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Abstract

Applying Machine Learning Algorithms for Anomaly
Detection in Electricity Data

Herman Guss, Linus Rustas

The purpose of this thesis is to investigate how data from a residential 
property owner can be utilized to enable better energy management for 
their building stock. Specifically, this is done through the development 
of two machine learning models with the objective of detecting anomalies 
in the existing data of electricity consumption. The dataset consists of 
two years of residential electricity consumption for 193 substations 
belonging to the residential property owner Uppsalahem.

The first of the developed models uses the K-means method to cluster 
substations with similar consumption patterns to create electricity 
profiles, while the second model uses Gaussian process regression to 
predict electricity consumption of a 24 hour timeframe. The performance 
of these models is evaluated and the optimal models resulting from this 
process are implemented to detect anomalies in the electricity 
consumption data. Two different algorithms for anomaly detection are 
presented, based on the differing properties of the two earlier models.

During the evaluation of the models, it is established that the 
consumption patterns of the substations display a high variability, 
making it difficult to accurately model the full dataset. Both models 
are shown to be able to detect anomalies in the electricity consumption 
data, but the K-means based anomaly detection model is preferred due to 
it being faster and more reliable. It is concluded that substation 
electricity consumption is not ideal for anomaly detection, and that if 
a model should be implemented, it should likely exclude some of the 
substations with less regular consumption profiles.
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Populärvetenskaplig  sammanfattning  
Detta examensarbete är skrivet med handledning från Uppsalahem, det kommunala 
fastighetsbolaget i Uppsala. Uppsalahem är idag det största fastighetsbolaget i Uppsala 
och har över 17 000 lägenheter till förfogande. Uppsalahem har högt uppsatta mål mot 
att bli alltmer hållbara och detta återspeglar sig i att de försöker energieffektivisera sina 
byggnader, exempelvis genom att minska onödig konsumtion av energi och samtidigt 
upprätthålla en hög komfort. De har idag en avvikelsedetektering som grundar sig i att 
undersöka hur konsumtionen av olika energislag förändras. Månadsvärden är idag det 
huvudsakliga tillvägagångssättet för att samla in data för denna avvikelsedetektering. 
Idag jämförs månadskonsumtion för en given månad med samma månad föregående år, 
och en avvikelse detekteras när en tillräckligt stor förändring har skett jämfört med 
samma månad föregående år. Exakt hur stor skillnaden måste vara för att detektera en 
avvikelse beror på arean av det undersökta området eller hur mycket avvikelsen bedöms 
kosta. Uppsalahem har ett intresse i att analysera om denna feldetektering kan 
uppdateras och skötas snabbare och mer träffsäkert. Detta vill de undersöka genom att 
analysera data som istället är insamlad på timbasis. Denna rapport kommer examinera 
data över elkonsumtion hos substationer för 2018 och 2019. Syftet med detta projekt är 
även att undersöka vilka andra datakällor som är av intresse för Uppsalahem utifrån ett 
energieffektiviseringsperspektiv och om det är möjligt att utnyttja Uppsalahems 
tillgängliga elektricitetsdata för att skapa en modell för snabbare avvikelsedetektering.  

Tillvägagångssättet för att undersöka huruvida det är möjligt att nyttja Uppsalahems 
tidigare data för snabbare avvikelsedetektering delades upp i två modeller. Den första 
modellen utnyttjar klustring. Klustring är en procedur som undersöker en mängd data 
för att sedan samla ihop data som liknar varandra. Exempelvis så är frukter klustrade i 
matbutiken då päronen inte befinner sig i samma korg som äpplena och bananerna. 
Klustring bygger på att försöka se mönster i den data som finns för att samla 
substationer som liknar varandra i samma “korg”. När man sedan har klustrat stationer 
med liknande mönster kan man då ta fram en centroid (ett genomsnitt) som förväntas 
representera detta kluster på ett bra sätt. Det här genomsnittet betraktas som en 
representation för hur konsumtionen borde se ut för de stationer som samlats i det 
klustret. Vid en jämförelse mellan de individuella substationerna och detta genomsnitt 
så indikerar en avvikelse mellan dessa att ett fel har skett. 

Den andra modellen utnyttjar prognostisering. Tanken är att det ska finnas 
underliggande trender och mönster i elkonsumtionen hos substationerna. En 
regressionsmodell anpassas till datan för att lära sig detta mönster, regressionsmodellen 
skapar således en funktion som motsvarar datan till så bra som möjligt. Denna modell 
använder sig av begreppen träningsdata och testdata. Träningsdatan är den data som 
modellen lär sig mönstret på medan testdata är data som jämför hur väl modellen lyckas 
prognostisera de framtida värdena. Om det finns en stor likhet mellan den 
prognosticerade konsumtionen och den faktiska konsumtionen går det att argumentera 
för att modellen kan prognostisera framtida konsumtion. Vid en tillräckligt stor skillnad 
mellan den faktiska konsumtionen och den prognostiserade så indikerar detta att en 
avvikelse har skett.  

En av de slutsatser som dras i detta examensarbete är att den studerande datan är väldigt 
varierande i termer av regelbundenhet, kvalitet och upplösning. Detta gör att det är svårt 
att förstå varför konsumtionen ser ut som den gör och hur den lämpligast modelleras. 



 

De två modellerna för feldetektion som har prövats i detta arbete varierar kraftigt i 
prestanda vilket i sin tur beror på den variation som finns i datan. Den 
klustringsbaserade modellen bedöms prestera bättre för målet att lokalisera avvikelser 
än den regressionsbaserade modellen. De substationer som har en klar regelbundenhet 
kan predikteras väl av regressionsmodellen, dessa är dock bara en mindre del av alla 
substationer. Av den anledningen presterar den klustringsbaserade modellen generellt 
bättre för datasetet. Jämfört med Uppsalahems nuvarande modell för att detektera 
avvikelser så finns det förbättringsmöjligheter vid en implementation av en 
klustringsmodell. Detta exemplifieras främst i de fall där klustringsmodellen lyckas 
hitta avvikelser på tider som är avsevärt kortare än en vecka.  
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1  Introduction  
Residential buildings are among the largest energy consumers in Sweden. According to 
the Swedish Energy Agency the residential and service sector in 2017 had a total energy 
usage of 146 TWh, accounting for 39 % of the total energy consumption 
(Energimyndigheten, 2019). The residential subsector is the single largest consumer 
within this sector, with a total energy consumption of 87 TWh. 

For residential buildings, the energy demand can be divided into different segments 
such as heating and electricity, which are measured in different capacities. The level of 
detail in these measurements may however vary between buildings based on different 
features such as size or the year of construction. For buildings reliant on district heating, 
heating is usually the largest share of the energy consumption followed by electricity. 
For apartment buildings in Sweden, district heating is by far the most common source of 
heating, according to IVA (2012b) being present in approximately 93 % of the multi-
family residential buildings. Electricity accounts for roughly 20 % of the energy 
demand of Swedish residential buildings, although for a variety of reasons this share is 
gradually increasing, and electricity is predicted to account for as much as 40 % of the 
residential energy consumption by 2050 (IVA 2012a).  

Lowering this energy consumption would have economical as well as environmental 
benefits. In addition to this, political regulations such as Boverket’s mandatory 
provisions and general recommendations (BFS 2011:6) (Boverket, 2019) place 
increasing legal demands on energy efficiency for new, reconstructed or expanded 
buildings. Thus, there are several strong incentives for property owners to optimize 
buildings to reduce the demand of energy. Through more efficient energy use, there is 
potential to reduce the energy consumption while retaining utility and comfort for the 
end users. Such possibilities include energy profiling in order to single out buildings or 
areas which have an uncharacteristic consumption behavior over time or to group 
buildings or areas where the energy consumption follows distinct seasonal or diurnal 
patterns, as well as fast detection of anomalies in the energy consumption. 

Due to technological development and the increasing digitalization there is today a 
rather large set of data associated with most residential buildings, which is also 
continually increasing in size. This data relates both to the characteristics of the 
buildings as well as their energy consumption, which might aid in increasing the energy 
efficiency in buildings if properly analyzed. Energy efficiency can be defined as when 
an appliance utilizes less energy but the performance remains the same or if the 
performance increases while using the same amount of energy (OVOEnergy, n.d.). This 
definition can also be applied to buildings where energy efficiency can be seen as 
increasing the comfort using the same amount of energy or decreasing energy 
consumption while retaining a good comfort (IVA, 2012b). 

Large datasets are typically well suited for analysis using methods which fall under the 
umbrella term machine learning. The hundred-page machine learning book (Burkov, 
2019) defines machine learning concisely in the following way: 
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"Machine learning is a subfield of computer science that is concerned with 
building algorithms which, to be useful, rely on a collection of examples of some 
phenomenon. These examples can come from nature, be handcrafted by humans 
or generated by another algorithm. 

Machine learning can also be defined as the process of solving a practical 
problem by 1) gathering a dataset, and 2) algorithmically building a statistical 
model based on that dataset. That statistical model is assumed to be used 
somehow to solve the practical problem." (Burkov, 2019). 

In recent years several different machine learning techniques have been proposed and 
implemented for estimation of heating and cooling loads, energy consumption and 
performance in the building sector (Seyedzadeh et al., 2018). There are several 
applications within this sector including the development of new low energy building 
stock, energy retrofitting for old stock and optimization of energy management systems 
and heat, ventilation and air conditioning systems. Energy management systems have 
been utilized for energy data collection and consumption control which are fundamental 
to energy waste reduction. Therefore, a great amount of data related to different sensors 
is often readily available, and there is a demand for analytical tools that make use of that 
data to enable assessment of energy performance.  

One possible area of application for machine learning techniques is learning patterns 
and creating models to predict the behavior of different objects. This might also be 
applied within the field of energy efficiency as models may bring new knowledge of the 
energy system behavior whether it be on the supply or demand side. Such models can 
predict energy production and demand which can be used to match needs on the energy 
market. Alternatively, models which learn an expected pattern from historical data may 
compare predictions to future data in order to detect unexpected patterns, which may be 
indicative of anomalies. Detecting anomalies may thus increase the energy efficiency as 
the performance remains the same while the energy consumption decreases. In this 
thesis, the possibility of such anomaly detection is investigated as the intent is to utilize 
two different models, utilizing energy profiling and forecasting respectively, in order to 
detect anomalies in the energy consumption of a residential building stock owned by the 
largest housing company in Uppsala, Uppsalahem.  

1.1  Purpose  

Using data mining and machine learning techniques, this thesis aims to improve the 
energy management system in residential buildings owned by the housing company 
Uppsalahem. The purpose is then to investigate a dataset in order to analyze and 
determine its applicability for being utilized in an anomaly detection system. Within this 
analysis, two models for anomaly detection are developed. A comparison is then made 
between the two different models to determine if either or both of the approaches are 
viable. The first model utilizes clustering and then generates a model based on the 
aggregate behavior of the cluster. The second model considers each substation 
individually. It is built upon regression and applies a Gaussian process regression to 
learn patterns from historical behavior and fits a model to predict future consumption. 
The goal is then to compare these models to the individual electricity consumption data 
series and determine their usefulness for detecting anomalies in the electricity 
consumption. 
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Thus, the aim of this thesis is to investigate whether the available data from 
measurements of electricity consumption at a residential property owner may be utilized 
to create machine learning models to enable a fast and reliable anomaly detection 
system. Such anomaly detection models should ideally detect probable faults as often as 
possible without signaling for anomalies during intervals which do not show abnormal 
behavior. Additionally, it should ideally allow for the detection of anomalies in energy 
within as short a timeframe as possible, preferably within a daily time range. To further 
this aim a set of data over electricity consumption is acquired from Uppsalahem. 

The research questions of this master thesis are thereby: 

§   Can the available data at Uppsalahem be utilized for machine learning 
algorithms in order to detect anomalies affecting electricity consumption?  

§   What additional data may be of interest to collect in order to allow for further 
development of energy efficiency algorithms? 

1.2  Methodology  overview 

This thesis strives to develop an accurate anomaly detection model for the real estate 
company Uppsalahem through an analysis of the available data. The dataset is first 
subjected to preprocessing where data which is not deemed to meet the quality 
requirements of the study is either interpolated or removed. Utilizing the preprocessed 
dataset, two models are then developed with the goal of enabling faster and more 
reliable anomaly detection. The first is a clustering based model, performing K-means 
clustering on normalized data. The second is a probabilistic regression based model, 
Gaussian process regression which considers relationships between the electricity 
consumption and factors such as time and temperature. Two separate performance 
evaluations are conducted for the developed models before proceeding to implement 
them in order to determine their capability to detect abnormal electricity consumption 
patterns in the studied dataset. Anomaly detection models are developed utilizing each 
of these techniques, differing slightly in implementation due to the different specifics of 
each model. These anomaly detection models subsequently undergo a basic 
optimization using optically identified anomalies as validation data, and their respective 
performance is evaluated through comparisons of their detection speed and ability to 
accurately detect anomalies. 

1.3  Limitations  

One of the limitations of this thesis is the availability of data at the desired 
spatiotemporal resolution. The collected electricity consumption data is on a substation 
level, which prevents the linkage of electricity profiles to individual physical buildings, 
which could otherwise have allowed for considering the physical properties of buildings 
in the analysis. Also, if the collected data had comprised a longer time interval, it could 
also have allowed for more extensive validation of the anomaly-finding algorithms, as 
the short timeframe of the testing intervals limits the possibility of evaluating the model 
behavior on a longer time scale. Additionally, due to not having access to data of heat 
usage in this thesis, only electricity is evaluated during the anomaly detection. However, 
as mentioned previously heat is the largest share of building energy demand and 
analysis of heat usage measurements can therefore bring considerable advantages, 
particularly in district heated buildings. Finally, there is no proper record on previous 
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anomalies in electricity measurements that can be used for performance evaluation of 
the developed anomaly detection model. The performance of the anomaly detection 
models is therefore evaluated on a rather small set of data where anomalies have been 
labeled by optical analysis. 

1.4  Report  overview  

The report is outlined as follows, firstly, in Section 2, Background, necessary 
information about the housing company, Uppsalahem, and required background on 
machine learning and its application in increasing energy efficiency in buildings are 
presented. Section 3, Methodology and data, contains descriptions of the method 
utilized in this study, relevant theoretical concepts and their implementations. Thereafter 
the results that are produced in this thesis are presented with a continuous analysis in 
Section 4, Results and Analysis. Following the results is Section 5, Discussion, which 
compares the results from this thesis with relevant results from similar research articles 
to give perspective on the results. Lastly, the Conclusion of this thesis is presented in 
Section 6, which summarizes the report and the research findings. 
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2  Background  
The background firstly presents information about Uppsalahem, in Subsection 2.1, 
which aims to give a short description of who they are and how their data management 
currently functions. Thereafter, Subsection 2.2 provides an overview of machine 
learning in the energy sector. This section also aims to explain how machine learning 
can be utilized to improve residential facility energy management. Following this, 
Subsection 2.3 provides more detailed information about specific applications of 
machine learning to building energy data. These different applications include energy 
profiling, forecasting and anomaly detection. Lastly, Subsection 2.4 is presented, to give 
a clearer definition of what is considered an anomaly within the scope of this study. 

2.1  Uppsalahem  

Uppsalahem is the single largest real estate owner in the city of Uppsala. The vast 
majority of Uppsalahem’s property stock consists of 17000 apartments in which more 
than 30 000 people reside (Uppsalahem, n.d.b). Being part of the Swedish public 
housing, Uppsalahem has a mission from the municipality of Uppsala to provide access 
to good quality housing. Within this mission there is also a social responsibility, 
meaning that they must take social impacts, environmental effects and sustainability 
into account in their work. Furthermore, Uppsalahem actively works towards being 
even more sustainable. (Uppsalahem, n.d.a) This is executed through improvement of 
energy efficiency in building renovations, but also the development of efficient energy 
analysis and management systems. One of their current goals toward increased 
sustainability is to be increasingly efficient in detecting anomalies which in turn will 
lead to better and faster maintenance and a reduced use of energy. 

Uppsalahem also collects and stores a rather large amount of data about these apartment 
buildings and their energy demand, and for that reason they provide a suitable 
foundational dataset for the types of analysis described in Subsection 2.2. In terms of 
energy related data, they measure the consumption of electricity, cold water, hot water 
and district heating on a monthly basis, often gathered through manual readings of 
measurement devices. A consequence of this is that they collect the data at somewhat 
irregular intervals, sometime around the turn of the month and not always at the same 
date. The consumption is collected at a substation level meaning that not just one but a 
number of buildings are connected to a single measurement point.  

