point retrieves a high anomaly score because it is unusually good or 

unusually bad, is to only let attribute values that lie on the undesirable side of the median 

of that attribute contribute to the anomaly score. This gives an anomaly score that 

correlates positively with values that are wanted low, and negatively with values that are 

wanted high. No tweaking of the scoring is done for attributes that should move within a 

normative range. The constraint is then that any given directed attribute q only contributes 

to increase the total averaged anomaly score if it a) is susceptible to isolation; and b) has 

a value worse than average.  
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This approach is hereafter referred to as “altered iForest”. Shortcomings of this altered 

version of iForest are discussed in Section 5.2. 

iForest is implemented using the python machine leraning library scikit-learn, (short 

sklearn). It should be noted that in sklearn’s implementation of Isolation Forest, anomaly 

scores are in range [-0.5, 0.5 instead of  [0, 1] as proposed by Liu, Ting and Zhou (2008). 

The translation between the anomaly score 𝑠 as defined by Liu et al. (described in Section 

2.3.2) and the anomaly score as defined by sklearn is simply: 

  anomaly_score𝑠𝑘𝑙𝑒𝑎𝑟𝑛 = 0.5 − 𝑠 

Sklearn’s version will hereafter be used. Data points with an anomaly score less than 0 

are regarded as anomalous. As opposed to the in original definition, anomalous points get 

lower scores, while normal points get higher scores 

4.1.3 Feature Selection 

Some of the IQM features for both BOLD and T1 are highly correlated, and likely to be 

linearly dependent on other variables. See correlation matrix for T1 data in Figure 49, and 

correlation matrix for BOLD data in Figure 51. Features with high positive or negative 

correlation are depicted as red and blue areas in the correlation matrix. Not surprisingly, 

features linked to the same measurement such as fwhm_x, fwhm_y, fwhm_x, and 

fwhm_avg are highly correlated.  This accounts for the summary statistics as well, for 

example summary_bg_mean and summary_bg_median are highly correlated. Correlated 

features can affect the result of iForest. To begin with, it leads to an unnecessary high 

number of features, and iForest works best on a subset of the feature space. Secondly, 

having many correlated features can cause the anomaly score to be more based on these, 

as they together have a higher probability to be randomly selected as an attribute q in the 

training phase. See Section 2.3.2 and specifically the definition of iTrees. For this reason, 

highly correlated features are removed before fitting an Isolation Forest on the data. The 

resulting correlation matrix for selected features in T1 data is seen in Figure 50, and the 

resulting correlation matrix for BOLD features is seen in Figure 52. A full list of the 

selected BOLD and T1 features is found in Table 13 in Appendix E. 

4.1.4 Evaluating iForest’s Performance on MRIQC Data 

The evaluation of an unsupervised anomaly detection technique is not as straightforward 

as the evaluation of questionnaire decoding. Evaluating the MRIQC anomaly detection is 

more difficult, as it is unsupervised, and there exists no “true” answer. For this reason, 

focus will be on exploring the data through visualization techniques and understanding 

the behavior of the implemented Isolation Forest. The trained machine learning model is 

also used to predict a relatively small MRIQC data set from the Pain Neuroimaging Lab 

at Karolinska Institutet, to see how it performs on KI data.  
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Figure 49. Correlation matrix (Spearman’s rank correlation) for IQM features in T1 

data.  

 

Figure 50. Correlation matrix (Spearman’s rank correlation) for IQM features in T1 

data after removing highly correlated (ρ>0.7) features  
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Figure 51. Correlation matrix (Spearman’s rank correlation) for IQM features in 

BOLD data.  

 

Figure 52. Correlation matrix (Spearman’s rank correlation) for IQM features in 

BOLD data after removing highly correlated (ρ>0.7) features) 
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4.2 Results 

The results of the exploratory data analysis and the anomaly scores obtained using iForest 

are presented in the following sections.  

