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Abstract

Empirical modeling of the thermal systems in an
apartment

Jacob Rutfors, Måns Wallentinsson

In this study, linear and non-linear models were trained on real data to mimic the 
relationship between household electricity consumption and indoor temperature, in 
the rooms of an apartment in downtown Stockholm. The aim was to better 
understand this relationship and to distinguish any divergence between the 
different rooms. With data from two weeks of measurements, the models proved to 
perform well when tested on validation data for almost all rooms, only showing 
performance dips for the middle room. A noticeable correlation between the 
electricity consumption and the indoor temperature was observed for all rooms 
except the bedroom. However, the benefits of using this information to predict the 
indoor temperature are limited and differ between the rooms. The household 
electricity consumption primarily brought beneficial information to the kitchen 
models, where most of the heat generating appliances were located. It was found 
that linear models were sufficient to represent the thermal systems of the rooms, 
performing equally well and often better than non-linear models.

Tryckt av: Uppsala
ISSN: 1650-8319, UPTEC STS20 015
Examinator: Elísabeth Andrésdóttir 
Ämnesgranskare: Per Mattsson
Handledare: Peter Karlsson



2 

 

 

Populärvetenskaplig sammanfattning  
 
Automatisk styrning av radiatorer i hushåll är ett väletablerat tillvägagångssätt för att 
öka bekvämligheten för de boende samtidigt som energianvändningen kan reduceras. 
Radiatorerna i många av dagens äldre fjärrvärmekopplade byggnader styrs först och 
främst utifrån utomhustemperaturen, vilket i grova drag betyder att värmeeffekten 
minskar när utomhustemperaturen ökar, och vice versa. Därigenom kan energi sparas 
under varma dagar, då radiatorerna inte behöver värma upp hushållet lika mycket. Det 
finns potential att förbättra den automatiska styrningen för det äldre byggnadsbeståndet 
och konstruera den på ett sådant sätt att fler variabler tas i beaktning för att reglera 
hushållets inomhustemperatur. En variabel som potentiellt skulle kunna användas till 
detta är hushållselförbrukningen, både på grund av att elektriska apparater i hemmet 
avger värme men också för att en hög förbrukning av el skulle kunna indikera att 
personer är hemma vilket också är en värmekälla.  
 
Relationen mellan elförbrukningen och inomhustemperaturen har i denna studie 
grundligt undersökts för en lägenhet i centrala Stockholm. Genom mätningar har det 
varit möjligt att dels undersöka hur variablerna samvarierar men också huruvida de kan 
användas för att förutse hur inomhustemperaturen kommer förändras framåt i tiden. För 
att studera det sistnämnda har modeller skapats för att efterlikna rummens termiska 
system, det vill säga hur inomhustemperaturen påverkas av faktorer såsom 
hushållselförbrukningen.  
 
Genom att registrera inomhustemperaturen för kök, sovrum, badrum, vardagsrum och 
mellanrum separat, och simultant registrera elförbrukningen för hela lägenheten har vi 
observerat hur hushållselförbrukningen påverkar inomhustemperaturen för respektive 
nämnt rum. Resultaten visar att en korrelation mellan hushållselförbrukning och 
inomhustemperatur är noterbar för alla rum, med undantag för sovrummet. I praktiken 
betyder detta att en ökning i hushållselförbrukningen verkar öka inomhustemperaturen, 
dock till olika grad och med olika tidsfördröjningar beroende på rum. Variablerna 
fungerar bra för att förutse framtida förändringar i inomhustemperaturen, dock är 
inomhustemperaturen för sig själv adekvat för detta ändamål. Det betyder att givet 
information om en inomhustemperatur vid en viss tidpunkt kan en framtida 
inomhustemperatur (här 15 minuter framåt) förutses med god noggrannhet. Om även 
information om hushållselförbrukningen inkluderas blir prediktionerna ofta bättre, men 
bara marginellt.  
 
Sammanfattningsvis så finns det potential att förbättra radiatorstyrning genom att ta 
hänsyn till hushållselförbrukningen, allra främst för köket som enskilt rum. Då 
förbättringarna är begränsade är det svårt att i dagsläget motivera investeringar i att 
integrera mjukvara i befintliga uppvärmningssystem, men det är möjligt att detta kan 
vara gynnsamt under vissa förhållanden. Exempelvis är sannolikheten stor att 
hushållselförbrukningen korrelerar mer med inomhustemperaturen för mindre 
lägenheter, där exempelvis kök och vardagsrum utgör en gemensam boendeyta och 
värmeavgivande elektrisk apparatur är mindre utspridd. 
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responsibility was divided equally. For example, black-box modeling theory, 
programming, the choice of method, text revision, the discussion section and the 
conclusion section was dedicated equal care from both writers.  