Uppsalahem’s current system for detecting anomalies in energy consumption compares 
the monthly consumption to that of the same month the year before, for instance March 
2019 compared to March 2018. Uppsalahem’s buildings are grouped into residential 
districts, and the deviation reports are generated based on these districts. The anomalies 
found by these reports are investigated according to a certain order of priorities, these 
priorities are described in Table 1. 
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Table 1, the prioritization of Uppsalahem’s anomaly detection 

Prioritization Situation 
1st Increase in energy consumption over 50% 

or an increase in cost by 100 000 SEK or 
more, annually 

2nd Increase in cost by 50 000 to 100 000 SEK 
annually 

3rd Area > 15 000 𝑚" and a change in the 
consumption that is greater than 5 % or 

 area 5 000-15 000 𝑚" and a change in the 
consumption that is greater than 7.5 % or 

 area 1 500-5 000 𝑚" and a change in the 
consumption that is greater than 10% or 

 area < 1 500 𝑚" and a change in the 
consumption that is greater than 25% 

 
Uppsalahem also manages anomalies on a substation level. However, for the individual 
substation the threshold for anomalies is set to 25% always. The anomalies are 
withdrawn from Uppsalahem’s program Insikt. These reports only contain information 
about detected anomalies on a month-by-month basis. Thus, there is likely room for 
improvements towards detecting anomalies on a daily or even hourly basis. 

2.2  Use  of  machine  learning  for  energy  efficiency  

Machine learning is an algorithm that uses a real phenomenon and tries to create a 
model that replicates the phenomenon to the highest degree possible. These phenomena 
can be distributed throughout the world and can be ordinary situations as well as highly 
complex situations. Machine learning algorithms are broadly categorized into two 
groups known as, supervised and unsupervised. (Burkov, 2019) 

The supervised machine learning algorithms aim to produce a model from a labeled 
dataset. This means that the model should take some input vector that describes a set of 
features and give information deduced from the input as the output. The aim of the 
model is therefore to learn a functional relationship between input variables and output 
variables. A typical example of supervised learning is the regression problem, y = f(x) 
where the goal is to learn the dependent variable y as a function of the independent 
variable x. Unsupervised machine learning algorithms also use a dataset, however, in 
this case the data is unlabeled, and no distinction between independent and dependent 
variables is made. The goal is instead to learn an expected distribution of the data as a 
whole. The model might also create a vector with known parameters which is a 
transformation from the original unknown dataset. (Burkov, 2019) This project will 
explore the applicability of techniques from both these groups of machine learning 
algorithms to a problem defined for a set of energy data. 

Over the past decades, energy demand in the building sector has been steadily 
increasing and according to Amasyali and El-Gohary (2018) it might be due to the 
increase in population combined with urbanization and increased social demands. As 
discussed by Allouhi et al. (2015) buildings contribute to the world’s energy 
consumption and consequently greenhouse gas emissions, considerably. Thus, in line 
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with global climate mitigation and energy efficiency goals, a more energy efficient 
approach to building energy data is necessary. Building energy efficiency measures and 
analysis are among other things necessary to help reduce greenhouse gas emissions and 
the ability to predict future energy consumption is an important enabler of energy 
efficiency improvements. This ability is also highly useful to actors on the energy 
market such as utility companies, facility managers and end users, who may increase 
their efficiency by adapting their behavior to expectations. Knowledge about energy 
consumption patterns is vital for scheduling maintenance and ordinary operations to 
enable retainment or improvement of the energy performance of buildings. (Pham et al., 
2020) Additionally, better understanding of energy consumption data might lead to 
increased financial savings and enhancement of the energy security of customers 
(McNeil et al., 2019). One example of such energy data which is highly interesting to 
study is that of time series data for buildings. Horrigan et al. (2018) uses time series 
data in order to improve building operational behavior, i.e. the energy and 
environmental performance of the building, by conducting a fault detection analysis. 
They further state that the detection of statistically significant faults in building 
performance data is an asset to building managers and that it can lead to significantly 
reduced energy losses. 

2.3  Applications  of  machine  learning  to  building  energy  data  

Applications of machine learning are common in the field of residential energy data 
analysis. For the scope of this project, the main focus is on applications of machine 
learning for energy profiling and energy forecasting which can later be used in 
development of the anomaly detection algorithms. Examples of supervised and 
unsupervised machine learning models as previously described in Subsection 2.2 and 
examples of applications of these models for building energy data are provided. 

2.3.1  Electricity  profiling  

An energy load profile contains information about the energy demand of a consumer or 
set of consumers, and how this demand is distributed. Electricity load profiles provide 
an approach to describe the typical behavior of electricity consumption (Zhang et al., 
2018). This is utilized to quantify the total consumption contribution of different sub-
components and features of the buildings or to distinguish usage characteristics. 
Profiling electricity use has the potential capability to educate end-users through 
feedback on how to change their consumption behavior. For utility companies these 
load profiles may be utilized to reach a certain load-shape objective. The most 
commonly implemented methods for electricity profiling are according to Wei et al. 
(2018) clustering methods, such as K-means or hierarchical clustering. Electricity 
profiles can be used to approximate the demand during critical periods and the load 
placed on the electricity supplier during those times. Load profiles in the area of 
electricity consumption have applications both on a general level as well as in more 
specific cases. On the general level they are useful to utility companies that wish to 
estimate the pattern of the total load placed upon the grid by a set of consumers (Singh 
& Yassine, 2018). On a more specific level, they may be utilized for approximating the 
contribution of individual parameters to the total load, for instance the load profile of 
household appliances (Issi & Kaplan, 2018) or electric vehicles (Lu et al., 2017). 
Knowledge of total load profiles as well as those of individual items can be exploited to 
inform and adapt consumer behavior to create opportunities for management of energy 
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consumption (Issi & Kaplan, 2018) and balance of supply and demand on the electric 
market (Damayanti et al., 2017; Zhang et al., 2018), which is of relevance to major 
distribution companies as well as micro grid owners (Damayanti et al., 2017). 

The energy data exploited to create a profile is normally collected with certain constant 
time intervals, such as every 10, 15 or 30 minutes (Damayanti et al., 2017). Electricity 
load profiles are typically created on a daily or weekly time window to display 
consumption as a function of the day-to-day behavior of individuals, for instance typical 
electricity load profiles may display peak electricity usage in the evening for residential 
buildings (Marszal-Pomianowska et al., 2016) or markedly different load curves 
between weekdays and weekends for an office building (Bedingfield et al., 2018). 
Widén et al. (2009) generate electricity consumption profiles based on historical data. 
Their data collection intervals vary between one minute at the most frequent and hourly 
measurements at the least frequent. Furthermore, the authors conclude that the model 
they implement can generate close-to-reality electricity consumption predictions.  

Clustering algorithms are commonplace within energy profiling, and they may work 
with either the consumption data within the time domain or other attributes constructed 
to represent the load curve (Zhang, 2018). The goal of clustering is to group data points 
based on similarity as measured by some metric, commonly Euclidean distance. This 
may be used to attain representative electricity profiles for groups of electricity 
consumers. According to Bedi and Toshniwal (2019) cluster analysis is utilized to 
collect groups of data that have a high similarity to each other and are highly unlike the 
other clusters, which might assist in finding natural groups with similar patterns in the 
data. They argue that clustering analysis helps identify trends in the consumption which 
can then be applied in load characterization to achieve a deeper understanding of 
consumption patterns. Nepal et al. (2019) implement K-means clustering to create day 
profiles for a set of university buildings, and arrive at a clear relationship of increased 
electricity usage during daytime hours and weekdays compared to weekends. Similarly, 
Damayanti et al. (2017) apply K-means, Fuzzy C-means and K-Harmonic Means to 
obtain two clusters for electricity consumption in West Java, one representing weekday 
profiles and the other weekends. K-means clustering has been used in a variety of 
circumstances, amongst them is the identification of daily electricity consumption of 
buildings (Miller et al., 2015; Miller and Schluter, 2015). Chicco (2012) performs a 
thorough investigation on several different clustering techniques and finds that the K-
means algorithm performs best in determining the typical load pattern. A further 
description of the K-means algorithm is provided in Subsection 3.2.2. 

2.3.2  Forecasting  

Forecasting of energy consumption is an essential part of energy management, system 
operation and market analysis. Increased accuracy of predictions has the potential to 
increase savings and create new benefits, as described in Subsection 2.2. There is an 
emerging demand of customer flexibility in the energy system to increase efficiency, 
and proper prediction models are a core constituent of such initiatives. (Zhang, 2018) 
Estimations of energy usage in the long-, medium- and short-term are of importance for 
planning and investments on the energy market. This becomes particularly visible on 
the electricity market, where estimations of electricity demand hours or minutes ahead 
can exert an important influence over the dispatch of national electricity. More precise 
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predictions can therefore lead to improved energy management and considerable cost 
reductions for both energy suppliers and end-users. (Wei et al., 2018) 

Load forecasting algorithms mostly fall into the subfield of supervised learning 
according to Zhao et al (2020), as the electrical load is considered a dependent variable. 
Forecasting models may further be divided into single-valued forecasters, in which the 
output is a single value, and probabilistic models, which provide a probability 
distribution of the dependent variable, meaning that the model output contains both an 
expected value and a standard deviation, which describes the region where the output is 
likely to appear (Brusaferri et al., 2019). One of the main strengths of the regression 
based predictors is that the models theoretically are able to learn complex relationships 
if the data is sufficient (Zhao et al., 2020). There is a vast amount of regression models 
that can be implemented for forecasting of electricity consumption (Bedi and 
Toshniwal, 2019). Amongst the successfully implemented regression models are 
Support vector machine (SVM), Artificial Neural Networks (ANN) and Gaussian 
process regression (GPR) (Zhao et al., 2020). It is commonplace for regression models 
to minimize the sum of squared errors or in the case of probabilistic models the 
marginal likelihood between the output values of the function and the data. This means 
that a regression model of electricity consumption fits the prediction to match the actual 
consumption to the highest degree possible. In electricity load forecasting, regression 
models utilize historical data to enable prediction of future electricity load. The 
regression models applied for electricity load forecasting differ depending on the 
application. Parameters that differ are amongst other forecasting horizons (hourly, daily, 
weekly, monthly and yearly) and the dependent variables (time, weather, historical 
consumption, etc.). (Yildiz et al., 2017) Regression models are thus able to learn 
functions from historical data that are able to forecast the electricity in cases where there 
is a pattern in the electricity consumption. 

In a review concerning probabilistic forecasting on electricity consumption van der 
Meer et al. (2018c) discuss several different statistical methods for forecasting. 
Amongst the discussed are statistical techniques like quantile regression, Gaussian 
processes and K-nearest neighbor models. The conclusions of this review are that 
Gaussian processes might be a powerful procedure to predict systems which are 
dynamical and nonlinear. Van der Meer et al. (2018c) implement a Gaussian process in 
combination with historical data points to predict future household electricity 
consumption. Gaussian processes are given a more in-depth look in Subsection 3.4. 

2.3.3  Anomaly  detection  

According to Seem (2007) the amount of data that the facility managers sometimes 
must take into consideration is immense. The datasets connected to residential buildings 
are often too large to consider the totality of the data for human analysis. There are 
however technologies available to support the facility manager such as alarm and 
warning systems. The setting of thresholds for these systems is a complex task, if they 
are set too tight it will generate false faults, if they are set too loose the system does not 
find all the faults. (Seem, 2007) One of the main reasons to analyze big data regarding 
the electricity consumption is, according to Zhang et al. (2018), to increase the 
capability of finding, fixing and isolating faults in a distribution system. The possible 
reduction of duration of energy consuming faults is also one of the main reasons for 
analyzing energy consumption data. As stated by Bang et al. (2019) if fault detection is 
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performed properly, it might be able to determine the characteristics of the fault and 
thereby assist in correcting it properly.  

Fault detection can be divided into three different categories as stated by Kjøller 
Alexandersen et al. (2019). These different categories are quantitative model-based 
methods, qualitative model-based methods and process history based methods. 
Quantitative model-based methods are often obtained from modeling physical behavior 
of a studied phenomenon according to Kim and Katipamula (2017). Furthermore, these 
methods, as stated by Bynum et al. (2012), may be based in a detailed or simplified 
physical model depending on how well the mathematical models represent the reality. 
Qualitative based models are according to Bang et al. (2019) models based on a priori 
knowledge. This means that some prior knowledge about the system is needed to 
determine a model. One of the most commonly utilized qualitative models is the rule 
based model which often implements multiple if-then statements.  

The focus of this thesis is, however, on the process history based models. This model 
family is purely data-driven and is therefore according to Katipamula and Brambley 
(2011) one of the more popular models due to the reduced complexity of the model. 
Bang et al. (2019) describes the fact that process history based models do not take into 
consideration any physical model of a system or a process, the model instead solely 
relies on the historical data that is available for analysis. These facts give the model an 
advantage when the process or system is poorly described by mathematical or physical 
models. The main disadvantages of the process history based models are according to 
Bang et al. (2019) the need for an abundance of data, if the available dataset is too small 
the analysis results would be less reliable. Another disadvantage that the authors bring 
up is the fact that the data might contain errors, in these cases there is a need for 
extensive preprocessing. 

Machine learning has lately been utilized to a great extent to detect errors and faults in 
consumption of electricity since deviations can easily be found when big amounts of 
data are investigated. Clustering techniques can be implemented for finding deviations, 
some examples of models applied for this purpose include K-means, Gaussian Mixture 
Models and DBSCAN. (Zheng et al., 2017) With regards to fault detection and 
diagnosis there are a vast number of different models and different applications. Zhao et 
al. (2020) mention examples of both supervised and unsupervised machine learning 
models being used for fault detection and diagnosis. However, these two broad 
categories contain several different models and due to the wide array of possibilities 
only a few will be mentioned in this report. Around 20% of fault detection methods that 
implement artificial intelligence are regression based and 24% utilize unsupervised 
learning methods, which includes clustering (Zhao et al., 2019). Zhao et al. (2020) 
mention some weaknesses of using regression models for fault detection. If the 
underlying data is insufficient then the resulting model might not accurately capture 
system behavior and the predictions might be a poor representation of the reality. This 
shortcoming might create situations where a model could detect errors simply because it 
has insufficient data. Furthermore, they discuss that the data should ideally be labeled to 
enable an optimal fault detection model. The authors also conclude that instances where 
the data is labeled correctly are scarce due to the reason that expertise often needs to 
manually label the data.  
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The Gaussian process regression mentioned in 2.3.2 is one of several models that can be 
applied to detect and diagnose faults (Zhao et al., 2020). A Gaussian process regression 
model is implemented by Van Every et al. (2017) to estimate the different flows of air 
into buildings with the goal of determining the supply of air needed for the ventilation 
to detect abnormal ventilation activity. Farshad (2019) describes a method for using the 
K-means method for fault detection. Farshad utilizes the K-means model’s centroids in 
an essential part of producing a model applied for fault detection. The author compares 
the cluster centroid with a cluster individual to determine if there exists such a distance 
between them that it exceeds a predetermined threshold, when it does it is labeled as a 
fault. These two models, Gaussian processes and K-means, are chosen as the two 
candidate models examined in this thesis. 

2.4  Examples  of  anomalies  

To enable anomaly detection by utilizing machine learning it is initially important to 
determine what an anomaly is and if it is detectable. While there is an anomaly 
detection system present at Uppsalahem, it is deemed to be too different in functionality 
to the algorithms developed within this thesis to be used as evaluation data for the 
developed models. The evaluation data therefore instead consists of a small set of 
electricity profiles for which anomalies have been labeled through a simple optical 
analysis. This paragraph aims to provide some examples of the types of behaviors 
which are of interest to capture as anomalies. There exist obvious anomalies such as a 
sudden increase or decrease of the consumption for the substation. Other more subtle 
behaviors that can be classified as anomalies are a slow and steady increase or decrease 
of consumption. These anomalies are harder to find since the data might indicate that it 
is normal consumption even when the drift might indicate a successive decline in 
building performance. 
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Figure	
  1(a,	
  b,	
  c,	
  d),	
  illustrations	
  of	
  different	
  kinds	
  of	
  anomalies. 
 
The figure above visualizes different examples of optically identified anomalies that 
exist in this data set. Figure 1(a) is an illustration of a substation that loses its highest 
consumption while maintaining its lowest consumption. Figure 1(b) illustrates an 
anomaly located in the latter part of the year. This is an anomaly that should be easier to 
find since there is an increase of both the lowest consumption and the highest 
consumption. Figure 1(c) similarly depicts a clear example of a radical change in base 
consumption. The last type of anomaly is illustrated in Figure 1(d). The anomaly in this 
case begins somewhat after hour 6000 when a slow and steady increase of the 
consumption occurs, commonly referred to as a drift. If this anomaly continues the 
potential energy losses will accumulate over a long time. However, these types of 
anomalies are difficult to detect since there is no clear difference in the day to day 
consumption. These anomalies need to be observed on a longer time scale than hours or 
days as to not give off false detections.  
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3  Methodology  and  data  
This section presents the data, methodology as well as the theory applied in this project. 
It begins with Subsection 3.1 which describes the data which is subjected to analysis 
and the preprocessing steps necessary to enable its use in the models later created. 
Subsection 3.2 then presents the first model developed, the K-means clustering model, 
as well as the relevant design choices and metrics of evaluation of that model. The 
following subsection subsequently describes how the K-means model is applied as an 
anomaly detection model. Subsection 3.4 presents the second model, the Gaussian 
process regression model and its evaluation procedure, and the subsection following 
that proceeds to describe the implementation of anomaly detection based on the 
Gaussian process regression model.  