4.2.1 Exploratory Data Analysis 

EDA is an exploratory process meant to aid understanding, interpretation and analysis of 

data. An initial EDA provides a basis for appropriate selection of data and methods, as 

well as appropriate interpretation of the results. 

Figure 53 shows the distribution of machine models, and as can be seen, most of the 

BOLD data originate from scans performed in Prisma and Tim Trio MRI scanners. The 

distribution for T1 data is seen in Figure 54. Notable is that Tim Trio is used in majority 

of the T1 data. The top five contributing institutions to BOLD data are National Institute 

on Drug Abuse (NIDA), National Institute of Health (NIH_FMRI), The university of 

Texas at Austin Imaging Research Center, McGovern institute for Brain Research and 

The Stanford Center for Cognitive and Neurobiological Imaging (CNI). T1 data comes 

from an even greater variation of sites. As Esteban et al. (2017, 2018) have already shown, 

the data is structured, or naturally clustered around, its site of origin. It is also dependent 

on the machine used. Figure 55, which shows the density plot of the BOLD feature snr 

(signal-to-noise-ratio) illustrates this. It is also evident that the attribute values cannot be 

assumed to be normally distributed, which emphasizes that iForest is a suitable method 

as it does not build on an assumption of normal distribution. Pairwise plots of the first 

four principal components of T1 and BOLD data respectively, colored by machine model 

are shown in Figure 56 and Figure 57. Colored clusters indicate that the data is naturally 

clustered by the machine model and institution. This is further strengthened by the 

boxplots shown in Figure 58, in which it is possible to see clear inter-machine differences 

in two exemplifying T1 features. This indicates that there is a possibility anomaly scores 

retrieved from MRIQC data can be systematically affected by the scanning site and 

machine. This hypothesis will be further explored in Section 4.2.4.  
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Figure 53. Distribution of machine models in BOLD data.  

 

Figure 54. Distribution of machine models in T1 data 
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Figure 55. Stacked density plot of feature “snr” (signal-to-noise-ratio) in BOLD data. 

Colored by Machine model. It is clear that the signal-to-noise-ratio is not normal 

distributed, and highly affected by machine model 
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Figure 56. Pairwise plots of 4 principal components in BOLD data (selected features). 

Colored by Machine Model. Legend is not included due to its size.  
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Figure 57. Pairwise plots of 4 principal components in T1 data (selected features) 

Colored by machine model. Legend is not included due to its size. 
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Figure 58. Boxplots of T1 data features “wm2max” (up) and “snr_gm” (below), 

grouped by machine model 
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4.2.2 Anomaly Scores Reflect the Underlying Distribution 

To understand the behavior of iForest, it is helpful to start off by analyzing not the total 

averaged anomaly score, but how the scores behave for each feature. The total score is, 

as described in Section 2.3.2, the average of the scores obtained from fitting a number of 

iTrees to randomly sampled features.  

Although Isolation Forest, unlike some other anomaly detection techniques, is non-

parametric (i.e. does not require any assumption of the underlying distribution of the 

data), the anomaly score reflects the shape of the underlying distribution. Outlier regions 

correspond to low probability areas. Figure 59 below shows the distribution of efc 

(entropy-focus-criterion) in BOLD data., The blue bins at the tales of the distribution 

contain datapoints that are classified as anomalous for this specific attribute. The Figure 

below, Figure 60, show the anomaly score as a function of efc values, and it is clear that 

the score reflects the distribution of the data points seen in the Figure 59. Another 

example, with the feature fd_num (framewise displacement) which is not normally 

distributed, is seen in Figure 61 and Figure 62. The fact that high anomaly scores reflect 

low-probability values is clear here too. Entropy-focus-criterion is an example of a 

directed feature, where values are wanted high. As can be seen in Figure 59, both values 

less than 0.4 and values higher than 0.6 are scored lower than 0.5, i.e. will contribute to a 

decrease in the total anomaly score. In the altered version of iForest, only the anomalously 

bad valued data points are scored high. A comparison between the behavior of the 

standard implementation of iForest and the altered version of iForest is shown in Figure 