Each part of the report has in one way or another been edited by both writers, making 
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Vocabulary 
 

Estimation data Data used to estimate a model. 

Validation data Data used to validate a model.  

Goodness of fit (GOF) Expresses how well a 15-step prediction 
mimics the validation data, using the 
normalized root mean squared error 
(NRMSE). 

SE-fit A model’s ability to predict an output of 
the validation data, with respect to Sum 
of squares (SE). 

Input-output models A term describing models using inputs 
and outputs to predict values of the 
output.  

No-input models A term describing models without input. 
Only the previous values of the output are 
used to predict future outputs.  

Tuned one-step predictor A model designed to predict outputs one 
step into the future, using inputs and 
outputs up to 𝑡 − 1 to predict the output 
at time 𝑡.  

Tuned 15-step predictor A model designed to predict outputs 15 
steps into the future, using inputs and 
outputs up to 𝑡 − 15 to predict the output 
at time 𝑡.  

15-step predictions 1. When done by tuned one-step input-
output models, inputs up to 𝑡 − 1 and 
outputs up to 𝑡 − 15 are used to predict 
the output at time 𝑡.  

2. When done by tuned input-output 15-
step predictors, inputs and outputs up to 
𝑡 − 15 are used to predict the output at 
time 𝑡. 

3. When done by no-input tuned one-step 
predictors or the no-input tuned 15-step 
predictors, outputs up to 𝑡 − 15 are used 
to predict the output at time 𝑡.  
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Number of units Number of units used in a Sigmoid 
network. 

Household electricity consumption Refers to household electricity power 
consumption in this study. 
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1. Introduction 
This introduction aims to clarify the general motivation behind this work. Firstly, a 
background is given, specifying the driving forces of this work. Secondly, the purpose 
is stated, which will be the common thread throughout the report. Thirdly, the questions 
at issue are established. Finally, we present the set of delimitations which keep the study 
manageable.  

1.1 Background 

Energy efficiency will remain a relevant subject for years to come but it will also entail 
challenges. In Swedish households about 60 percent of the total energy usage can be 
assigned to heating (Naturskyddsföreningen, 2016). In relation to this, the Swedish 
government has an expressed goal of achieving a 50 percent more energy effective 
society between 2020 and 2030 (Regeringskansliet, 2016). In order to achieve this, 
implementations of new solutions targeted towards the energy sector must be 
considered and executed.   

The strive for energy efficiency has continued to spur innovation even as of 2020. In 
Sweden a decrease in energy supply for the upcoming 30 years seems plausible given 
today’s forecasts (Energimyndigheten, 2019). This would lead to an increased demand 
for smart solutions minimizing unnecessary energy waste in households, both in terms 
of electricity consumption as well as heating, while maintaining a habitable indoor 
environment. Aktea Energy is a consultancy company in the forefront of the energy 
sector which aims to supply solutions encouraging reduced energy use and good indoor 
environments. Aktea Energy has therefore, in consultation with undersigned, put 
interest in finding new ways to control indoor temperature by considering the possible 
correlation between electricity usage and indoor temperature in apartments.  

Radiator outputs in older district heated households are today mainly controlled with 
respect to outdoor temperature, not considering possible heat contributions from 
components such as ovens and tumblers or human body heat. This leaves room for 
improvements and possible reductions in energy usage as the radiator output may be 
reduced during heavy use of electricity and/or when people are present. By constructing 
empirical models of an apartment situated in downtown Stockholm we aimed to better 
understand the relation between household electricity consumption and indoor 
temperature, and evaluated the benefits of using the former to predict the latter. The 
models were assessed by their ability to predict the indoor temperature 15 minutes in 
advance and whether knowledge about electricity usage added predictive performance. 
The apartment in question consists of six rooms divided on 85 square meters. 

The work was executed in collaboration with, and on behalf of, Aktea Energy. It was 
supervised by Gothenburg based knowledge manager Peter Karlsson and subject 
reviewed by assistant professor Per Mattsson at the department of Information 
technology at Uppsala University.  



10 

 

1.2 Purpose 

The purpose and goal of this work was to construct thermal system models based on 
empirical data from the rooms of a district heated apartment in downtown Stockholm to 
deduce whether household electricity consumption can help predict indoor 
temperatures.  

1.3 Questions at issue 

 Can information about household electricity consumption support predictions of 
indoor temperature in the rooms of the studied apartment? 