For the purposes of the study, electricity data for the two most recent full years, 2018 
and 2019, was acquired from the electricity service provider E.ON, and in the following 
methodology a division is made where the first year is considered for training and 
testing the K-means and Gaussian process models, while anomaly detection is 
conducted and evaluated on the second year of data. 

3.1  The  data  

To allow for fast detection of anomalies, data should be gathered with a dense time 
interval. A dataset composed of hourly values of electricity consumption for roughly 
600 substations is acquired from E.ON. The range of the data is at its lowest 0 to 107.7 
kWh at the highest. The data for the 600 substations is downloaded as a set of roughly 
30 excel files, which are then converted into a single Pandas dataframe in Python. 

The electricity data is preprocessed in two steps. The first step aims to deal with missing 
or low time resolution data, and does so either through interpolation of missing or low-
resolution intervals in the data, or through the removal of data where these insufficient 
intervals are too long to be deemed interpolatable. The second step handles low 
resolution of the values for electricity consumption, and does so through a simple 
moving average smoothing. These techniques are elaborated further below. Lastly a 
section is written about the acquisition of data of outside temperature. This data is not 
deemed to be in need of preprocessing. 

3.1.1  Dealing  with  missing  data  

For some substations hourly values are only a disaggregation of daily or lower 
resolution measurements, so that each hourly value is set to a proportional share of the 
lower resolution measurement. This is not deemed to conform to this study’s earlier 
established need for hourly resolution data. Additionally, many of the data series are 
missing values for some parts of the 2 years. Interpolation or removal of data series with 
missing values are two of the most common ways of handling situations with missing 
data according to Zhang, et al. (2018). Lepot et al. (2017) state that incomplete time-
series hinder an optimal analysis of the data and development of models. It is 
determined that intervals shorter than 336 hours (2 weeks) may be interpolated for the 
purpose of this study, while all data series with missing or low time resolution data for 
consecutive intervals longer than 336 hours are removed from the analyzed dataset.  



16 

 

Furthermore, the interpolation should ideally be a function or an algorithm that 
represents the rest of the observations. Lepot et al. (2017) presents a vast amount of 
theoretical interpolation methods to use since time-series differ depending on the data 
source, economical, electrical, financial, etc. According to Beveridge (1992) four 
criteria need to be met for the option of an interpolation to be available. These four 
criteria are summarized in the citation below. 

“(i) not a lot of data is required to fill missing values; (ii) estimation of 
parameters of the model and missing values are permitted at the same time; (iii) 
computation of large series must be efficient and fast, and (iv) the technique 
should be applicable to stationary and non-stationary time series.” 

Other than the above-mentioned criteria the model should be robust and accurate (Lepot 
et al., 2017). There are two steps that need to be taken prior to the implementation of the 
interpolation method. Firstly, separation of the signal (relevant trend of interest) from 
the noise to only capture the relevant trends in the data. Secondly, understanding of the 
present and past data to improve the future forecasting and ability to fill in the absent 
data points to complete the interpolation. (Musial et al., 2011) 

Missing or low-quality data is commonplace in the dataset utilized in this study. In the 
case when a substation is missing high resolution values there is an individual 
assessment of the possibility to interpolate the missing data. The data also contains 
several instances where the values are constant for a period of time. These instances are 
also subjected to interpolation. Interpolation is performed when there are intervals of 
constant data longer than 24 hours and shorter than 336 hours (2 weeks) or missing data 
intervals between 1 and 336 hours. Intervals longer than 336 hours are not deemed to be 
interpolatable and those data series are instead removed from the final dataset. The 
anomalies are however retained for the anomaly detection model since they are a vital 
part for the evaluation of the model.  

The function chosen for interpolating data is a sum of a sine function and a linear 
function given in Equation 1: 

  𝑓 𝑥 = 𝐴× sin "+
",
𝑥 + 𝜙 + 𝐶𝑥 + 𝐵,  (1) 

where A is the amplitude, 𝜙 is the phase shift, C determines the angle on the curve and 
B is a constant. This function is chosen over simpler interpolation methods as it better 
reflects the periodic patterns and variability within the data series. The frequency of the 
sine function is kept fix to assure the interpolation polynomial has a period of 24 hours 
(reflecting diurnal patterns in electricity consumption) while the parameters A, C, and B 
are optimized using a least square fit to the data 24 hours before and 24 hours after the 
interpolated range. 

After a screening of the data the majority of the electricity data series are dropped due to 
either missing data or lacking hourly resolution data for intervals longer than two 
weeks. The set of data left after the data preprocessing stage is 193 time series with 
complete hourly resolution data for the years of 2018 and 2019. 
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3.1.2  Dealing  with  low  resolution  data  

Additionally, there are different resolutions in the data of electricity consumption 
ranging from 0.01 kWh up to 0.6 kWh. This fact presents some problems in analyzing 
the low resolution 0.6 kWh data. There is a risk that the low-resolution data does not 
present enough variation to display the more fine-grained temporal changes in 
electricity consumption. This effect might make predictions harder or in the case of 
cluster analysis lead to a cluster containing mainly low-resolution data that is similar 
only because of the data resolution, which does not mirror patterns in actual 
consumption behavior.  

This issue is remedied through smoothing the data. Smoothing is a technique which 
may be applied to time series data in order to reduce the minute variation between 
measurements at different time steps. As the smoothing process however also affects the 
distribution of the data (i.e., the electricity data normally contains momentary variation 
from one hour to the next, while smoothed data displays an aggregated pattern) the 
smoothing is applied universally to all data in the acquired dataset. Smoothing 
additionally has the benefit of reducing noise in the data. As a result of this noise 
reduction, the basis for pattern analysis is improved. There are however drawbacks as it 
also leads to some loss of specificity, as very short and sharp patterns may be smoothed 
out. Zytkow and Rauch (1999) use the moving average as a method for preprocessing. 
They highlight the fact that moving average smoothing is used to extract periodicity by 
removing noise from data that is collected in a fixed interval. There are several different 
algorithms for smoothing but this study uses sliding moving average (SMA). The SMA 
uses historical data to improve the smoothness of the studied subject. In this study the 
calculation of moving average is executed using the same method as Hyndman and 
Athanasopoulos (2018) described in Equation 2: 

  𝑇2 =
3
4

𝑦2678
79:8 ,   (2) 

where,  

 𝑚 = 2𝑛 + 1,    (3) 

In Equation (3), m represents the number of surrounding values that are used to 
determine the moving average. The parameter n is the width of the window of the 
moving average, that is, the number of hours before and after the investigated hour 
taken into consideration when calculating the average. The last notation that needs to be 
considered is the variable t, which is the location of the value currently being 
smoothened. Following the steps described in this subsection and Subsection 3.1.1 the 
complete preprocessing procedure is depicted in the flowchart seen in Figure 2.  
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Figure 2, a flowchart depicting the complete preprocessing procedure 

3.1.3  Weather  data  

Electricity consumption is impacted by multiple weather variables according to Yang et 
al. (2018). Auffhammer et al. (2017) mention that much previous research has been 
done on the relationship between electricity demand and outside temperature, and in a 
study of general grid demand establish that electricity consumption is responsive to 
temperature on a daily time frame. Within this study a set of models is therefore also 
created utilizing outside temperature as a dependent variable, for which a set of hourly 
weather data for the 2-year period of study is acquired from the Swedish meteorological 
and hydrological institute (SMHI) and added to the analysis.  

Additionally, it is established in this project that electric heat pumps are connected to a 
share of the studied substations. Heat pumps use electricity for purposes such as 
powering radiators and heating tap water, and have a major impact on electricity load 
profiles compared to other heating systems such as district heating. Therefore, a 
correlation between lower temperature and higher electricity consumption might be 
expected. Thus, a model that takes the outdoor temperature into consideration should 
theoretically perform better than a model that does. The outdoor temperature data 
implemented in the model is data downloaded from SMHI (SMHI, n.d.). The utilized 
data consists of hourly measurements from one weather station in Uppsala. The data 
stretches over the same period and retains the same resolution as the electricity 
consumption data.  

3.2  K-­means  model  

The first anomaly detection method developed in this study is based on the principle of 
clustering. The clustering algorithm chosen is K-means clustering, in which the model 
is represented by a set of centroids, the mean value of each cluster, and every data series 
is grouped to one of these centroids based on proximity and centroids are then 
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recalculated in an iterative process. The K-means model requires the selection of the 
desired number of clusters, K, before execution. The resulting clusters represent a 
grouping of electricity profiles based on similarities in their behavior. To ascertain that 
the results of the K-means clustering represent patterns, rather than differing scales of 
the clustered data, the time series data is first subjected to Z-score normalization, where 
all data is scaled to have the same mean and variance, which is described in Subsection 
3.2.1. The following subsection, gives a more in-depth description of the K-means 
model. The following two subsections then describe two common ways of determining 
the optimal number of clusters for K-means, the Elbow method and the Silhouette 
index. The final subsection offers a short description of how these validation scores are 
implemented to come to a conclusion about the final model. 

3.2.1  Z-­score  normalization  

One of the main problems that occur when developing a cluster based model for 
detecting anomalies on individual substation data is that the scales of the electricity 
consumption profiles are different from one substation to the other. Distance-based 
classification algorithms such as K-means are very likely to be affected by 
normalization, as they are built on the idea of calculating the distance between different 
entries. (De Jaeger et al., 2020; Viegas et al., 2016) For the purposes of this study, the 
clustering results should ideally not be impacted by scale differences in the baseline 
consumption, but only patterns and relative consumption changes which appear 
abnormal. 
 
There are several alternatives for normalization of data (Cheng et al., 2019), this study, 
however, uses Z-score normalization as it takes into consideration and deals with data 
containing outliers. Also known by the name standardization, Z-score normalization 
transforms the input data by subtracting the mean of each feature from the original 
values and normalizing it to have unit variance (Gasser,2020). The process can 
according to Zhang (2019) be described by Equations 4-6: 

  𝑋 : , 𝑖 = B :,C :DE
FE

, 𝜇C, 𝜎C ,   (4) 

  𝜇C =
3
I

𝑋[𝑘, 𝑖]I
M93 ,   (5) 

  𝜎C =
3

I:3
(𝑋 𝑘, 𝑖 − 𝜇C)"I

M93 ,  (6) 

where X[:,i] represents the feature at position i, and 𝜇C, 𝜎C are the mean and variance of 
that feature for the dataset. The normalization of the data utilizes the data for 2018 to 
transform all the 2018 time series to have mean zero and unit variance to enable 
clustering. The 2019 data is then normalized based on the mean and standard deviation 
of the 2018 data. The reasoning behind this is that clusters should be created using the 
first year of data, and data from the second year should not affect the clustering process. 

3.2.2  K-­means  clustering  

After the time series data is scaled to have similar means and variances it is ready for 
clustering. The K-means model is chosen for clustering the data. K-means is an iterative 
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method based on mean values of the data which divides the data into a set number, K, of 
clusters (Tan et al., 2018 p. 535). The K-means model is summarized in four main steps 
as: 

1)   To initiate the algorithm, K initial centroids are introduced within the dataspace 
at random coordinates.  

2)   Each datapoint’s distance (normally measured as Euclidean distance) to the 
centroids is calculated and assigned to the centroid with the shortest distance 
metric, creating the clusters.  

3)   New centroids are calculated based on the mean value of the coordinates of all 
the data points in respective clusters. 

4)   Steps 2 and 3 are repeated until the assignment in step 2 stops changing between 
iterations, meaning that the clusters have converged. 

Due to the way clusters are randomly initialized, K-means is considered a stochastic 
method, meaning that it does not yield exactly the same results every time the algorithm 
is executed (Tan et al., 2018 pp. 539-41). Due to this fact the initialization of the 
centroids also becomes important to the end result. 

The K-means model has one hyperparameter, K. Hyper-parameters are parameters 
chosen by the model creators. Since this choice affects the result of the model the choice 
of hyper-parameters is an important decision in the creation of machine learning 
models. (Burkov, 2019)  

The hyper-parameter K determines the number of clusters created at initialization. K 
must be a positive integer and its value may not exceed that of the total number of 
points in the dataset. Sometimes the selection of K might be inferred from the context of 
the problem being studied, but at other times the optimal number of clusters might not 
be clear. In those latter cases, multiple values for K may be tried iteratively and the 
different resulting models evaluated. (Tan et al., 2018 pp. 539-41)  

This study calculates several common measurements of clustering performance, the 
silhouette index, the within-cluster sum of squared errors (WSS) as well as within-
cluster R², to determine the optimal value of K. The final decision is based on the WSS 
and R² and utilizes the elbow method to determine the optimal value of K. However, for 
the sake of comparison the silhouette index values for the respective values of K are 
also presented. 

3.2.3  Elbow  method  

The elbow method plots a performance metric against an investigated value of model 
parameters, which is deemed to be a measurement of model complexity, resulting in an 
elbow point diagram. According to Masud et al. (2018) it is a well-known method for 
determining the number of clusters in a data set. Govender and Sivakumar (2020) states 
that the WSS is used to calculate the total sum of squared errors between each data point 
in the cluster and the cluster centroid. It is defined in Equation 7: 

  𝑊𝑆𝑆 = 𝑥C − 𝑐7
"

C∈UV
M
W93 ,  (7) 
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where 𝐶7 is the jth cluster object set and the amount of cluster is represented as K, 𝑥C is 
the ith data point clustered to 𝐶7 and 𝑐7 is the centroid of the jth cluster (Govender and 
Sivakumar 2020). 

As the WSS is calculated for different values of K there will be a point where the value 
WSS does not decrease substantially. Thus, there exists a point where further increase 
of the number of clusters does not make the model significantly better, illustrated in 
Figure 3 as “Elbow point”.  

 

Figure 3, an illustration of the elbow point diagram for WSS, inspired by Pimentel and 
de Carvalho (2020) and Masud et al. (2018) 

Another metric that can be utilized is the within-cluster 𝑅"-value. Unlike the WSS it is a 
mean of the individual measurements to ease comparisons. It is defined in Equation 8: 

 𝑊𝑖𝑡ℎ𝑖𝑛	
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where K is the number of clusters, 𝑐7 and 𝑥C are described as in Equation 7 and N is the 
length of 𝑥C. 

The optimal number of clusters is located at the x-axis at the elbow point in the 
diagram. Towers (2013) states that the elbow point is often determined by visually 
analyzing the diagram. Esteri et al. (2018) also highlights the fact that the elbow point 
can be hard to determine even for expert judgements due to the reason that it is executed 
optically. One issue with this method is when the investigated value increases for every 
cluster, then a single apparent elbow point might not be established (Masud et al., 2018; 
Pimentel and de Carvalho, 2020). In such an event, a sufficient elbow point is 
established to enable a specification of the number of clusters.  

3.2.4  Silhouette  index  

The second performance metric calculated for the cluster model is the silhouette index. 
When a clustering model’s ability to discover clusters in a dataset is evaluated the two 
criteria of interest are the compactness and separation of the clusters found (Tardioli et 
al., 2018). A good compactness is obtained when a cluster’s data points are close to 
each other and the distance between them are small. The separation of clusters regards 
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the distance between different clusters. A large distance between clusters means that the 
clusters are well defined and that there is a distinct difference between the clusters 
according to Tardioli et al. (2018). There are several validation indices measuring these 
properties that are useful for determining the success of a clustering technique. For the 
purpose of this study the silhouette index is chosen due to its relatively simple 
formulation and common usage. 

The silhouette index measures the ratio between the separation and the compactness of a 
cluster. The ratio varies from -1 to 1. When the cluster has a good partition the index is 
close to 1. For a single data point i the silhouette index is described by Equation 9: 

 𝑠 𝑖 = j C :k(C)
lmn	
  (k C ,j(C))

,    (9) 

where a(i) is the average dissimilarity comparing the data point i to all the other data 
points in the same cluster. Meanwhile b(i) is the lowest measure of dissimilarity 
between i and any data point which is not a member of the same cluster. To evaluate the 
silhouette index for the clustering as a whole all the silhouette indices must be 
considered. Equation 10, represents the overall silhouette index for all clusters and is 
defined as 

  𝑆 = 3
M

3
#U

𝑠(𝑖)C∈UV
M
793 ,   (10) 

where K is the number of clusters that is chosen and 𝐶7 is described as in Equation 7. 
This means that a single value of the silhouette index is determined for all the clusters. 
(Tardioli et al., 2018) 

3.2.5  Implementation  and  validation  

This project utilizes the implementation of the K-means model included in the Scikit-
learn package for Python. A set of models are fitted to the data, varying the 
hyperparameter value of K for each run, for values of K in the range between 2 and 20. 
The WSS as well as within cluster 𝑅" are calculated for each run and subsequently 
displayed in an elbow diagram. The silhouette index is also calculated for each value of 
K and displayed in a similar diagram.   