63 and Figure 64. 
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Figure 59. Histogram of attribute “efc” (entropy-focus-criterion) distribution in BOLD 

data. Blue bins contain datapoints classified as outliers, orange bins contain normal 

datapoints (Note: The anomaly score this specific attribute contributes with, not the 

average anomaly score) 

  

Figure 60. Anomaly score as a function of ‘fd_num’ (framewise displacement) attribute 

in BOLD data. The darker the point, the higher the anomaly score. The anomaly score 

reflects the distribution in the underlying data, see Figure 60 above. (Note: The 

anomaly score this specific attribute contributes with, not the average anomaly score) 
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Figure 61. Histogram of attribute “fd_num” (framewise-displacement) distribution in 

BOLD data. Blue bins contain datapoints classified as outliers, orange bins contain 

normal datapoints (Note: The anomaly score this specific attribute contributes with, not 

the average anomaly score) 

 

Figure 62. Anomaly score as a function of “fd_num” (framewise displacement) 

attribute in BOLD data. The darker the point, the higher the anomaly score. The 

anomaly score reflects the distribution in the underlying data, see Figure 61 above.  

(Note: The anomaly score this specific attribute contributes with, not the average 

anomaly score) 
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Figure 63. Histogram of attribute “efc” (entropy-focus-criterion) distribution in 

standard (left) and altered (right) implementation of iForest on BOLD data. Blue bins 

contain datapoints classified as outliers, orange bins contain normal datapoints (Note: 

The anomaly score this specific attribute contributes with, not the average anomaly 

score) 

 

 

Figure 64. Anomaly score from standard (a) and altered (b) implementation of iForest 

as a function of “efc” (entropy-focus-criterion) attribute. The darker the point, the 

higher the anomaly score. (Note: The anomaly score this specific attribute contributes 

with, not the average anomaly score). 

a) Standard 

implementation 

of iForest 

b) Altered 

implementation 

of iForest 
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4.2.3 Isolation Forest Results 

The quantitative results of the anomaly detection on the different datasets are presented 

in Table 12 below. The size of the two predicted classes for the different datasets and two 

explored models are presented. As expected, the altered iForest has a slightly lower 

number of anomaly predictions. In the BOLD and T1 datasets provided from KI, no 

datapoint is classified as an outlier. This meets with the expectations, as the datasets have 

been used in a previous study. In the following paragraphs, the results will be further 

analyzed and explained by plotting the anomaly score as a function of a few selected 

features. If nothing else is stated, the method used to extract the anomaly score is altered 

iForest. 

Table 12. Label count in iForest results 

 

 

Dataset  
Standard iForest Altered iForest 

 Anomaly Normal Anomaly Normal 

Subset of MRIQC Database snapshot 

of BOLD containing meta features  
549 11907 443 12013 

BOLD data from KI 0 44 0 44 

Subset of MRIQC Database snapshot 

of T1 from 3 Tesla machines  

(containing meta features) 

671 20901 304 21268 

T1 data from KI 0 44 0 44 

 

All KI data is classified as normal, and thus have anomaly score greater than 0.However, 

if we look at anomaly score within the normal class, we can see that deviant datapoints 

actually get a lower anomaly score, which is what we would expect. See Figure 65, in 

which the anomaly score is plotted as a function of the feature aor (AFNIs outlier ratio). 

Low values are better. The blue point at the bottom left of the plot gets a lower score than 

data points with aor values close to 0. This pattern is seen in the anomaly score of all 

BOLD data as well, see Figure 66. The relationship between anomaly score and three 

other BOLD features, dvars_std (low values are good), fd_mean (low values are good), 

and snr (high values are good) in all BOLD data is shown in Figure 67, 68, and 69. Similar 

plots but for the T1 features cjv (coefficient for joint vector) and inu_med (intensity non-

uniformity median) are seen in Figure 70 and 71. For cjv, higher values are related to the 

presence of heavy head motion and large INU artifacts, and lower values are thus better. 