 Does the possible correlation between household electricity consumption and 
indoor temperature differ between the rooms of the apartment?  

 Are there any improvements in prediction performance using non-linear models 
compared to linear models to represent the thermal systems of the rooms? 

 Are there any improvements in prediction performance by using information 
about household electricity consumption up to time 𝑡 − 1 compared to 𝑡 − 15 
when predicting indoor temperature at time 𝑡, i.e. do valuable information exists 
in the last 15 minutes before prediction? 

1.4 Delimitations   

In the realm of empirical modeling there are a multitude of approaches which can be 
taken. Here, we aim not to find the most complex models possible but rather the 
simplest which still yield satisfactory results. It is neither in our interest to investigate 
every single model structure possible, the focus will rather be on producing a few high-
quality models and through these evaluate the possible benefits of knowing the 
household electricity consumption when predicting indoor temperature.  

If a software is to be constructed in practice, which utilizes household electricity 
consumption data, physical hardware must be engineered and attached to the present 
radiator infrastructure. This is however not in the scope of this work and will not be 
considered further. 

Finally, we do not intend to reinvent the wheel during this six month work. Many 
software solutions are already available and will be utilized, the aim is instead to 
understand these solutions, implement, and modify them to suit our needs.  
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2. Theory 
Within this section all necessary theory will be reviewed. Firstly, models and their 
practical use are explained. Also, the basics of system analysis is presented and a brief 
explanation of common methods to analyze systems is given. Secondly, a detailed 
explanation of the main approach for this work is made, namely black-box modeling. 
Thirdly, the process of model validation is explicated and connected to previously 
presented theory. Finally, established strategies and important aspects of thermal system 
modeling are presented.  

2.1 The utility of modeling 

By definition, a model can be described as a representation of some real world object or 
system (Merriam-Webster, 2019). This model may be used as a tool to answer questions 
about the system without conducting experiments on it (Ljung, Glad, 2003). The model 
can be constructed in several ways but the main structure to be considered here is the 
empirical model, which is a mathematical system representation based on data. Data is 
preferably collected from the system it seeks to represent. The model can be used to 
reflect trends in the data and support predictions (Hernández-Molinar et al., 2016). For 
instance, the relationship between two variables like household electricity consumption 
and indoor temperature can be described by an empirical model.  

Models do in many cases hold significant value, if applied well and correctly. Predictive 
models have for example been used for weather forecasting and health outcomes of 
disease epidemics, making it easier to design warning systems related to these events 
(Rogers, 2012). It is however important to emphasize that the quality, and thereby 
utility, of the model is highly dependent on decisions made by the modeler. Modeling is 
a technical process which relies on formal theory but it also requires common sense. In 
general, the modeling process consists of three phases (Figure 1) (Ljung, Glad, 2003):  

1) Problem structuring: This task involves attaining a better grasp of the 
problem of interest. When dealing with larger systems, a good practice is to 
divide it into smaller subsystems. For example, if data is to be registered in an 
apartment, a good idea may be to register data from each separate room and 
handle each room as a subsystem. It is also important to identify the relevant 
variables and how these affect one another. This requires some portion of 
common sense and intuition from the modeler.   

2) Formulation of base equations: Here the subsystems in question are studied 
and the relationships between variables are determined. In a physical system, 
it is relevant to relate proper laws of nature to the behavior of the variables 
and form the mathematical equations describing these. Most often a portion of 
idealization is in place to avoid overcomplicating things. Again, the modeler is 
expected to decide on a reasonable practice.  

3) Model construction: In this final phase, the aforementioned equations are 
structured into a model formulation suitable for analysis or simulation, which 
finally preferably leads to an elegant state description (Ljung, Glad, 2003).  
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Figure 1. Three-phase method for modeling (Ljung, Glad, 2003). 

The three-phase method gives a general structure to assume but may differ depending 
on the modeling approach chosen by the modeler. In this work, black-box modeling is 
the method of choice, therefore shorter descriptions of alternative methods are presented 
but not looked upon in detail.  

2.1.1 Different modeling approaches 

A researcher is often faced with problems which can be solved in several ways. In the 
field of modeling there are mainly three approaches necessary to consider: White-box 
modeling, Grey-box modeling and Black-box modeling (Figure 2). Each approach has its 
given set of perks and flaws, and one approach will likely yield different results than 
another. In general, the three modeling approaches mainly differ in terms of accuracy 
and interpretability, this trade-off is explained further below (Duun-Henriksen et al, 
2013).   

 

Figure 2. Different modeling approaches (Duun-Henriksen et al, 2013). 