After the initial clustering is complete there is a division of all clusters containing five 
or less data points and redistribution of their members into the remaining clusters. If this 
is the case the model then removes the centroid of the cluster deemed to have too few 
members, and then repeats the clustering algorithm using the remaining cluster 
centroids from the initial run as the initial centroids. The result of this process is that the 
data points which were grouped to the removed cluster centroid are dispersed into the 
other clusters while the remaining clusters remain roughly the same. This procedure is 
conducted to ensure that each cluster has enough members to retain its overall shape 
even if drifts or anomalies happen in the individual data series. 

3.3  K-­means  model  anomaly  detection  

The anomaly detection model compares the values of the actual measurements from the 
individual substation to the mean value of the substation’s assigned cluster in the 



23 

 

clustering model. The amount of anomaly detection models is therefore equal to the 
number of clusters. For the clusters, the anomaly detection model is the mean 
consumption of the specific cluster, described in Equation 11: 

  𝑀U 𝑡 = 3
#U

𝑥C(𝑡)C∈UV ,   (11) 

where C is the studied cluster and #C is the size of the cluster. The variable 𝑥C(𝑡) 
represents the electricity consumption for the ith substation in cluster C at the hour t. 
This function 𝑀U(𝑡) is used as the comparison for detecting anomalies in all substations 
which have been grouped to that cluster.  

The question of how to define a fault has been discussed by multiple authors (Kjøller 
Alexandersen et al., 2019 and Bang et al., 2019). They argue that a fault could be 
described as when the consumption would deviate more than a predetermined bound. 
The bounds aim to take the uncertainties of the model into consideration. The upper 
bound and the lower bound illustrated in Figure 4 are located the same distance from the 
model at all times as it is a fixed value due to the normalization mentioned in 
Subsection 3.2.1.  

 

Figure 4, an illustration of the consumption where several anomalies should be detected 
(the red areas), inspired by Kjøller Alexandersen, et al. (2019) and Bang, et al. (2019) 

The red area from Figure 4 can be interpreted as the size of the deviation, when the 
deviation size is large enough it is detected as an anomaly. As can be seen in the figure 
an anomaly is detected not only when the consumption is too high, but also too low. 
This is an important step to ensure that all possible anomalies are found. The deviation 
size is mainly chosen because it takes into consideration large anomalies that occur 
under a small period of time and small anomalies that occur under a long period of time. 
(Bang et al., 2019) The deviation size between two points in time 𝑇3 and 𝑇" is defined in 
Equation 12: 
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 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	
  𝑠𝑖𝑧𝑒 𝑇3, 𝑇" = (𝑥 𝑡 − 𝑀U 𝑡 + 𝐵))ud
29uh , (12) 

where 𝑥(𝑡) is the actual consumption at time t, 𝑀U(𝑡) is the model described in 
Equation 12 and B is the above described bound. Furthermore, there is also the 
possibility that there is an anomaly below the consumption, it is defined in Equation 13: 

 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	
  𝑠𝑖𝑧𝑒 𝑇3, 𝑇" = ( 𝑀U 𝑡 − 𝐵 − 𝑥(𝑡))ud
29uh , (13) 

where every parameter is defined as for Equation 12.  

The comparison is executed for all values of t in the range from 1 to 8760 and the 
predicted consumption and from there iterates over all hours in the “unseen” data. The 
difference between the substation’s actual consumption and 𝑀U 𝑡  is then utilized to 
determine if an anomaly is detected, and a minimum deviation size, L, is implemented 
to determine when an anomaly has occurred. If the consecutive deviation is larger than a 
predetermined size it is reported as an anomaly. This leaves the anomaly detection 
model with two parameters to set in order to define an anomaly, the bound B and the 
size limit to determine an anomaly, L. 

3.4  Gaussian  process  regression  model 
The second model of this thesis applies a regression model to make predictions which 
enable anomaly detection. In order to allow for sufficient predictions, the regression 
model utilizes training data to learn electricity consumption as a function of the time 
and eventually also temperature data. The specific regression model used is Gaussian 
process regression. The section begins with an introduction to Gaussian processes in 
Subsection 3.4.1. The two most important choices in the development of a Gaussian 
process regression model are the choice of kernel function and dependent variables, 
which are expanded on in the two following subsections. Subsection 3.4.4 describes 
dynamic Gaussian processes, which is a specific implementation utilized in this study to 
cope with computational complexity and learn seasonal trends in the data. Subsection 
3.4.5 then describes the relevant metrics for measuring the performance of prediction 
models. The final subsection describes the practical implementation of the model and 
how the combinations of kernel function and dependent variables are selected from a 
cross-validation procedure. 

3.4.1  Gaussian  process  

The Gaussian process is a non-parametric probabilistic tool which can be used to model 
non-linear functions. It may be utilized to solve classification as well as regression 
problems, the latter of which is the application for this study. A Gaussian process is a 
generalization of the Gaussian probability distribution, also known as the normal 
distribution. This distribution is parametrized by its mean and standard deviation (van 
der Meer, 2018a), in accordance with Equation 14: 

  𝑓 𝑥; 𝜇, 𝜎 = 3
F"+

𝑒:
h
d(
wxy
z )d,  (14) 

The Gaussian process is then formally defined as “a collection of random variables, any 
finite number of which have a joint Gaussian distribution” (Rasmussen & Williams, 
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2006). As the Gaussian process is used to model a function, the assumption then 
becomes that for all pairwise combinations of two function values, f(x) and f(x’), where 
x and x’ are any two distinct values of x, they are jointly distributed according to 
Equation 15: 

  𝑝 |(c)
|(c}) ~𝒩(𝜇, 𝐾),   (15) 

where µ is the mean and K the covariance matrix, which is defined as the matrix of all 
pairwise outcomes of the covariance function of any two values of x. The Gaussian 
process is then defined by its mean function m(x) and the covariance function k(x, x’), 
representing the real process f(x) resulting in the following connection in Equation 16-
18: 

  𝑚 𝑥 = 𝐸[𝑓(𝑥)],   (16) 

 𝑘 𝑥, 𝑥� = 𝐸 (𝑓(𝑥 − 𝑚(𝑥))(𝑓 𝑥� − 𝑚(𝑥�))], (17) 

  𝑓(𝑥)~𝐺𝑃(𝑚 𝑥 , 𝑘(𝑥, 𝑥�)),  (18) 

Thus, the random variable described by the Gaussian process is a representation of the 
value of f(x) at the point x. Gaussian processes are commonly considered as having a 
zero-mean function, albeit this is not strictly necessary. The covariance function k(x, x’), 
also called kernel function, specifies how the function value f(x) is related to other 
values f(x’).  

For a vector of n points X = {𝑥3 … 𝑥8} the distribution over functions described in 
Equation 14 is then characterized by 𝜇*= 0 and the covariance matrix K which is seen in 
Equation 19: 

 𝐾 =
𝑘(𝑥3, 𝑥3) ⋯ 𝑘(𝑥3, 𝑥8)

⋮ ⋱ ⋮
𝑘(𝑥8, 𝑥3) ⋯ 𝑘(𝑥8, 𝑥8)

,  (19) 

The kernel function is an integral part of Gaussian processes as it determines the 
properties of the modeled function f(x). There are a multitude of potential kernel 
functions to choose from when creating a Gaussian process (Rasmussen & Williams, 
2006), some of which will be further described in Subsection 3.4.2. The kernel function 
is defined in such a way that the Gaussian process may also be generalized to 
unobserved function outputs, henceforth denoted as f(x*). Assuming a zero mean, the 
joint distribution over functions may then be written as in Equation 20: 

 𝑝 𝑓(𝑋)
𝑓(𝑋∗) ~𝒩 0

0 , 𝑘(𝑋, 𝑋) 𝑘(𝑋, 𝑋∗)
𝑘(𝑋∗, 𝑋) 𝑘(𝑋∗, 𝑋∗) , (20) 

The predictive distribution in unseen data points conditioned on observed data may then 
be obtained through Equations 21: 

 𝑝 𝑓(𝑋∗) 𝑋, 𝑓 𝑋 , 𝑋∗ = 𝒩(𝜇∗, Σ∗),  (21) 

where the prediction’s mean  𝜇∗  and covariance matrix  Σ∗  are described in equations 22-
23: 
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 𝜇∗ = 𝐾 𝑋∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎"𝐼 :3𝑓(𝑋),  (22) 

 Σ∗ = 𝐾 𝑋∗, 𝑋∗ − 𝐾 𝑋∗, 𝑋 𝐾 𝑋, 𝑋 + 𝜎"𝐼 :3𝐾 𝑋, 𝑋∗ + 𝜎"𝐼, (23) 

Thus, for all predictions, the Gaussian process yields both an expected value (i.e. the 
relevant prediction) and a standard deviation, which may be used to establish a degree 
of confidence for the predictions. The latter is perceived to have a possible utility in the 
detection of anomalies, which is one of the reasons behind choosing a probabilistic 
model. (van der Meer, 2018a) 

A benefit of utilizing a probabilistic model is that it allows for the specification of a 
prior distribution over functions, which expresses a belief about the system behavior 
imposed by the researcher before any data has been observed. Once a set of data has 
been observed this distribution is fitted to only include functions which pass through (or 
close enough to) the observed data points, resulting in the posterior distribution over 
functions. (Rasmussen & Williams, 2006) This posterior has reduced uncertainty in 
points close to the observed data points, as seen in Figure 5. 

 

(a) 

 

(b) 

Figure 5, illustration of the prior distribution (a) and posterior distribution fitted to a 
set of observations (b) of a Gaussian process using the Squared Exponential kernel. 

(image source: Scikit-learn, n.d.) 

The training of the Gaussian process is inductive in the manner that it utilizes a limited 
set of data to adapt a function that can be used to predict all possible input values. The 
kernel function is parameterized by one or several hyper-parameters, 𝜃, commonly 
written k(x, x’; 𝜃). These hyper-parameters are what allows for flexibility in how the 
data is modeled. The learning process for a Gaussian process model consists of learning 
these hyper-parameters from some training dataset. A benefit of working with Gaussian 
processes is that hyperparameters may be inferred directly from the training data, which 
reduces the need for cross-validating in order to infer values for the different hyper-
parameters. This is performed by maximizing the log marginal likelihood with respect 
to 𝜃 (van der Meer, 2018) which is described in Equation 24: 

log 𝑝 𝑓 𝑋 𝑋, 𝜃 = − 3
"
𝑓 𝑋 −𝑚 𝑋 u 𝐾 𝑥, 𝑥 + 𝜎8"𝐼 :3 𝑓 𝑋 −𝑚 𝑋 −

3
"
log 𝐾 𝑥, 𝑥 + 𝜎8"𝐼 −

8
"
log 2𝜋,    (24) 

This training process requires the inversion of this covariance matrix, which is a task of 
cubic complexity, making the training process computationally expensive as the number 
of observations in the training data grows large (Rasmussen & Williams, 2006). In the 
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Scikit-learn implementation of Gaussian processes, this optimization is carried out by 
the gradient based algorithm L-BFGS-B (Byrd, 1996) by default. There is however no 
guarantee that the marginal likelihood does not suffer from multiple local optima. It is 
normally not a problem for simpler kernel functions, but local optima may nevertheless 
exist and affect the resulting posterior. The Scikit-learn implementation of Gaussian 
processes also supports the implementation of other optimization algorithms through the 
passing of a function or the choice of not optimizing the hyper-parameters in order to 
make predictions based on the Gaussian process prior. (Scikit-learn, n.d.) 

In creating a Gaussian process model the main choices left to the machine learning 
engineers are the choice of kernel functions and dependent variables. These choices are 
largely based on some prior knowledge of the dataset, established either through 
previous research or empirical study of the data. (Rasmussen & Williams, 2006) In this 
case conceptual knowledge about typical profiles of electricity consumption become 
important for making these choices. 

3.4.2  Kernel  functions  

There is a multitude of kernel functions to choose from when creating a Gaussian 
process model, some relevant examples of kernel functions for this study include: 

§   Squared exponential kernel 

Also called the radial basis function (RBF) kernel, is defined in Equation 25: 

  𝑘�� 𝑥, 𝑥� = 𝜎"exp	
  (− (c:c})d

"�d
),  (25) 

This function has one parameter l defining the characteristic length-scale. The length-
scale parameter can be understood as regulating how close in the feature space another 
point must be for it to have a significant impact on the distribution of values in x. The 
RBF function is infinitely differentiable, which means that a Gaussian process with this 
kernel function has mean square derivatives of all orders, making it very smooth. The 
RBF kernel is often cited as the most widely used kernel function in the field of kernel 
machines. (Rasmussen & Williams, 2006)  

§   Matern kernel 

This kernel has the form that is described in Equation 26: 

 𝑘 𝑥, 𝑥� = 3
�(�)"�xh

( "�
�
𝑥, 𝑥′ )�𝐾�(

"�
�
𝑥, 𝑥′ ),  (26) 

In addition to the length-scale parameter of the RBF kernel it has a parameter v which 
controls the smoothness of the resulting function. It is a generalization of the squared 
exponential function and converges to the RBF kernel as v approaches infinity. Stein 
(1999) argues that the Matern class yields more realistic models of real-world 
phenomena as it does not enforce the same smoothness as the RBF kernel. (Rasmussen 
& Williams, 2006)   

§   Exp-Sine-Squared kernel 
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 This kernel has the form that is described in Equation 27: 

  𝑘(𝑥, 𝑥�) = exp	
  (−
"���d(+ c,c}

�)
�d

),  (27) 

The Exp-Sine-Squared kernel allows for the modeling of periodic functions with a 
behavior which repeats its values in regular intervals. It has the length-scale parameter l 
and a periodicity parameter p, where the length-scale parameter fills the same function 
as in the above described kernels and the periodicity determines the distance between 
repetitions of the function. (Rasmussen & Williams, 2006)  

§   White Kernel 

This kernel has the form which is defined in Equation 28: 

 

  𝑘 𝑥, 𝑥� = 𝜎"𝐼8,   (28) 

which explains the noise of the output signal as independently and identically normally-
distributed. While it is of no use to model by itself it is an important part of the sum 
kernels utilized in this project as it allows the model to fit noise to the data when the 
signal is noisy. (Scikit-learn, n.d.) 

Additionally, it is possible to create new kernel functions through addition and 
multiplication of existing functions (Rasmussen & Williams, 2006). The multiplication 
or addition of two positive semidefinite kernels always result in another positive 
semidefinite kernel. Duvenaud (2014) mentions some examples of combining kernel 
properties through multiplication. Among them is the “locally periodic kernel”, 
acquired through the multiplication of the periodic Exp-Sine-Squared kernel with a 
Squared Exponential kernel. This kernel function results in functions over the data 
which have the property of periodicity but may also vary slowly over time. (Duvenaud, 
2014) 

3.4.3  Choice  of  dependent  variables  

When designing a regression model the choice of dependent variables is of paramount 
importance. Yang et al. (2018) propose a Gaussian process quantile regression model 
for making 1 hour ahead predictions of electricity consumption. Their dependent 
variables include calendar variables, weather conditions, electricity prices and historical 
load data. Thus, they arrive at the relationship described by Equation 29: 

   𝑦 = 𝑓(𝑡, 𝑑, 𝑣�, 𝑣2, 𝑝),   (29) 

where ŷ is the approximation of electricity consumption, where “t ∈ [0,24] is the hour 
of day, d ∈ {1,2, ... ,365,366} is the day of the year, 𝑣� is a vector of the historical 
power load values, 𝑣2 is a vector of weather variables like temperature, p is the real-
time price.” (Yang et al., 2018)  

In order to infer relationships between electricity consumption and the hour of the day 
without utilizing a periodic covariance function, the time data is also mapped to a plane, 
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where each point in time may be described as a coordinate consisting of the day of the 
year and the hour of the day. As the original time resolution of the data is hourly, the 
conversion of the hour of the year into day of year and hour of day respectively could be 
achieved by the simple function described in Equation 30: 

  𝑓 𝑡 = ( 2
",

, 𝑡 − 24× 2
",
),  (30) 

where 2
",

 is the Euclidian division where t is the numerator and 24 the denominator. 

This creates a coordinate system where the point (3,13) occupies a position closer to 
(4,13) than for instance (4,20), which also determines how much weight the Gaussian 
process regression model places on the different observations when making a 
prediction. Figure 6 shows an example of the considered distance between the observed 
data points and the point of interest for a prediction with a 24-hour horizon. 

 

Figure 6, illustration of which data points the prediction regards.  

The red point in Figure 6 is the point that the model aims to predict. The model takes 
the closest points in the plane into consideration when trying to predict the upcoming 
load. As can be seen in Figure 6 the model takes the point in the red square into most 
consideration, afterwards, the points in the blue squares are taken into consideration. 
The points that impact the predictions the least are the points in the green squares. 

There are three alternative configurations of dependent variables tried in this study: 

1)   ŷ=f(t), where t is the specific hour of the two-year time period studied. This is 
used exclusively in combination with the periodic ExpSineSquared kernel. 
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2)   ŷ=f(h, d) where h ∈ [0,24] is the hour of the day and d ∈ {1,2, ... ,730} is the 
day of the two year period studied. 