For inu_med, values closer to 1.0 are better. The plots show promising results, as 

seemingly deviant points are classified as anomalous. Figure 65 also shows how the 

output from iForest can still be used to flag which datapoints at KI have a higher chance 

of being of worse quality for the dataset. 
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Figure 65. Anomaly score from iForest on KI BOLD data. Datapoints with high AFNIs 

outlier ratio (aor) values get a lower anomaly score than datapoints with “aor” close to 

0. These points can be flagged to researchers at KI to pay additional attention to the 

quality of the data. The darker the point, the lower the lower the anomaly score. 

 

 

Figure 66. Anomaly scores of all BOLD data. Datapoints with high AFNIs outlier ratio 

(aor) tend to get a low anomaly score. The darker the point, the lower the anomaly 

score. 
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Figure 67. Anomaly scores as a function of “dvars_std” of all BOLD data.  

 

Figure 68. Anomaly scores as a function of “fd_mean” of all BOLD data. 

 

Figure 69. Anomaly scores as a function of “snr” of all BOLD data. 
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Figure 70. Anomaly scores as a function of “cjv” of all T1 data. The darker the point, 

the lower the lower the anomaly score. Seemingly deviant points with high “cjv” values 

are classified as anomalous 

 

 

 

Figure 71. Anomaly scores as a function of “inu_med” of all T1 data. Values around 1 

are better. The darker the point, the lower the lower the anomaly score. Seemingly 

deviant points with high “inu_med” values are classified as anomalous 
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4.2.4 Relation Between Anomaly Scores and Meta Features 

As the IQMs are highly impacted by scanning site and machine model, it is of interest to 

analyze the relation between these meta attributes and the anomaly score obtained from 

isolation forest. As previously described in Section 4.2.1 and seen in Figure 53 and Figure 

54, a few machines and institution accounts for a large fraction of the data, and there is a 

possibility data from scanning sites and machines with less support in the database 

systematically get a higher anomaly score. T-SNE plots of T1 data is seen in Figure 72-

75. The same plot is in the different figures colored by anomaly score, label, institution, 

and machine model. The yellower the dots in plot 72, the more “normal” is the point. The 

greener, the more anomalous. There undoubtedly seems to be a correlation between 

normality and support of that meta feature in the dataset. See e.g. how the connected big 

yellow cluster in the middle of Figure 72, correspond to a widely used machine and highly 

contributing institution in Figure 74 and 75. Nevertheless, in Figure 73 it can be seen that 

the points labeled as anomalies are found in the outskirts of the clusters, which is what 

one intuitively would expect. 

 

 

Figure 72. t-SNE plot of T1 data (only from 3T MRI scanners) colored by anomaly 

score. The higher the score, the darker the point.  
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Figure 73. t-SNE plot of T1 data (only from 3T MRI scanners) colored by anomaly 

label. Normal points are orange, blue points are classified as anomalies  

 

 

Figure 74. t-SNE plot of T1 data (only from 3T MRI scanners) colored by institution.  
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Figure 75. t-SNE plot of T1 data (only from 3T MRI scanners) colored by machine 

model  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 
 

5. Discussion 

The results indicate that automation of questionnaire transcription is possible, and that 

anomaly detection of image quality metrics show promising results in identifying deviant 

data points. It is however clear that full automation is not appropriate, as the risks and 

costs of faulty predictions outweigh the benefits of such a level of automation. Full 

automation in systems that do not show sufficient reliability is according to Parasuraman, 

et al. (2000)  only motivated in highly time-critical situations. The context this automated 

system function is supposed to work in is however not time critical, and full automation 

is thus not motivated.  

In comparison to manual recording of questionnaire results, the VASReader system have 

the potential to significantly reduce the time spent on data transcription. This is especially 

important in long-term and large-scale projects such as PrePain and will in the long run 

enable researchers to put more time on their subjects of interest. 