3)   ŷ=f(h, d, w) similar to 2 but with the added value of the outside temperature as 
w. 

3.4.4  Measurements  of  model  error  

As the project is partly based on the utilization of regression models it is crucial to 
determine how accurate the developed models are. If a model is an insufficient fit it is 
not an adequate representation of the reality which in turn offers problems for the 
project. Therefore, four different, well known metrics are utilized, mean absolute error 
(MAE), mean absolute percentage error (MAPE), root mean squared error (RMSE) and 
𝑅". The four metrics calculate the error and correlation between predictions and 
observed values and are further described in this subsection. 

Mean absolute error 
Mean absolute error (MAE) is the first measurement of model errors regarding 
forecasting. Van der Meer et al. (2018c) utilizes MAE to assess the performance of the 
forecasting model. Furthermore, they define it in Equation 31: 

 𝑀𝐴𝐸 = 3
u

𝑦2 − 𝑦2u
293 ,    (31) 

where T is the length of the time series, 𝑦2 is the measured value and the forecasted 
value is 𝑦2. A lower value indicates a better performing model. 

Mean absolute percentage error 
Mean absolute percentage error (MAPE) is utilized by van der Meer et al. (2018c) as a 
performance metric to evaluate the predictions. Further it is defined in Equation 32: 
 

  𝑀𝐴𝑃𝐸 = 3
u

¡f:¡f
lmn ¡ :l��	
  (¡)

u
293 ,  (32) 

where max(y) and min(y) represent the maximum and minimum value of the time series 
respectively. All other parameters are defined as for MAE above.  

Root mean squared error 
One of the most common approaches to determine the performance of a forecasting 
method is according to Bourdeau et al. (2019) the RMSE. The model is described in 
Equation 33:  

  𝑅𝑀𝑆𝐸 = 3
I

(𝑦¢ − 𝑦C)"I
C93 ,  (33) 

where N is the number of values in the measurement series and 𝑦¢ is the model’s 
predicted value at index i and 𝑦C is the true value. A low RMSE value indicates a well 
fitted model. Depending on the implementation the value that is determined to be a 
good value varies, it is therefore difficult to set a fixed bar on what is a good value.  
 
R-squared 
The coefficient of determination or the 𝑅" measurement method is according to Cheng 
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et al. (2014) utilized to measure how well a regression model is fitted to a sample of 
observations. Furthermore, it is the squared value of several correlation coefficients 
between the model and the observations based on the studied sample. Bourdeau et al. 
(2019) defines the equation for the 𝑅"-values as described in Equation 34: 

  𝑅" = (1 − (¡£:¡E)de
Egh

(¡£:¡)de
Egh

),   (34) 

where 𝑦¢ and 𝑦C are defined in the same way as in the above paragraph. The variable 𝑦 is 
the mean value of 𝑦C for the whole year. According to Elsheikh et al. (2019) the 𝑅"-
value is utilized for determination of resemblance between two different time series, in 
this case a forecasted time series and an observed time series. Generally speaking, the 
better the value, the closer to 1 it is. Thus, a high number indicates a good forecasting 
model or method (Elsheikh et al. 2019).  

3.4.5  Dynamic  Gaussian  process  regression  

Gaussian processes regressors for time series data may be trained iteratively in order to 
make one-step-ahead predictions, resulting in a dynamic Gaussian process model. The 
dynamic Gaussian process model is updated iteratively using a moving window. Girardi 
et al. (2003) conclude in their study that an iterative Gaussian process is often less 
computationally demanding, since it is being updated using a shorter length of training 
data instead of the whole available set. Van der Meer et al. (2018b) find that the 
dynamic Gaussian process approach produces sharper prediction intervals in a study of 
residential electricity data while also bringing a significant reduction to computational 
demand compared to a static Gaussian process regression model, but with the drawback 
that it also is less capable of predicting sharp peaks in electricity consumption.  

This project opts for dynamic Gaussian processes primarily to cope with computational 
demand, as the training process for the static Gaussian process becomes very 
computationally expensive as the amount of training data considered grows. 
Additionally, the dynamic Gaussian process may benefit from an increased ability to 
learn seasonal patterns in electricity consumption, as the hyper-parameters are learned 
specifically from the local data close to the current time. When creating a dynamic 
Gaussian process for this project, a choice is made that the model hyperparameters 
should be updated based on 4 weeks of data. Thus, a call is made to the optimizer once 
every 672 hours (or 4 weeks) to update the model hyperparameters based on the latest 
672 observations. Shorter intervals were originally considered but led to widely varying 
results from the hyperparameter optimization. The remaining time, the hyperparameters 
from the last model update are treated as a model prior and new data points are fitted to 
it without updating the hyperparameters. The amount of data considered for inferring 
the next prediction is always limited to the past week for computational reasons.  

3.4.6  Implementation  and  cross  validation  

As the hyper-parameters in the dynamic Gaussian process are inferred from the training 
data as described in Subsection 3.4.1, the cross-validation procedure in this project 
instead serves to evaluate the different options for kernel functions, as well as the 
possible configurations of the dependent variables. Different combinations of kernel 
functions and dependent variables are therefore tried for a static Gaussian process 
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implementation. In this case the time horizon is 24 hours, which means that the model 
may consider observations up until 24 hours before the point being predicted, but not 
the 24 hours immediately preceding the point being predicted. More accurate 
predictions may be attained at an hourly prediction horizon, however that would also 
make it increasingly difficult to find anomalies due to the fact that predictions would 
largely be based on the observation of the previous hour, leading to a lack of 
differentiation between the predictions and the anomalies as the model also predicts the 
anomalies to a high extent. However, in the daily basis time horizon there exists a clear 
difference between the predictions and the expected consumption if an anomaly occurs. 
A weekly time horizon basis was also considered but deemed to be too inaccurate to 
yield sufficient predictions to enable a viable anomaly detection model.  

This study utilizes a blocking based cross validation for time series (Racine, 2000) 
which is specifically developed to handle the issues of dependency between 
observations in time series data. Cross validation is conducted on the first half of each 
data series (consisting of the year 2018) so that anomaly detection models using the 
kernels and dependent variables chosen from the cross-validation step may then be 
deployed for the 2019 data. The chosen number of splits for the validation procedure is 
6 where each split is divided into 50 % training and 50 % test data. These values are 
chosen as they mirror the functionality of the dynamic Gaussian process model 
described in Subsection 3.4.4. 

The blocking cross validation procedure consists of splitting the validation data into 
equally sized blocks, for which each block is then split into two separate blocks of 
training and test data as illustrated in Figure 7. The Gaussian process regression model 
then learns hyperparameters from the training data block and subsequently makes 24-
step ahead predictions for every hour in the test data set. The aforementioned 
performance metrics of MAE, RMSE and 𝑅"   are then calculated for the predictions.  

In this study, cross validation is conducted individually for each data series that is 
considered for the anomaly detection algorithm. As this procedure is computationally 
expensive, an exhaustive cross validation is not conducted for each data series in the 
acquired dataset. 

 

Figure 7. A representation of the K-fold cross validation procedure for time series. (Inspired by 
van der Meer et al., 2018b) 
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3.5  Gaussian  process  regression  anomaly  detection  
The Gaussian process anomaly detection model differs from the K-means based 
anomaly detection model in a number of ways. Firstly, instead of setting a static bound 
for the full year, the gaussian process utilizes the standard deviation of the model to 
attain the bounds for comparing the model and actual data. This allows the anomaly 
detection model to dynamically compensate for varying degrees of certainty in 
predictions during the whole year. The anomaly detection model then multiplies this 
standard deviation by some constant which may be defined for the individual case, e.g. 
1.96 to consider only observations outside the 95 % confidence interval as contributing 
to the anomaly detection. Also, the Gaussian process predictions often remain close to 
the observations even for what is considered to be abnormal data. The model’s inability 
to accurately predict the variance of effect peaks would also often interfere with the 
process of finding long-term anomalies. Therefore, the anomaly detection model opts 
for trying to find situations where a big enough share of the observations is outside of 
the prediction bounds instead of looking for continuous intervals where the model 
output and data differ in a way that’s indicative of over- or underconsumption. This 
however requires the model to restrictively consider some interval when calculating this 
share of abnormal observations. This results in a set of three configurable parameters for 
the second anomaly detection model; The constant for defining the confidence interval 
of the bounds, s, the length of the interval the model must consider in order to detect an 
anomaly, w, and finally the share of observations within said interval that must be 
outside the bounds for the data to be considered an anomaly, p. Thereby, the criterion 
for finding abnormally high consumption at a given time t can be defined as 

 𝑠𝑖𝑔𝑛(𝑦 𝑡 − (𝐸 𝑓(𝑡∗) + 𝑠𝜎(𝑓(𝑡∗)))2
2:¥ ) > 𝑤×𝑝,  (35) 

where y(t) is the observed consumption in t and 𝑓∗(𝑡) is the Gaussian process estimate 
delivered on a 24-hour prediction horizon. In similarity to the clustering based model 
there is another mirror function for unexpectedly low consumption: 

 𝑠𝑖𝑔𝑛(𝑦 𝑡 − (𝐸 𝑓(𝑡∗) + 𝑠𝜎(𝑓(𝑡∗)))2
2:¥ ) < 𝑤×𝑝,  (36) 

Additionally, since the Gaussian process estimates are based directly on the events 
during the previous 24 hours, while the timeframes for detecting anomalies are often 
significantly longer, a slight modification is made to the earlier described prediction 
model. If the model is allowed to make estimations based on abnormal data, these 
estimates are likely to mirror abnormal behavior, preventing the detection of anomalies 
longer than the prediction horizon. The anomaly detection for the Gaussian process 
model therefore requires the regression model to receive feedback from the anomaly 
detection model, i.e. when the anomaly detection model is in the process of detecting an 
anomaly, the regression model may not use those data points to make new estimations. 
Instead, the model then makes predictions based on the latest “good” data, resulting in a 
longer prediction horizon in those cases. As the prediction horizon grows longer, the 
insecurity in the predictions, represented by the standard deviation, increases, meaning 
the bounds for the anomaly detection gradually become broader towards the end of the 
interval. This allows the model to retain relatively strict bounds during normal 
consumption and near the beginning of the anomaly detection interval, making it 
preferable to always making estimates based on a longer prediction horizon. 
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4  Results  and  analysis 
This section presents a detailed analysis of the results that have been obtained and 
analysis of the same. The results section begins with a thorough examination of the first 
implemented model, the K-means model and conclusions about the representativity of 
the clusters. Thereafter the Gaussian process regression model and an evaluation of its 
forecasting abilities on the data set is presented. Finally, the results on the 
implementation of the anomaly detection models are presented in two subsections, one 
discusses the anomaly detection model based on clustering and the other elaborates on 
the results from the Gaussian process based anomaly detection model. The aim is to 
evaluate the results from these models using different examples and illustrations from 
the studied data set. Some criticisms of the perceived flaws and insufficiencies of the 
respective models are also presented in these paragraphs. Finally, a comparison between 
the developed models is executed, in which their respective strengths and weaknesses 
are analyzed. 

4.1  K-­means  model   

In an iterative process the clustering model is implemented for values ranging from 2 to 
20 representing the hyperparameter K, and the performance metrics Silhouette index, 
WSS and within-cluster R² is also calculated for each run. The silhouette index indicates 
that the optimal value of K is 2. For K=2, the calculated silhouette score is 0.12 as is 
presented in Figure 8, where the blue line depicts the calculated performance metric and 
the red lines mark the identified optimum for that performance metric. The blue curve 
depicts the performance metric and the red lines identifies the optimum. A silhouette 
score of 0.12 indicates a lack of compact or well separated clusters in the dataset. 
Therefore, the silhouette index is considered to be insufficient and therefore it is decided 
that the optimal value of K should instead be derived from the elbow point method.  

 

Figure 8, silhouette score for the clusters 

The elbow diagrams for the two metrics of WSS and R² are displayed in Figure 9. 
Similarly to Figure 8 they depict the calculated performance metrics for all values 
between 2 and 20. Figure 9(a) illustrates how the WSS value changes as the number of 
clusters changes. Figure 9(b) depicts the same relationship for the within cluster R² 
value. These diagrams are analyzed optically and the identified elbow points have been 
marked in the diagrams.   
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(a) 

 
 (b) 

Figure 9, elbow method based on the WSS (a) and within cluster R² (b) with respect to 
the number of clusters 

Neither the WSS nor R² value shows a sharp elbow where the error metrics completely 
stop declining as more clusters are added. When the elbow diagrams of the different 
performance metrics are evaluated it is hard to establish an elbow point, however when 
they are analyzed in conjunction, an elbow point is determined to exist at K=6 for both 
WSS and R².  

Table 2, the clusters and their respective number of members 

Cluster Number of members 

Cluster 1 12 

Cluster 2 46 

Cluster 3 28 

Cluster 4 59 

Cluster 5 8 

Cluster 6 40 
 
Table 2 depicts an example result of the clustering algorithm. The number of members 
in each cluster can be seen in the table as well. As the clustering algorithm is stochastic 
the clusters and numbers of data points vary with each run, however, consistent cluster 
profiles are observed between multiple runs of the clustering algorithm. After the initial 
clustering an evaluation is performed to determine if the cluster centroid is deemed to be 
a sufficient representation of the cluster’s individuals. For the specific run no cluster 
had less than 5 members, and thus no cluster is scattered due to its size being too small.  
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Figure 10, the centroids of the different clusters regarding the substations. 

Figure 10 displays the centroids of the clusters given in Table 2. The cluster centroids 
all represent different patterns of electricity consumption in the dataset. It is important 
to remember that the cluster centroids are generated from normalized data. The 
clustering procedure thus ignores the scale of the data and only considers the patterns 
(seasonal and daily) when generating the clusters. This implies that individuals that 
have a mean consumption of e.g. 50 kWh might be clustered to cluster 5 if its 
consumption pattern is similar. When denormalizing the cluster centroids they are 
transformed to have the mean and standard deviation of the data which has been 
classified to the respective cluster. Some of the more irregular or seasonal consumption 
profiles display higher than average consumption during the late autumn, winter and 
early spring months, suggesting that they may contain some electric heat pumps. (It was 
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discovered during the study that many of the substations with high electricity 
consumption contained heat pumps.) Centroids for clusters 1, 3, 5 and 6 have more of a 
seasonal pattern, compared to the relatively numerous clusters 2 and 4 which lack this 
seasonal profile. Furthermore, it can be seen that the centroid for cluster 1 exhibits an 
atypical consumption pattern. It has a clear nonseasonal pattern in the early stages of the 
year. The behavior of initially low consumption for the first 1000 hours compared to 
hours 1000-2500 is quite hard to explain, yet, it could not be linked to a specific item 
disturbing the clustering and this cluster profile would also appear consistently between 
runs. One speculation is that Uppsalahem continuously works towards a more 
sustainable consumption by, for instance, installing heat pumps. These heat pumps can 
be a reason for the more uneven consumption pattern at cluster centroid 1 but also 
centroid 3.  

4.2  Gaussian  process  regression  model 
It is established through early modelling attempts that the possibility of creating 
accurate models on a 24-hour basis varies a lot between the different substations. Due to 
the high variability in the dataset the optimal choice of kernel function and dependent 
variables also varies between the individual substations. For this reason, it is decided 
that the configuration of dependent variables and kernel function should be chosen 
individually for each of the substations and predictions given on an individual basis. 
However, to begin with, a general choice of kernel function is established and its results 
for the dataset in general are presented in Table 3. This is done to communicate a 
general idea of the performance of the Gaussian process regression model for the entire 
dataset while also showing the distribution of well-predicted and less well-predicted 
substations. Due to the large number of substations, these results are presented by 
grouping the prediction results into one of four buckets, for each of which the 
performance metrics of R² and MAPE are displayed as an interval.  

A subset of the electricity data is chosen based on what has been identified as a 
representative distribution of the different patterns present in the dataset. The cross-
validation procedure described in Subsection 3.4.6 is conducted for this subset of data 
series to establish an optimal kernel for the dataset in general. The kernels that are 
investigated are Matern 3, Matern 5, RBF, ExpSineSquared and combinations thereof, 
as well as different choices of dependent variables. Refer to Table 3 for a complete list 
of the combinations evaluated.  
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Table 3, Exemplification of cross validation for a substation. The dependent variables 
are represented as T for time, D for day, H for hour and finally W for the outside 

temperature. 

Kernel function Dependent 
variables 

MAE 𝑅" RMSE 

Persistence None 2.558 0.518 3.778 
ExpSineSquared + RBF T 2.058 0.721 2.867 
ExpSineSquared × RBF T 2.120 0.712 2.908 

Matern 3 D, H 2.164 0.711 2.919 
Matern 5 D, H 2.159 0.711 2.918 

RBF D, H 2.157 0.709 2.923 
Matern 3 + RBF D, H 2.098 0.717 2.886 
Matern 3 × RBF D, H 2.145 0.712 2.914 

Matern 3 D, H, W 2.210 0.701 2.962 
Matern 5 D, H, W 2.191 0.704 2.952 

RBF D, H, W 2.199 0.702 2.965 
Matern 3 + RBF D, H, W 2.148 0.706 2.939 
Matern 3 × RBF D, H, W 2.475 0.648 3.223 

 
Table 3 displays an example of the cross-validation procedure for one of the selected 
substations. Additionally, the cross-validation results for the different metrics are 
compared to those of the persistence model. The persistence model is utilized to see if 
there are diurnal patterns in the electricity profiles that the regression model should pick 
up on, and as a benchmark of performance for the profiles where such patterns are 
present. The persistence model is a model that treats the observed values for the 
previous time horizon as a prediction for the upcoming time horizon, for a time horizon 
of 24 hours, this means that the observation of today’s consumption is the prediction for 
tomorrow. It is important to stress the fact that the table only describes one specific 
instance of the cross-validation procedure, and that the numbers displayed are not 
representative for the dataset as a whole. 

During this cross-validation process varying results are observed for the optimal choice 
of kernel function and dependent variables as well as performance gain compared to the 
persistence model. Some general observations are that the sum-kernels of Matern3 + 
RBF and ExpSineSquared + RBF sometimes outperform the remaining evaluated 
kernels by a wide margin, while rarely underperforming significantly, indicating that 
there might be benefits to the flexibility provided by the sum-kernels. Additionally, the 
periodic ExpSineSquared + RBF kernel would as might be expected perform 
significantly worse for the data where the results from the persistence model were poor, 
suggesting an absence of periodic patterns. Finally, the inclusion of outside temperature 
would often result in slightly lower accuracy of predictions. Examination of the hyper-
parameter values after optimization showed that the optimizer would often fit a short 
length-scale to either weather or hour of the day, suggesting that the correlation between 
outside temperature and time of day may make it difficult to infer optima for the hyper-
parameters. While this does not suggest that electricity consumption is unrelated to the 
outside temperature, it might not aid in making day-to-day predictions for most of the 
substations. This observation does however not hold true for the whole dataset, and 
some of the high consumption substations would benefit from using weather as a 
dependent variable, likely due to the presence of electric heating. However, no 
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comprehensive list of electric heating equipment connected to the different substations 
has been acquired, making it difficult to confirm this hypothesis. After the selected set 
is evaluated, the sum-kernel of Matern3+RBF without the inclusion of outside 
temperature as a dependent variable is chosen as a “best general model” for the dataset. 
Van der Meer et al. (2018b) similarly conclude that the sum-kernel Matern 3+RBF 
yields the best results for hour-ahead predictions of an electricity profile, further 
supporting this result.  

However, as might be expected from the wide variation of shapes among the profiles, 
establishing an optimal choice of kernel function and dependent variables for the 
entirety of the data is a hard task and the optimal choice of kernel function and 
dependent variables varies between individual substations. Based on these differing 
results it is recommended that kernel functions and dependent variables should be cross-
validated and chosen on an individual basis. However, an exhaustive search for the 
optimal combination of kernel functions and dependent variables on an individual basis 
is not conducted within this study due to the restraint of computational demand.  

After a choice of a generally well-performing combination of kernel function and 
dependent variables has been established the cross-validation procedure is repeated for 
this specific kernel, and R² and MAPE values are calculated and the results from this 
process are presented in Table 4. 

Table 4, results presenting the 𝑅"-values and MAPE for the regression model for all the 
individuals in the data set. 

Number of substations 𝑅" MAPE 
5 0.75-1.00 5.9%-7.9% 
25 0.5-0.75 7.7%-12.5% 
40 0.25-0.5 8.9%-15.3% 
123 <0.25 9.5%-21.1% 

 
The substations are grouped into the different buckets based on the metric of R², while 
the displayed interval for MAPE is simply the range of MAPE values of the substations 
grouped to that bucket. The relationship between the metrics of R² and MAPE is not 
clear cut, and substations with a high R² value will sometimes report a higher MAPE 
than those with a lower R². This is why the intervals for MAPE of the different buckets 
sometimes overlap. For the chosen general model, the MAPE of the predictions is in the 
10 - 15 % range for the majority of the substations. It should be noted that some of the 
substations are expected to benefit more from a different combination of kernel function 
and dependent variables, but the results displayed in Table 4 are deemed to offer a 
relatively accurate representation of what may be achieved with the different models 
tried within this study. 

Since the dataset is not cleared of what is considered to be abnormal behaviors, these 
often disturb the performance of the Gaussian process regression model. Whenever 
discrete behavior changes occur in a data series, the Gaussian process model requires 
multiple time horizons to learn the new behavior. While the behavior of the Gaussian 
process in these cases is desirable in the design of an anomaly detection model, it also 
hinders the performance whenever the data contains these abnormalities. 
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The wide variety in the degree of predictability in the day-to-day behavior of the 
substations is likely to present challenges for the application of anomaly detection. One 
of the initially perceived benefits of the Gaussian process regression model was the 
establishment of a standard deviation for the resulting models, which may allow for 
taking a margin of error for the predictions into account. However, when the 
predictability of the data is low this presents some problems, as showcased in Figure 12, 
which displays predictions and the 95 % confidence interval for what is deemed to be 
one example of relatively accurate predictions, and one example where predictions are 
less accurate. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11, illustrating the differences of the forecasting between two different 
substations on two different time periods, yearly and weekly. The blue curve is the 

observed data and the orange curve is the prediction. 

Figure 11(a) and Figure 11(b) illustrates a substation which consists of a clear diurnal 
pattern on a yearly and weekly basis respectively. Figure 11(c) and Figure 11(d) on the 
contrary shows a substation which the regression model struggles to fit a function to the 
observed data. The model’s inability to predict the peaks is highlighted in Figure 11(d). 
When comparing Figure 11(b) and 11(d) it is apparent that the predictability of the 
diurnal patterns is highly dependent on the individual substation. The shaded area in the 
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graphs 11(b) and 11(d) displays the 95 % confidence interval of the predictions. As can 
be seen in Figure 11(d) the substation has a larger shaded bound due to the fact that is 
more difficult to predict.  

Figure 11(d) also displays some of the main weaknesses of the Gaussian process when 
applied to electricity data. Gaussian processes often struggle to accurately model noisy 
data (Bijl et al., 2016), and the assumption of the White Kernel, that noise in the 
observations may be modeled independently as N~(0, σ2) with the same variance for all 
observations, does not hold very well for many of the examined electricity profiles. 
Contrarily, the unpredictable variance in the observations seems strongly linked to the 
relative values of x and y, i.e. the need to add noise to model observations is greater 
during certain hours of the day, when the peaks in electricity consumption occur. For 
future reference, some type of weighted noise function might improve model 
performance in these cases. Due to these issues with the forecasting model, in the 
implementation of the Gaussian processes based anomaly detection model a focus is 
placed on the cases where more accurate predictions could be attained. 

4.3  Anomaly  detection  implementation  
This section presents the examples of results of the two anomaly detection models 
developed. These examples are divided into two different subsections for each of the 
developed models. For each example some commentary on what the model detects as 
anomalies and analysis of the model’s strengths and weaknesses is provided. The 
existing anomaly reports from Uppsalahem are also compared directly to the developed 
model in order to give an idea of the situations in which the developed model differs 
from the anomaly reports. Uppsalahem’s current anomaly detection method on 
substation level described in Subsection 2.1 is the foundation of these reports. 

Full-scale comparisons of the developed models and the existing anomaly reports at 
Uppsalahem have been attempted, but due to the significant differences in the method of 
the different models the results of the different models were too dissimilar for such a 
comparison to be deemed meaningful. The overlap in detected anomalies is observed to 
be limited to somewhere around 50-60 %, and most of these observed differences can 
be explained by the differences in how the different models define anomalies. 
Therefore, comparisons are limited to the individual examples presented in text, so that 
explanations of the observed differences may be provided. However, since said reports 
only contain information about abnormal energy consumption on a monthly basis, it is 
sometimes hard to pinpoint if the models are indeed reacting to the same data. 

4.3.1  K-­means  anomaly  detection  

An analysis of a subgroup of substations is made to draw some conclusions about the 
results generated from the K-means model. Six cases are illustrated in this subsection to 
present the differences between the K-means model and Uppsalahem’s model. In the 
graphs that follow, the anomalies that the model finds are colored differently. The blue 
color represents “normal” consumption, the red color portrays abnormal consumption as 
it is too high, the green color illustrates abnormal consumption that is too low. It should 
be noted that red and blue intervals depict what the respective models define as an 
anomaly, and that they therefore, do not correspond to any specific external definition 
of what an anomaly is. Finally, the black vertical line represents the time the anomaly is 
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detected by the model. The first three graphs display executions of the model where 
parameters have been configured to optimally detect what has been labeled as anomalies 
in the data series. The values on the x-axis are selected to mark intervals of two months. 

 

 

(a) 

 

(b) 

Figure 12, substation with the detected anomalies marked. Figure 12(b) is the interval 
surrounding the first anomaly detected.  

Figure 12(a) displays the electricity load profile for the whole year of 2019 for which 
four anomalies have been detected. Figure 12(b) displays the first of the four anomalies 
on a shorter time scale. This arrangement of information is also used for the subsequent 
figures Figure 14 and Figure 15. Two anomalies have been identified during the 
analysis, the first taking place roughly between hours 2700 and 3400 and the second 
from 6500 lasting until the end of the interval. The model also detects anomalies in both 
of these regions. The model does however not detect an anomaly for a section of the 
latter of these intervals, between hour 7500 and 8100, while the sections before and 
after that interval are considered to be different from normal consumption. 
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Uppsalahem’s existing anomaly detection model notes anomalies during all months 
except for June and September.  

 

(a) 

 

(b) 

Figure 13(a), showing a substation with a single detected anomaly, and 13(b) 
displaying the area around the detected anomaly and the time of detection. 

In figure 13(a) an anomaly has been identified beginning after hour 8000 and lasting 
until the end of the year. This anomaly is detected by the K-means fault detection model 
and also appears as an anomaly during December in Uppsalahem’s reports. None of the 
models detect any other anomalies for the year evaluated. The electricity consumption 
for the rest of the period is fairly consistent which further confirms the detected interval 
actually being an anomaly, but it could represent an installation of new electricity 
consuming appliances. Figure 13(b) illustrates when the anomaly is found and the 
surrounding time interval.  
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(a) 

 

(b) 

Figure 14, a substation with two detected anomalies. Figure 14(a) displays the detected 
anomalies in the year profile and Figure 14(b) displays the consumption around the 

first of the detected anomalies. 

Figure 14 displays the electricity load profile for a substation where the model has 
detected two anomalies. These two anomalies are detected around hour 4000 and 5000 
respectively. The first anomaly is a sharp increase of the consumption in the middle of 
the summer. Tomas Nordqvist at Uppsalahem mentions that some of Uppsalahem’s 
properties have air conditioning installed which might be the reason for the increase of 
electricity consumption (Nordqvist, 2020). However, there is a third peak after hour 
6000 which has also been identified through the optical screening, but which is not 
detected as an anomaly by the model. This is due to the settings of the parameters, or 
possibly an increase in the model’s average consumption during the autumn. The time 
from the beginning of the identified start of the first anomaly until the model detects it 
is visible in Figure 14(b). 

Uppsalahem’s model does not find any anomalies for this specific substation. This is 
due to the fact that the increased consumption during summer months is a recurring 
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pattern for this substation, which the K-means model is not specific enough to account 
for and thus, this pattern is detected as an anomaly. This indicates that there are also 
benefits to the current anomaly detection method when more specific patterns are 
annually occurring. It is also made apparent that expert analysis of the detected 
anomalies is still needed.  

 

Figure 15, a substation with five detected anomalies in succession. 

Figure 15 presents the consumption data for a substation where no distinct anomalies 
have been identified beforehand. Uppsalahem’s existing anomaly detection model has 
not detected any anomalies during the year. The K-means anomaly detection model 
however finds an anomaly around hour 5500 and several additional anomalies are 
detected with an increasing frequency towards the end of the year. Uppsalahem’s model 
does not detect any anomalies for this given substation. However, there seems to be a 
continuous slight increase of the base consumption from approximately hour 3000.  

While this can be considered to be an example of the model capturing a drift type 
anomaly, the way it reports this as a series of discrete anomalies might be confusing to 
an eventual operator and thus less than ideal. The clustering for this substation is 
deemed to be correctly executed. An explanation regarding the detection of the separate 
anomalous intervals detected by the model is that they all have a relatively high 
minimum consumption, placing the consumption continuously outside the model’s 
bounds during these specific intervals. Whether the detected anomalies are indeed a 
drift type anomaly or if the consumption increase is in fact within the bounds of what 
should be considered normal is arguable.  
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Figure 16, a substation where several intervals of abnormally low consumption have 
been detected. 

Figure 16 displays a case where the detected anomalies are judged to be incorrectly 
determined. When analyzing the substation’s consumption profile no anomalies are 
identified. The K-means model however detects two series of smaller anomalies, one at 
the beginning of the year and one near the end of the year. Uppsalahem’s model also 
finds anomalies in the latter part of the year, for all months from August until 
December. 

 

Figure 17, training data for the substation shown in Figure 16. 

Figure 17 presents the training data for the substation from Figure 16. When analyzing 
the training data (2018 year’s data) it presents an explanation to the detected anomalies. 
There is an increase of consumption during the last months of 2018. This might be the 
reason why it is assigned to cluster 1. When examining the electricity consumption for 
2019 this substation no longer presents the type of pattern that cluster 1 represents. The 
substation might in fact rather belong to cluster 2 or cluster 4. This increase of 
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consumption during 2018 is likely connected to a renovation project where water pipes 
were changed during this time (Nordqvist, 2020). 

 

Figure 18, data and detected anomalies for a substation which is identified as irregular. 

Figure 18 depicts one specific substation which shows an irregular behavior. The 
determination of anomalies for this case is difficult due to these irregularities. 
Uppsalahem’s model detects anomalies in April and May due to the consumption being 
lower than expected. Uppsalahem’s model also finds higher than expected consumption 
during all other months except for November and December. It is hard to draw any 
conclusions about whether the K-means model or Uppsalahem’s model functions better 
for this given substation due to the irregularity. This is a substation that probably should 
have been discarded from the clustering and analysis as it is a clear outlier in the 
dataset, but no such cleaning procedure is executed for the dataset.  

Overall, labeled data considering anomalies would have been immensely helpful in 
determining the two model parameters of the anomaly size limit L and bound B for the 
dataset in general.  

As no labeled data of anomalies exists for the whole dataset, the optimization of the 
parameters of the anomaly size limit L and bound B has largely been done through an 
analysis of a small set of data, but correctly labeled data would enable a more specific 
determination of the optimal value for said parameters and clearer evaluation of the 
model performance. The fact that upgrades of the heating and facility management 
occur relatively frequently also poses problems. This raises the question if a reclustering 
is necessary and how often it is required. If a substation has a new installation of a heat 
pump or any other electricity demanding equipment it is very likely to have falsely 
detected anomalies. Furthermore, the number of substations that are well represented by 
the cluster centroid is highly dependent on the variety of patterns present within the 
dataset. The K-means method is first and foremost able to find consumption that varies 
from the seasonal pattern that is visible in the different clusters. 

The cluster-then-compare approach utilized in this study comes with a mixed set of 
drawbacks and benefits when compared to directly learning and predicting the 
individual substation’s measurement data. The main drawback which also limits the 
utility of the anomaly detection model is that the cluster centroid and the individual 
substation’s behavior are relatively dissimilar. As illustrated in Figure 10 the mean R² 
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between cluster centroids and individual substations for the interval of the hyper-
parameter K determined to be of interest is around 0.4, meaning that the centroids only 
offer a somewhat accurate representation of the behavior of the clustered data.  

To summarize this analysis of the model, it is deemed to work well but its performance 
is dependent on the data. It is able to find most anomalies within a week, and unlike the 
existing model at Uppsalahem is able to do so independently of when during the month 
these anomalies appear. Furthermore, it would benefit from more extensive data of 
identified anomalies to enable an optimization of the anomaly detection parameters. 
Without such labeled data, extensive work would be required to tune these anomaly 
detection parameters individually to each substation.  

4.3.2  Gaussian  process  regression  anomaly  detection  

As for the K-means anomaly detection a subset of substations is examined to enable an 
analysis of the Gaussian process regression anomaly detection. As the possibilities of 
reaching accurate predictions differ between the data points in the dataset as established 
in Subsection 4.2, a focus is put on some of the data series for which the predictability is 
deemed to be sufficient to support such an analysis. The model parameters described in 
Subsection 3.5 are optimized in order to detect optically identified anomalies, similarly 
to the case of the K-mean anomaly detection model. A few examples of the model 
output are displayed and analyzed in sequence below. 

  



49 

 

 

 

(a) 

 

(b) 

Figure 19, substation with the detected anomalies marked. Figure 19(b) is the interval 
surrounding the first anomaly detected.  