A fully automated system that is not totally reliable may cause mistrust among its users, 

especially if it is black-boxed. We propose that VASReader is used as a tool to generate 

questionnaire result data, which the researchers through visual reports easily can inspect 

and accept or modify before data is saved for further analysis.  

Parasuraman et al. (2000) propose that automation can be applied to four classes of system 

functions: information acquisition, information analysis, decision selection and action 

implementation. The anomaly scores and classifications obtained from iForest is a way 

of automating information analysis. It increases the users’ situation awareness and aids 

decision selection and action implementation (i.e. should the image be kept for further 

analysis or not?). The anomaly score is an indication of the normality of MRI data from 

a given scanning session, and low scores imply that the researchers at KI should pay 

closer attention to the quality of those particular images. Instead of attempting to get an 

overview of the more than 50 metrics returned from MRIQC, the anomaly score is a 

concentrated measure of how the quality metrics of a given MRI scan relate to the quality 

metrics of other MRI scans.  

The results of the project’s two tasks will be discussed further separately in the following 

two sections. 

5.1 VASReader  

VASReader measures VAS marks, recognizes answers to binary questions, and classifies 

handwritten digits. Although all subtasks are important, the main contribution of this 

project is the ability to detect marks on VASs. Paper-based VAS questionnaires are 

extensively used in research. As there, to our knowledge, currently does not exist any 

research about automatic decoding of VASs, or any tool that offers it, the potential use of 

VASReader extends beyond the PrePain project. VASReader provides a systematic and 

accurate measurement of VASs and offers questionnaire recordings free from inter- and 
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intra-rater differences. The development of VASReader has also resulted in knowledge 

about machine-reading-enabling document designs. This knowledge is valuable for future 

design of questionnaires that are supposed to be read using computer vision. It can be 

concluded that: 

• Solid lines are preferred over dashed lines. 

• Categorical answers are preferably marked in answer boxes or bubbles, not by 

encircling an answer alternative. 

• If digits are to be recognized in boxes, they need to be written clearly and 

completely within the bounding box. 

If these guidelines are followed, VASReader is adaptable to new questionnaire designs 

after some parameter adjustments.  

Future work includes further improvements of each module of VASReader and testing the 

system’s performance on larger quantities of test data. The MRI number recognition is 

one of the modules that needs further work. The performance of different CNN 

architectures and preprocessing techniques can be evaluated. However, as part of the 

problem was not in the CNNs predictive ability but that the digits were not contained 

within the input field, alternative ways of identifying the questionnaires should also be 

considered. A possible alternative to explore is e.g. attaching a QR code to each 

questionnaire instead of writing handwritten characters. There already exists reliable 

techniques for reading QR codes. 

VASReader is not yet implemented in the PrePain pipeline, and for it to run in production, 

it needs to be integrated with the existing IT architecture at the Pain Neuroimaging Lab 

at KI. Scheduling using Cron, containerization with Singularity and development of a 

user interface for handling VASReader reports are planned for full pipeline integration. 

The functionality of VASReader has however been presented to the research group, who 

find the results promising and have expressed a wish to continue improving the tool. 

If the methods behind VASReader are developed further to be more general and flexible 

to a greater variance of questionnaire designs, the system’s usefulness outside the scope 

of the PrePain project is enhanced. If more test data is acquired, machine learning 

approaches are suggested to be explored. 

5.2 MRIQC Anomaly detection 

The exploration and visualizations of isolation forest anomaly scores indicate that the 

model is successful in identifying deviant observations. IForest output can thus act as an 

indicator of predicted quality for future work and be used in the automation process. 

The altered implementation of iForest, in which attribute values better than average do 

not contribute to decrease the average anomaly score has the advantage that scores are 
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more correlated with, and indicative of, quality. In the standard implementation it is 

possible that, for two given data points with identical scores, one retrieves it because its 

IQMs are better than average while the other retrieves it because its IQMs are worse than 

average. This reduces the situation awareness of the human user, as it may be difficult to 

deduce the cause of the score. In this way the altered version is more easily interpreted 

for the researcher who is responsible for quality controlling the MRI data. 