Figure 19 illustrates one of the cases where the Gaussian process regression model is 
able to predict the future consumption well (R² = 0.83 and MAPE 7.6%). Therefore the 
implementation of the anomaly detection algorithm operates well and locates two 
anomalies. The first anomaly detected as well as the model’s prediction for the same 
time interval is illustrated in Figure 19(b).  

The second anomaly that is found is a so-called secondary anomaly. It is only detected 
due to the deviating consumption returning to “normal” consumption. While testing and 
selecting model parameters, a neutral position is taken towards such output. The idea is 
that, in a real setting, operators would know whether an anomaly has occurred in the 
earlier data and thus may react accordingly. Additionally, the model theoretically 
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supports the option of manually selecting if and when training should begin again while 
retaining the previously learned hyperparameters. In this context, where anomaly 
detections are investigated and conclusions drawn about whether they resulted in actual 
anomalies which are subsequently amended or expected changes in behavior, choices 
about whether to retrain the model or not could be made based on this operator 
knowledge. However, as no clear information about the detected anomalies has been 
attained, this possibility is left untouched upon in these evaluations, and models are 
instead retrained whenever the observed consumption returns inside the chosen 
probability margin of the model expectations. 

 

(a) 

 

(b) 

Figure 20, (a) consists of the consumption for the whole year whereas Figure 20(b) displays the 
surrounding interval of the detected anomaly. 

Figure 20 displays the consumption for a substation where the anomaly is a lesser 
relative increase to the consumption than what is seen in figure 19. In this case the 
model interestingly enough does not cease to adapt the function to the new incoming 
data, but nevertheless detects the start of the abnormal interval as an anomaly. As the 
model is continuously updated, it ceases to give the anomaly signal as it adapts its 
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predictions to the new pattern. The chosen prediction model here achieved an R² of 0.74 
and MAPE of 8.4 %, placing it slightly below the earlier example but retaining a high 
enough accuracy to keep similar parameter values for the anomaly detection. The 
detected anomaly is an increase of consumption by approximately 2 kWh per hour for 
every hour until the anomaly appears to be corrected. The parameter configuration is 
arguably very tight, as the model detects what is roughly an increase of 2 kW during 
only a few days as an anomaly, however it enables the model to detect only the interval 
which has been identified as abnormal. This example shows an issue which arises for 
the Gaussian process based model when anomalies are not sizeable enough for the 
model stop updating itself within the 24-hour prediction span. Similarly, the model is 
capable of detecting the anomaly within roughly 50 hours. As can be seen from Figure 
20(b) the deviation is not as significant as in the previous case (Figure 19). This could 
however be detrimental to the model if the required length to detect an anomaly is 
defined to be longer. Furthermore, it does not detect any anomaly as the profile returns 
to the perceived normal. While this effect is achievable with a different set of 
parameters, only the initial detection of the anomaly is deemed to be of interest.  
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(a) 

 

(b) 

Figure 21, (a) consists of the consumption for the whole year whereas (b) is zoomed in on the 
detected anomalies. 

Figure 21 displays a case where the attained predictions were far less accurate due to the 
wide variety in consumption peaks. Figure 21(b) displays the two anomalies detected, 
highlighting an issue which may arise in such a context. The model encounters an 
interval of high base consumption, and future predictions are influenced by this, causing 
the model to detect a perceived under-consumption from approximately 2450 to 2500. 
Arguably, the model should in fact detect the preceding interval of heightened base 
consumption as an anomaly, however, since it presents a large share of values above 
and beyond the predicted consumption, this does not happen, and the model instead 
predicts increased consumption in the subsequent interval based on this data. There is 
also a second anomaly detected as there is a second drop in base consumption, arguably 
presenting a correctly detected anomaly. Since the model detects the decreases in 
consumption and not the preceding increase of consumption it thus seems probable that 
the model is more likely to detect decreases rather than increases. This might be due to 
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the heightened prediction resulting from its inability to predict effect peaks. 
Additionally, there are multiple discontinuous changes in the base power consumption 
later in the year that are not detected. While it was possible to set a less strict bound for 
the anomaly detection model, that would also result in some inaccurate detections. 
Thus, this example speaks of increased difficulty of anomaly detection and uneven 
detections of heightened or lowered consumption when the prediction accuracy is low. 

It is possible to implement the anomaly detection even in the scenarios where the 
predictions were even less accurate by setting much wider margins and longer 
thresholds for the anomaly detections. However, in these cases the model was not 
shown to learn much of daily patterns and thus they were not deemed to be of clear 
interest.  

The method as such seems promising which is exemplified through the substations with 
regular behavior as they are able to detect anomalies on a weekly basis for the 
regression model. For irregular substations the prediction ability impairs the anomaly 
detection capability and the length of the interval the model must consider in order to 
detect an anomaly has to be weekly or longer rather than a few days, with anomaly 
detections that are deemed invalid still occurring under such parameter settings.  

4.4  Comparison  of  the  developed  models  

This project presents the implementation of two different models for detecting 
anomalies in electricity load profiles. The first of these models is based on unsupervised 
learning and finds anomalies through the grouping and comparison of similar profiles. 
The other is based on supervised learning and detects anomalies by comparing the 
current load to a forecast based on the history of the individual profile. A comparison of 
these models, their performance on the given dataset, and the anomalies found by the 
respective model is given in this subsection. 

First, the K-means model, largely seems to cluster data based on seasonal trends. 
Additionally, it appears relatively insensitive to the presence of noise and shorter 
anomalies in the training data, however, it is sensitive to longer deviations which may 
cause the profile to be misclustered as illustrated in Figure 16. This also largely restricts 
the model’s anomaly-detecting capabilities to finding deviations from the seasonally 
expected behavior. For the model to yield reasonable detections of anomalies, a lower 
limit of the detection time may exist at the daily time scale, while most anomalies 
deemed to be of interest may be detected within the week. This suggests anomalies may 
be detectable at a weekly or slightly shorter basis, which is a considerable improvement 
from the current detection time. 

In contrast, the Gaussian process model is highly dependent on the most recent 
electricity consumption of the individual station and thus for the most part is less 
dependent on the overall seasonal patterns in the data. Rather, it treats the latest 
observed pattern as normal and detects any fast changes from that as anomalies. This, 
however, renders the model unable to detect slow drifts in consumption as it slowly 
learns the new pattern. For this reason, the model’s anomaly-finding capabilities may 
actually be negatively impacted by demanding a longer time of deviation before 
detecting an anomaly, as it might learn abnormal patterns during the anomalous interval 
if they are close enough to the original. Therefore, the model sometimes balances on 
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finding criteria which are not too strict, to allow the detection of anomalies within a few 
days, but neither so loose as to trigger constant detections. The limitations of the 
Gaussian process based anomaly-finder are, thus, similarly placed around a few days to 
a week.  

The shape and quality of the data are important to both models but in different ways. 
The Gaussian process regression model can be observed to perform well as long as the 
data retains a somewhat continuous pattern from day to day. Meanwhile, the K-means 
model is less dependent on these short-term patterns, but places more demand on 
similar seasonal profiles being present in the data. When the right prerequisites are 
present an accurate model can be created, which allows for much faster anomaly 
detection. For these profiles, reliable anomaly detections may be provided within the 
first 1-3 days. The illustrations below show one such case, the same profile with the 
same anomaly being detected for both the K-means and Gaussian process models. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 22, a substation with the two anomaly detection models implemented. 

Figure 22(a) and Figure 22(c) illustrates the K-means model and the Gaussian process 
regression model on a yearly basis. From these figures it can be seen that the two 
models detect the same anomaly. Figure 22(b) and Figure 22(d) illustrates the anomaly 
detection model in the interval near the anomaly for the K-means model and the 
Gaussian process regression model respectively.  

In this specific instance, the K-means model could detect the anomaly within 30 hours 
while the Gaussian process model required around 50 hours. Figure 22(c) shows the 
Gaussian process re-learning and detecting an additional anomaly within the region that 
the K-means model considers abnormal, the second anomaly is the consumption being 
too low at approximately hour 6000. Similarly, it detects the return to normal after the 
abnormal interval. Whether such a behavior is desirable or not may be argued, however 
it showcases the Gaussian process regression model’s ability to learn new patterns 
relatively fast, unlike the K-means model. Uppsalahem’s existing model also finds a 
deviation in September which corresponds to the anomaly that these models are able to 
detect. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 23, a substation containing anomalies displayed for the two models. 

Figure 23 displays the two models implemented on another substation. Figure 23(a) and 
Figure 23(c) displays the whole year for the K-means model and the Gaussian process 
regression model respectively. Figure 23(b) and Figure 23(d) illustrate the detected 
anomaly at approximately hour 7200 for the K-means model and the Gaussian process 
regression model respectively. For this case the K-means model detects the anomaly 
circa 24 hours before the Gaussian process model. 

The Gaussian process regression model further detects two more anomalies that the K-
means model does not detect. Both the anomalies that the Gaussian process regression 
detects are cases where there is a sudden drop in consumption. The reason that the 
second anomaly is so long is due to the fact that the consumption does not return to 
what the model considers to be “normal” consumption until late summer (approximately 
hour 6400). Whether these events are in fact interesting to flag as anomalies is arguable, 
as a similar consumption pattern was present the year before, as seen in Figure 24, 
suggesting it is a recurring pattern. 

 

Figure 24, the investigated substation with corresponding data for 2018 year’s consumption 
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Uppsalahem’s model detects deviations as overconsumption compared to the last year 
for every month except for February through April for the data series seen in Figure 24. 
This contrasts with the two models generated in this thesis, for which shorter anomalies 
are found. The diagram above shows the corresponding data for 2018 which the current 
comparisons are based on. It shows no clear difference in profile shape but the average 
monthly electricity consumption for 2019 was 25 % higher or more for most months. 

Despite their marked differences, the two models are arguably more similar to each 
other than any of them is to the current anomaly report system at Uppsalahem, due to 
the fact that they both operate on hourly data and that they both base their expected 
behavior on something which happens in or near the current time, rather than making 
comparisons a full year back. 

As can be seen from the figures above the K-means based anomaly detection model 
detected both anomalies faster for the cases studied. This is largely rooted in the fact the 
K-means model considers the size of the anomaly and not only the time. A similar 
approach was considered for the Gaussian process regression model, but it was 
considered unfeasible to combine it with the necessity of allowing some values of the 
anomalous intervals to exist within the bounds of the model.  

It is noteworthy that due to the absence of any validation data for the anomaly-finders, 
the timeframes established above are only preliminary, and it is expected that in any real 
implementation if sufficient testing data could be acquired these timeframes could 
change. 

To summarize, while the Gaussian process model performs well situationally, and may 
be implemented using less training data than the K-means model, it is more sensitive to 
data quality and has a hard time learning behaviors of many of the more irregular 
profiles in the set. Meanwhile the tuning process for the Gaussian process is more 
complex than that of the K-means model while also yielding less reliable results. 
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5  Discussion  
The section begins with Subsection 5.1, Reflections, which aims to highlight some 
reflections from the authors. The following subsection, Choice of modelling techniques, 
aims to evaluate the modelling techniques chosen in this project and their adequacy for 
the studied dataset. Possible changes which may be of interest for further improvement 
of the models as well as other modelling techniques which may yield more accurate 
results are also brought up within this section. The section is further split between the 
analysis of cluster models and regression models due to the significant differences in 
functionality between the two. This is followed by a critical look at the dataset on which 
the study is based, and offers suggestions of additional data which might be of interest 
to collect and other ways of gathering high resolution electricity data which may be 
beneficial to pave the way for the development of more accurate algorithms for 
prediction and anomaly detection for the concerned residential stock. Finally, the 
discussion ends with a short commentary on the possibilities of an online 
implementation of the developed anomaly detection models and the challenges which 
may be encountered during such an implementation. 

5.1  Reflections  

The goal defined at the beginning of this thesis work was to create a model or models 
which can aid in the detection of anomalies affecting the electricity consumption at a 
residential property owner. As is often pointed out in the paragraphs above, the lack of 
labelled data of anomalies has been a major obstacle in this process, for which reason 
the developed models are often described as finding anomalies rather than faults, where 
an anomaly is a behavior which is deemed by the authors as irregular, and thus possibly 
indicative of a fault affecting the consumption. However as there exists no complete 
validation data on which anomalies are desirable to find, the project is restricted to 
showing the possibilities of detecting behaviors which have optically been identified as 
points of interest by the authors, but it has not been possible to optimize anomaly 
detection bounds or to provide any overall measurement of accuracy of the anomalies 
detected. The optimization of parameters is otherwise highly desirable due to the 
differing degree of irregularity between the different substations. Throughout the 
development of the anomaly detection models, the authors have had to identify 
“reasonable” anomalies optically in order to determine objectives for the tests of the two 
models. 

The eventual usefulness and interpretation of the output generated from these models is 
however uncertain, and an experienced facilitator may in fact come to different 
conclusions about the profiles at display and which consumption patterns may be of 
interest to identify. It should also be noted that the behavioral patterns which are 
considered as anomalies within this project are often far from exceptional, but that they 
appear rather frequently within the studied dataset, suggesting that most instances may 
in fact not be indicative of faults. This belief has been further corroborated by contacts 
with the project supervisor Tomas Nordqvist, who often knew of plausible explanations 
to consumption patterns which the project authors identified as abnormal, such as 
electrical heating or cooling equipment linked to the different substations. Some of the 
detected anomalies, such as the examples seen in Figure 12 and Figure 13, where 
observed data suddenly shifts to a new base level, are also likely to represent new 
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installations of such equipment, which happens regularly for the studied interval. Such 
changes to the profiles create further difficulties for the task of creating models. It 
stands clear that while Uppsalahem currently have a rather extensive system for 
anomaly detection, much of the information which may be needed to draw conclusions 
from the detection of anomalies is not catalogued in the database but rather tied up in 
tacit knowledge within the company. 

Furthermore, the large presence of such hard to explain consumption patterns in the data 
has likely been detrimental to the performance of the models developed. At the start of 
the project there was an implicit assumption that the electricity data studied should, at 
least for the most part, amount to an aggregation of the electricity consumption of 
households, and models were developed from this assumption. Later, as model 
performance turned out poor for some of the cases, explanations were gradually sought 
in the data, from which many patterns which contradicted such an assumption were 
found. The project thus serves as an example of the importance of doing a pre-study of 
data. As of now, knowledge of that nature has rather been gathered by first trying to 
model the dataset. While the results from this project do not show what might be done 
with other modelling techniques, the wide differences in the regularity of data and 
presence or absence of diurnal patterns strongly suggest that developing models for this 
dataset is a hard task and that regression models may largely have to be adapted to the 
individual substations. This also impacts the possible identification of abnormal 
behavior, and the results of this study suggest the timeframe for identifying such 
behaviors might be restricted to a few days or even weeks for some of the less 
predictable profiles. Reliable anomaly detection on a sub-daily timeframe was not 
observed to be possible for either model for any part of the studied dataset. 

5.2  Choice  of  modelling  techniques  

This subsection discusses the two different models developed within the project, 
compares their performance to what has been observed in other previous studies and 
suggests some possible improvements. It is divided between Subsection 5.2.1, in which 
the K-means model and other clustering approaches are discussed, and Subsection 5.2.2 
which focuses on the Gaussian process regression model and also suggests other 
potentially interesting regression models. 

5.2.1  Clustering  

The silhouette index and the elbow method for the metrics of WSS and within-cluster 
R² are utilized to determine the optimal number of clusters. The silhouette index points 
towards the optimal number of clusters being two, however it is not deemed relevant as 
the low value also points to a lack of separated clusters. Therefore, the elbow method 
was chosen as the method for determining the optimal number of clusters. This decision 
is, however, arguable, and different researchers handle the silhouette score metrics for 
electricity data differently. Yilmaz et al. (2019) clusters 300 households using the K-
means method and arrives at an optimum of K=3 with a silhouette index of 0.28. This 
can be compared to the silhouette score of 0.12 for K=2 established in this study, 
implying that the data clustered in Yilmaz et al (2019) displays slightly more separated 
clusters, but that there is still a significant overlap between the clusters. Other 
researchers similarly to this thesis calculate the silhouette index but choose other 
metrics to determine the optimum. 
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Wen et al. (2019) study a dataset of electricity consumption for 5000 Irish homes and 
businesses, and calculate a silhouette index of 0.8 indicating an optimum of K=2 after a 
Principal Component Analysis of the data series. However, they choose to select their 
optimum from the metrics of Mean Index Adequacy and Clustering Dispersion 
Indicator, where the first is an average of distances between cluster centers and data 
points, similar to the WSS measurement utilized in this report and the second measures 
a between-cluster compatibility. From these metrics, they conclude that the optimal 
number of clusters is instead 7. (Wen et al., 2019) These results are very similar to those 
found in this thesis, namely that silhouette index is optimized at 2 clusters, but the 
optimal number of clusters is higher. Sun et al. (2020) cluster approximately 4000 
households to generate load profiles and calculate the silhouette index, indicating that 
the optimal number of clusters are 2. There are three points of the silhouette score that 
are analyzed in the article with regards to the silhouette score, 2, 4 and 6 clusters. When 
utilizing another method, the optimal number of clusters are determined to be 6. This 
means that also according to Sun et al. (2020) the “optimal” silhouette score should not 
be utilized. 