There are however shortcomings of the altered version of isolation forest. If a data point 

has IQMs that are so superior to the rest of the data that it is classified as an outlier by the 

standard implementation, it could spring from e.g. measurement errors, and for that 

reason be of interest to take a closer look at. These kinds of deviant data points will not 

be identified by the altered iForest. In practice, it can thus be beneficial to take into 

account the scores from both versions of iForest.  

One important remark is that what this iForest model identifies are anomalies in image 

quality metrics from MRI data. It is not applied directly to the image data, and the 

relationship between anomaly scores in IQMs and actual image quality has not been 

investigated in this thesis project. If substandard image quality is not reflected in the 

IQMs, subpar images will not be detected using the implemented anomaly detection 

model. Vice versa, if deviant IQMs do not reflect bad image quality, anomaly scores are 

misleading. There is reason to further investigate the relation between IQMs and actual 

image quality, as previous research has given reason to question IQMs ability to reflect 

actual image quality. As a reminder, it was stated in section 2.3.2 that anomaly detection 

with iForest is a viable method for the detection of anomalous instances if 𝑖) substandard 

images are assumed to be few and different from most of the data, and 𝑖𝑖) this is reflected 

in the IQMs. For this reason, iForest anomaly scores should function as an indication of 

the image quality and is suggested to be utilized as way flagging images that need to be 

payed closer attention during visual inspection. It is thus an automated form of 

information analysis, helping the researcher in decision making. 

As seen in the t-SNE plots in section 4.2.4, data from machines and institutions with high 

support in the data set are in general scored as more normal. The fact that there are clear 

systematic differences in IQMs between sites makes data from less frequently occurring 

or unseen sites and machines more probable to be susceptible to isolation. This does not 

necessarily mean the actual quality is worse, as the variability in IQMs may reflect the 

MRI machine or institution more than the actual quality. 

IQMs are different types of, from imaging data, extracted quality measures. The IQMs 

are extracted as an efficient way to summarize information about quality in image data.  

Presumably, much information in the complex 3D and 4D images is lost when they are 

boiled down to a set of metrics, and it is likely that better quality prediction can be 

achieved by machine learning models that take images as input, e.g. CNNs. These are 

specialized in handling the spatial topology in images. Implementation of CNNs though 

impose completely different requirements on time and memory compared to training a 

machine learning model on IQMs.  
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Future work includes comparing iForest with other machine learning algorithms and 

training the models larger quantities of MRIQC data from the MRIQC WebAPI. It is also 

of interest to further explore the relation between IQMs, anomaly scores and meta features 

other than the ones selected in this project. If more ratings are uploaded to the MRIQC 

database, supervised learning approaches are recommended to be explored. 
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6. Conclusions 

The overarching aim of this project has been to investigate whether time-consuming and 

error-prone manual tasks within cognitive neuroscience research can be automated. 

Specifically, two subtasks within the broader scope of automatizing research data 

pipelines have been addressed. The first task has been to investigate the possibility of 

automatic transcription of questionnaire data. The second task has been to implement and 

evaluate the performance of an anomaly detection method trained on MRIQC data. 

The results show that it is possible to reliably decode questionnaires containing visual 

analog scales. With inspiration from previous work within image document processing, 

OMR and ICR, a computer vision system, called VASReader, has been developed. 

VASReader is built specifically for VAS questionnaires and is, to our knowledge, the first 

system to address the specific case of decoding VASs. 

It can also be concluded that the unsupervised machine learning algorithm Isolation 

Forest shows promising results in classifying MRIQC data as anomalous or normal. The 

retrieved anomaly scores reflect the underlying distribution of the image quality metric 

(IQM) features, and visualizations of results show that apparent deviant datapoints are 

correctly classified as anomalies. Further research is however needed to determine the 

relation between anomalous IQMs and actual image quality.  Due to strong site-effects in 

the IQMs, the model is also prone to classify data from less frequently seen sites or unseen 

sites as more anomalous than data from MRI machines and institutions with high support 

in the MRIQC database. 

To conclude, it is evident that manual tasks within cognitive science research can be 

automated, and that there is much to gain from automation. However, the project 

illustrates the importance of selecting an appropriate type and level of automation, and 

full automation is not the suggested option for either of the above described tasks.  
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Appendix A 

A 1. First version of the PrePain Questionnaire. Page 1. 

 

 



90 
 

A.2 First version of the PrePain Questionnaire. Page 2. 
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Appendix B 

B.1 Second version of the PrePain Questionnaire. Page 1.  
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B.2 Second version of the PrePain Questionnaire. Page 2. 
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Appendix C 

Table 13.  IQM features for structural (T1w) images 

Feature 
Data 

type 
Interpretation (Esteban et al., 2017) 

Measures based on noise measurements 

cjv float64 

Coefficient of joint variation. Higher values are 

related to the presence of heavy head motion and 

large INU artifacts. Lower values are better. 

cnr float64 

Contrast-to-noise ratio. Extension of the SNR 

calculation to evaluate how separated the tissue 

distributions of GM and WM are. Higher values 

indicate better quality. 

snr* float64 
Signal-to-noise-ratio. Calculated within the tissue 

mask 

snrd** float64 
Dietrich’s SNR (SNRd) as proposed by (Dietrich 

et al., 2007) 

qi_2 float64 
Mortamet’s quality index 2 (Mortamet et al., 

2009) 

Measures based on information theory 

efc float64 

Uses the Shannon entropy of voxel intensities as 

an indication of ghosting and blurring induced by 

head motion. Lower values are better. 

fber float64 

Defined as the mean energy of image values 

within the head relative to outside the head(PCP 

Quality Assessment Protocol, no date). Higher 

values are better. 

Measures targeting specific artifacts 

inu_*** float64 

Summary statistics (max, min and median) of the 

INU field as extracted by the N4ITK algorithm. 

Values closer to 1.0 are better. 

qi_1 float64 

The QI1 is the proportion of voxels with intensity 

corrupted by artifacts normalized by the number 

of voxels in the background. Lower values are 

better. 

 

Cont. on next page 
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wm2max float64 

The white matter to maximum intensity ratio is 

the median intensity within the WM mask over 

the 95% percentile of the full intensity 

distribution, that captures the existence of long 

tails due to hyper-intensity of the carotid vessels 

and fat. Values should be around the interval 

[0.6, 0.8]. 

 

Other measures 

 

fwhm**** float64 The FWHM of the spatial distribution of the 

image intensity values in units of voxels. Lower 

values are better. 

icvs_***** float64 The ICV fractions of CSF, GM and WM. They 

should move within a normative range. 

rpve_****** float64 The rPVe of CSF, GM and WM. Lower values 

are better. 

summary_stats******* float64 Mean, standard deviation, 5% percentile and 95% 

percentile of the distribution of background, CSF, 

GM and WM. 