The low silhouette score attained seems reasonable when the dataset is considered. The 
silhouette score can be described as a quota between cluster compactness and cluster 
separation, and when the dataset clustered is that of normalized electricity profiles of 
residential buildings, it seems intuitive that the degree of separation is low. Where there 
is a clear distinction between data points, e.g., homes and businesses, a higher degree of 
separation may be expected, but when the set is entirely composed of residential 
buildings the data is less likely to present clearly separated clusters. The low silhouette 
score presented thus seems reasonable, although the clustering may also benefit 
techniques like Principal Component Analysis to bring out features where the data is 
more clearly separated. 

The WSS is arguably the more relevant metric for the anomaly detection algorithm 
developed, as it describes the expected error between cluster centroids and individual 
data series. The number of 6 clusters functioned well for the available dataset, but the 
optimal number is likely to differ depending on the amount of data clustered. For the K-
means anomaly detection algorithm to perform well, there are two features that are 
identified to be of high importance. The first is that clusters are compact enough for the 
centroid to function as a good representation of the individual elements in the cluster. 
The second is that clusters should contain a high enough number of elements so that an 
anomaly in a single individual consumption profile does not affect the cluster centroid 
noticeably, so that it may trigger anomalies in other normal profiles.  

There exist several K-means-based clustering algorithms such as Fuzzy C-means and K-
medoids which have also been tried for electricity data. An additional family of 
clustering algorithms considered for the purpose of this study was that of hierarchical 
clustering, with criteria such as single-link, complete-link and Ward’s method. The 
results of changing clustering algorithms between these alternatives were, however, not 
deemed to be different enough to support further evaluation. Another option which was 
considered was the possibility of changing distance metrics. Euclidean distance may not 
be ideal for representing similarities between time series. Dynamic Time Warping, 
which is a measurement specifically for time series, was considered, but dropped due to 
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high computational demand for the full year profiles. It may however be an attractive 
alternative for clustering time series when the amount of measurements is smaller. One 
of the main opportunities of improvement for this model is that it does not recluster 
itself, which would likely be necessary for a real implementation. Ideally, an interval for 
retaining good cluster representativity while also enabling the capturing of anomalies 
should be established, however this is similarly prevented by the lack of external 
definitions of what an anomaly is.  

The conclusion from the comparisons to other researchers is that the data that is studied 
is important for the outcome of the study. However, the articles discussed in this 
subsection corroborate the method and the results attained in this thesis. Furthermore, it 
is also implied that the silhouette index is sometimes a poor indicator of the optimal 
number of clusters in terms of electricity consumption. 

5.2.2  Regression  

The Gaussian process regression model developed within this project is useful for a 
share of the dataset, where it attains accurate predictions, but for the norm case within 
this dataset it does not perform as well as expected, which is also a hindrance for an 
effective full-scale anomaly detection. The high degree of variance in model 
performance between the different data series however suggests that the model is able to 
perform well in certain contexts, and that the less favorable performance in other cases 
may have explanations in the variety of the data. The utilization of Gaussian processes 
for predictions of electricity consumption, seems reasonable based on previous 
literature. Predictions are also shown to be possible and a general improvement is 
observed compared to the persistence model, even without an exhaustive cross 
validation procedure being conducted on an individual basis.  

Two different explanations of the low performance for some part of the dataset have 
been identified within this study. The first is a lack of clear diurnal patterns in a subset 
of the data. This is observed during the cross-validation procedure when analyzing the 
performance of the persistence model. The second is the presence of what has been 
identified as anomalies, discontinuous changes in the daily patterns of electricity 
consumption, which likely disturb the model training process. Discontinuous training 
data easily offsets the learned hyper-parameters of the Gaussian process as they become 
based on the small but sharp fluctuation in the training data. Duvenaud (n.d.) describes 
this as a common pitfall of the common stationary kernels like RBF. Many of the 
examples showcased are, therefore, selected from the more smooth and regular profiles 
in the dataset. An option for handling this would have been to edit out these identified 
anomalies from the training data, but once again, this is a hard task without proper 
labelling of anomalies, and thus it was not considered doable for the complete dataset.  

For these smooth profiles the Gaussian process shows promising results for the purpose 
of anomaly detection, and when focusing on such profiles most identified anomalies 
may be detected within a matter of days. It was also possible to utilize the standard 
deviation of the predictions as a bound for the fault detection algorithm, which is likely 
to provide the model with some flexibility as it may establish different standard 
deviations during different periods of the year based on temporary variances in the 
predictability of the data. It is however no complete solution for the establishment of 
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bounds for the anomaly detection, as the results imply the optimal confidence interval 
should be determined individually for the different substations. 

It should also be noted that the Gaussian process regression model was capable of 
achieving much more accurate predictions for the dataset in general when predicting on 
a 1-hour time horizon instead of a full day. However, for the scope of this thesis it was 
necessary to utilize a longer prediction horizon. The anomalies which were identified to 
be of interest largely consisted of intervals spanning several weeks, and a recurring 
issue with using a regression model which updates itself continuously based on 
observed data was that the model would learn the anomalous consumption pattern and 
thus become biased towards anomaly detection. This issue was particularly prevalent at 
the 1-hour prediction horizon, as the model would base predictions largely on the 
observations of the previous few hours. So, while the Gaussian process could attain a 
high accuracy on a short prediction horizon, the objective of finding long-lasting 
anomalies demanded that a less accurate model be chosen. The 24-hour prediction 
horizon chosen for this project may be seen as an attempt to compromise between these 
two goals, as the resulting predictions retain relatively high accuracy, but the model 
would also occasionally present the problem of learning anomalous behaviors as was 
shown in Figure 20. 

The Matern3+RBF kernel is chosen as the best performing of the evaluated kernels for 
the dataset as a whole. The results speak of sum-kernels generally being beneficial due 
to their increased flexibility, and it might be possible to further improve predictions 
through the construction of increasingly complex sum-kernels, although it is not 
explored deeper in this thesis. Van der Meer et al. (2018b) also predict electricity 
consumption using both dynamic and static Gaussian processes, and concludes that the 
same combination of the Matern3 and RBF kernel is ideal for their data for this reason. 
They predict electricity consumption for the upcoming half hour and report a MAPE in 
the 3-5 % range for their studied buildings. It should also be noted that van der Meer et 
al. (2018b) use a very different configuration of dependent variables, consisting of the 
past consumption values.  

The variables considered in this study are time and outside temperature. Outside 
temperature was however discarded from most of the models created as it would 
sometimes lead to less consistent results for the hyper-parameter optimization and 
showed slightly reduced prediction capability in many cases. While weather variables 
are found to be relevant for electricity consumption forecasting by among others Yang 
et al. (2018), removing it allows this thesis to consider less complex models and eases 
the task of optimizing hyper-parameters. Additional variables which might be of interest 
include electricity prices and a more advanced selection of calendar variables, e.g. 
introducing a variable for weekends or weekdays. (Yang et al., 2018) Another variable 
that could be of interest is the number of daylight hours since it affects the lightning, 
however, it is likely closely related to the date. 

It should be noted that in many otherwise comparable studies the modeled data is 
selected after a more discriminatory preprocessing than what is the case in this thesis. 
For instance, van der Meer (2018b) studies a set of 300 residential customers from the 
Sydney metropolitan area. After what is described as “a thorough data cleaning process” 
54 of these remain. The chosen approach in this thesis is different; While preprocessing 
is conducted, it only concerns the cleansing of data which does not meet the criteria of 
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having a hourly resolution, and the goal has rather been to salvage as much of the data 
as possible through means like interpolation in order to see what might be done for the 
entire set of substations. Additionally, the differences between working with individual 
customer data and substation data should not be understated, as one of the core insights 
of this project has been that the substations contain more than simply residential 
electricity usage, which often adds to the challenge of prediction. 

A possible improvement might be brought about by the technique of Gaussian process 
quantile regression, which is a modification of the standard Gaussian process regression 
popularly used for electricity consumption forecasting, as seen in Yang et al. (2018) and 
van der Meer (2018c). Quantile regression methods aim at estimating quantiles of the 
dependent variable. Quantile regression estimates are according to Yang et al. (2018) 
more robust to outlier observations in the dependent variable, and are, therefore, most 
relevant when the response displays high variability or randomness in its behavior. 
Alternatively, as the observed variability is highest in the effect peaks, which may in 
turn be linked to certain times of day, suggesting that a model which can fit varying 
amounts of white noise to different observations may improve performance. 
Heteroscedastic Gaussian processes have been used with success to model this 
phenomenon in electricity prices (Kou et al., 2014), and may have similar applications 
for energy demand data.  

Alternatively, there are many other regression models which have been tried for 
prediction of electricity consumption. Some examples which have been mentioned 
before in this thesis are Support Vector Machines and Artificial Neural Networks. Zeng 
et al. (2019) compares these two, Gaussian process regression and Multivariate linear 
regression, and arrives at the conclusion that Support Vector Machines and Multivariate 
linear regression perform best for the buildings considered. An additional family of 
models worth consideration is ARIMA models. Van der Meer et al. (2018b) cite 
ARIMA as a state-of-the-art for predicting electricity load profiles and report lower 
error metrics for ARIMA models than they do for Gaussian process regression. This 
conclusion is however arguable, as Fan et al. (2014) on the contrary find that the 
ARIMA model does not predict building energy use very well. This difference is 
important to highlight since it clearly shows that the applicability of techniques differs 
from case to case depending on the approach and the available data. It is thus difficult to 
in advance determine a technique that will perform well for a given data set. 

5.3  Potential  for  additional  data  collection  at  Uppsalahem  

As of now, Uppsalahem only store data of electricity consumption on a monthly basis, 
however hourly resolution data is available from electricity service providers and should 
likely be attainable through cooperation with service providers or automatic 
measurement equipment. The results of this thesis, however, show that this dataset is 
very diverse and shows widely different patterns. To allow for reliable anomaly 
detection, it is, as mentioned, recommended to only consider a share of the substations 
where the models perform well. If the goal is to allow for a fast and reliable anomaly 
detection system for the building stock as a whole, it is suggested to record data with a 
higher resolution and accuracy. Additionally, it might be beneficial to collect data at a 
higher spatiotemporal resolution, e.g. connected to specific appliances.  
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Issues which have affected this project is an inability to fully explain the set of more 
irregular electricity profiles. As previously mentioned, many of the detected anomalies 
may in fact have reasonable explanations, and although some information may be 
gathered from the follow-ups of Uppsalahem’s existing anomaly reports, commentary is 
sometimes short and difficult to interpret without previous knowledge of the facilities. 
Particularly, much of the knowledge required to interpret the model output, such as the 
installation of electricity intensive appliances, does not exist in the database, but rather 
as tacit knowledge within the company. A clearer documentation of this could aid not 
only in the development of this model but also in interpretation of the existing model. 

However, when the properties of the data such as the varied patterns and frequent 
changes to the base consumption, and the issues these qualities present to the models 
developed in this project are considered, the merit of working on the current substation 
data may be argued, and it may be interesting to consider other options for gathering 
residential energy data. The vast majority of studies referenced for comparison earlier in 
the report conduct their studies on either building or customer data, where a customer 
normally represents a single household. Thus, they consider data on a more detailed 
level than what is done in this study. As mentioned, substations often contain more than 
an aggregate of residential customers, and the lack of a clear understanding of what 
appliances might impact electricity consumption at the individual substations is a 
hindrance in achieving accurate predictions. Thus, more detailed electricity 
consumption measurements, separating for instance single buildings or even appliances 
such as heat pumps, if possible, may allow for much more detailed analysis of the data. 
Gathering energy data on a building level may allow for analysis of interesting 
combinations of energy consumption data and existing data about the individual 
buildings such as year of construction, renovations, the floor area and number of floors 
etc., which may allow for detailed evaluation of variables which likely affect the energy 
performance of the individual buildings (Cai et al., 2019). Uppsalahem also already 
stores a relatively vast amount of this type of information about their buildings, which 
could be useful in such an endeavor. 

An example of the opportunities provided by more fine-grained data is that it can be 
utilized to enable balance services such as frequency regulation, which are of interest 
for the grid owner. Collecting data every other second allows for such services. High 
frequency gathering of data is a key aspect of most adaptive regulations of electricity, 
and the hourly data available in relation to the current substations does not provide 
support for such frequency regulations. Collecting data at an even less aggregate level, 
for instance charging stations for electric cars or at grid inverters for solar photovoltaic 
installation and allow for a more detailed analysis of the specific appliances and a 
deeper understanding of their behavior. There are thus additional benefits of collecting 
more specific and more high-resolution data, which may also aid in the detection of 
anomalies. (Tapia, 2020) 

5.4  Possibility  of  online  implementation  

The models developed within this study have been implemented for a set of 2-year long 
series of historical data, extracted from excel files downloaded from an electricity 
service prover’s database. As the goal is to create models which may be utilized for the 
detection of anomalies in real time, it is highly relevant to provide some perspective of 
the technical and social prerequisites for an implementation of these algorithms. 
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The K-means anomaly detection model is dependent on the availability of data from the 
different substations in the cluster to determine the model. A problem which may arise 
from this is the occasional loss of individual measurements for different reasons, and a 
real implementation of the model may have to be changed to support model calculations 
while missing occasional single measurement data points. 

The Gaussian process-based model in this project is subjected to a few changes to cope 
with computational demand, which is a potential issue for online implementations. It is 
however noteworthy that the scope of the testing process requires the handling of a 
rather large amount of data at a single time as predictions are generated for a full two-
year scope at a single time, which is not the objective for a real-time implementation. It 
is, therefore, the author’s decision that through effective allocation of resources (e.g. not 
re-training all individual models at the same time each month), the algorithm could be 
implemented for the entirety of the concerned property base. This is also backed up by 
other researchers like Zeng et al. (2019) who see no obstacle for an online 
implementation of a Gaussian process prediction model. The high computational 
complexity of the training process is however still an issue to be mindful of in any real 
implementation. 

The question of how property facilitators may react to the implementation of these 
models is less certain. As has been established before the interpretations of the 
anomalies found by this model are not always clear. This similarly holds true for the 
anomaly report system currently in place at Uppsalahem. It should however be noted 
that facilitators have existing experience with the current system, and have attained 
knowledge of how to interpret the generated reports. For example, there may be known 
behaviors such as the system generating anomaly reports during cold months due to the 
use of car engine heaters. In an implementation of a model like the ones described in 
this thesis, it might take time for facilitators to attain similar knowledge of how to 
interpret the generated output. New technology can disrupt existing work routines and 
the organization must go through a learning process and make adjustments in order to 
bring it into practice, and failure to adapt new innovations is not uncommon, even when 
benefits are visible (Edmondson et al., 1999). The somewhat uncertain nature of 
anomaly detection algorithms, and the fact that many detected anomalies may often not 
be linked to faults affecting energy consumption, or in some cases not even fully 
explained, may entail that benefits of these models are not visible to begin with. Thus, 
the eventual attractiveness of the models developed in this project is largely dependent 
on how they are perceived by facilitators. 
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6  Conclusion  
The aim of this thesis is to investigate whether the available data from measurements of 
electricity consumption at a residential property owner may be utilized to create 
machine learning models to enable a fast and reliable anomaly detection system. Two 
models are developed to investigate this, one based on K-means clustering and the other 
on Gaussian process regression.  

The dataset obtained for this thesis is shown to be very diverse and it is concluded that 
the developments of machine learning models for anomaly detection should probably be 
restricted to a subset of the substations to enable more accurate modelling. Regarding 
the possibility of additional data gathering, several suggestions are provided. One 
opportunity exists in the gathering of more spatially specific data, such as electricity 
consumption connected to individual buildings, which could then be combined with the 
rather extensive existing data about the buildings to for instance make assessments of 
building energy performance. Additionally, regularly storing more data about anomalies 
in the energy consumption, such as if they are linked to specific faults affecting the 
energy consumption or if normal explanations for deviating energy consumption are 
found, would likely be of assistance in future attempts to create more accurate models. 

Both developed models are shown to be capable of detecting what has been identified as 
anomalous patterns in electricity consumption, but the timeframe required for reliably 
doing so varies between a couple of days to weeks depending on how accurately the 
individual substations are modeled. The models are, however, assumed to be faster than 
the current anomaly detection system at Uppsalahem, which operates on monthly data. 
Both models present with strengths and weaknesses, but the K-means model is chosen 
as the most preferable due to the relative ease of implementation and higher capability 
of handling irregular data series, which are frequent in the studied dataset. The K-means 
model also shows slightly faster detection times in a comparison between the two 
models. It also displays a higher ability to detect deviations in the form of long-term 
drifts and seasonal anomalies, while the Gaussian process regression model may largely 
be restricted to finding rapid short-term changes in electricity consumption. The results 
of this study show that it is more straightforward to proceed with the K-means model. 
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