tpm_overlap******** float64 The overlap of the TPMs estimated from the 

image and the corresponding maps from the 

ICBM nonlinear-asymmetric 2009c template 

* 'snr_csf', 'snr_gm', 'snr_total', 'snr_wm', 

**  'snrd_csf', 'snrd_gm', 'snrd_total', 'snrd_wm', 

***  'inu_med', 'inu_range', 

**** 'fwhm_avg', 'fwhm_x', 'fwhm_y', 'fwhm_z', 

*****  'icvs_csf', 'icvs_gm', 'icvs_wm', 

******  'rpve_csf', 'rpve_gm', 'rpve_wm', 

*******  'summary_bg_k',  'summary_bg_mad', 'summary_bg_mean', 

'summary_bg_median', 'summary_bg_n', 'summary_bg_p05', 

'summary_bg_p95', 'summary_bg_stdv', 'summary_csf_k', 

'summary_csf_mad',  'summary_csf_mean', 'summary_csf_median', 

'summary_csf_n', 'summary_csf_p05', 'summary_csf_p95', 

'summary_csf_stdv', 'summary_gm_k', 'summary_gm_mad', 

'summary_gm_mean', 'summary_gm_median', 'summary_gm_n', 

'summary_gm_p05', 'summary_gm_p95', 'summary_gm_stdv', 

'summary_wm_k', 'summary_wm_mad', 'summary_wm_mean', 

'summary_wm_median', 'summary_wm_n', 'summary_wm_p05', 

'summary_wm_p95', 'summary_wm_stdv', 

********  'tpm_overlap_csf', 'tpm_overlap_gm', 'tpm_overlap_wm', 



95 
 

Appendix D 

Table 14. IQM features for functional (BOLD) images 

Feature 
Data 

type 
Interpretation (Esteban et al., 2017) 

Measures for the spatial information 

efc float64 Entropy-focus criterion 

fber float64 Foreground-Background energy ratio 

fwhm_* float64 Full-width half maximum smoothness 

snr float64 Signal-to-noise-ratio 

summary_stats** float64 
Estimates the mean, the standard deviation, the 95% 

and the 5% percentiles of each tissue distribution. 

Measures for the temporal information 

dvars_ *** float64 
D referring to temporal derivative of time courses, 

VARS referring to RMS variance over voxels 

gcor float64 Global Correlation 

tsnr float64 
Temporal SNR, a simplified interpretation of the tSNR 

definition (Krüger and Glover, 2001) 

Measures for artifacts and other 

fd_**** float64 
Framewise Displacement. Expresses instantaneous 

head-motion 

gsr_***** float64 Ghost to Signal Ratio 

aor float64 
AFNI's outlier ratio. Mean fraction of outliers per 

fMRI volume 

aqi float64 AFNI’s quality index  

* 'fwhm_x', 'fwhm_y', 'fwhm_z' 

**  'summary_bg_k', 'summary_bg_mad', 'summary_bg_mean', 

'summary_bg_median', 'summary_bg_p05', 'summary_bg_p95', 

'summary_bg_stdv', 'summary_fg_k', 'summary_fg_mad', 

'summary_fg_mean', 'summary_fg_median', 'summary_fg_n', 

'summary_fg_p05', 'summary_fg_p95', 'summary_fg_stdv' 

***  'dvars_nstd', 'dvars_std', 'dvars_vstd' 

****  'fd_mean', 'fd_num', 'fd_perc' 

****  'gsr_x', 'gsr_y' 
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Appendix E 

Table 15. Full List of Selected Features 

Selected T1 IQM Features Selected BOLD IQM Features 

  

 'cjv' 'aqi' 

 'efc' 'aor' 

 'fber' 'dvars_nstd' 

 'fwhm_avg' 'dvars_std' 

 'icvs_csf' 'dvars_vstd' 

 'icvs_wm' 'efc' 

 'inu_med' 'fber' 

 'inu_range' 'fd_mean' 

 'qi_1' 'fd_num' 

 'qi_2' 'fwhm_avg' 

 'rpve_csf' 'gcor' 

 'snr_csf' 'gsr_x' 

 'snr_gm'  'gsr_y' 

 'summary_bg_k' 'snr' 

 'summary_bg_n' 'summary_bg_k' 

 'summary_csf_k' 'summary_bg_k' 

 'summary_csf_mad' 'summary_bg_mad' 

 'summary_csf_mean' 'summary_bg_n' 

 'summary_csf_n' 'summary_fg_k' 

 'summary_csf_p05' 'tsnr' 

 'summary_gm_k'  

 'summary_gm_mean'  

 'summary_gm_n'  

 'summary_wm_k'  

 'summary_wm_mean'  

 'summary_wm_median'  

 'tpm_overlap_csf'  

 'tpm_overlap_wm'  

 'wm2max'  
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