A white-box model is primarily based on physiological knowledge about the system it 
depicts, dealing with deterministic relations and extensive submodels (Duun-Henriksen 
et al, 2013). A pure white-box model can be interpreted as a copy of reality, this is 
however not possible in practice.  

A grey-box model can be described as an intermediate to a black-box- and a white-box 
model, i.e. it is based on both data and physiological knowledge about the system 
(Duun-Henriksen et al, 2013). 

A black-box model is more or less entirely based on data. The inner workings of the 
model can often be hard to interpret but the results can instead prove more accurate than 
white- or grey-box models (Hulstaert, 2019). An example of a black-box model is the 
neural network which is given an in depth look in Section 2.3.3. As the goal of this 
work is to model thermal systems with complex physical properties, black-box 
modeling is the method of choice.  
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2.2 System analysis 

The primary goal of a system analysis is often to study how a chosen set of variables 
behaves and covariate. For this reason, it is generally necessary to conduct a correlation 
analysis to find correlated variables and the strength of dependence between them. 
Therefore, a great part of the theory section will be dedicated to theory about this 
process. This is followed by a shorter description of the transient analysis and the 
frequency and spectral analysis which are methods for finding certain system 
characteristics but also serves as validation tools.  

2.2.1 Correlation analysis 

A measure for detecting linear dependency between random variables is the covariance. 
For two random variables (𝑋, 𝑌) the covariance can be expressed in terms of the 
expected value of the differences between the variables and their respective means 𝜇𝑋 
and 𝜇𝑌 (Alm, Britton, 2008),  
 
𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)).    (1) 
 
It is also possible to express an estimate of covariance from empirical data (Wolfram, 
2020). This gives  
 
𝑐𝑜�̂�(𝑋, 𝑌) = 1

𝑛
∑ (𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)𝑛=1

𝑖=1 ,    (2) 
  
where the estimated covariance describes the behavior of the variables and if they 
imitate each other. If 𝑐𝑜𝑣(𝑋, 𝑌) > 0, the realizations of the random variables tend to be 
larger or smaller than their means simultaneously. For 𝑐𝑜𝑣(𝑋, 𝑌) < 0 the random 
variables tend to behave opposite to each other, i.e. when one variable realization is 
larger than its mean value the other tend to be smaller than its corresponding mean 
value (Alm, Britton, 2008). 
 
A correlation exists between two random variables if a change in one results in a 
change in the other (Schneider, 2009). Pearson’s correlation coefficient 𝑝 measures the 
linear dependency between random variables and it can be expressed in terms of the 
covariance of two variables (X, Y) and their respective standard deviations 𝜎𝑋 and 𝜎𝑌 
(Oja et al, 2016), i.e.   

𝑝(𝑋, 𝑌) = 𝑐𝑜𝑣(𝑋,𝑌)
𝜎𝑋𝜎𝑌

.     (3) 

The correlation coefficient p is dimensionless and can be expressed as a scaled 
covariance (Rychlik, Rydén, 2006). The value of 𝑝 ranges from −1 to 1, where 𝑝 =
0 indicates no linear correlation between the variables (Oja et al, 2016). Using the 
command corrcoeff in MATLAB, the correlation coefficient matrix of two random 
variables can be computed. This matrix contains Pearson’s correlation coefficients 𝑝 of 
each pairwise combination of variables (Mathworks, 2020a). When using a set of two 
random variables, X and Y, the correlation coefficient matrix is of the form 2𝑥2, 
presented as  
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𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓𝑓(𝑋, 𝑌) =  (𝑝(𝑋, 𝑋) 𝑝(𝑋, 𝑌)
𝑝(𝑌, 𝑋) 𝑝(𝑌, 𝑌)).   (4) 

 
Since a variable always show maximum linear dependency when compared to itself, the 
diagonal of the matrix will be 1 (Mathworks, 2020a).  
 
A realization of a random variable is called an observation and multiple observations 
forms a time-series. It is possible to calculate an alternative correlation coefficient 𝜌 
based on the rankings of two time-series’. Spearman’s rank correlation coefficient is 
calculated by ranking the observations in the arrays [𝑥1 … 𝑥𝑛] and [𝑦1 … 𝑦𝑛] of random 
variables X and Y from 1 to 𝑛 and then summarize over the differences on quadratic 
form (Alm, Britton, 2008). This gives  
 
𝜌(𝑋, 𝑌) = 1 −  6 ∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
,     (5) 

 
which can be used if no doublets exist. The method measures the level of order 
association, in contrast to Pearson’s correlation coefficient which measures the linear 
relationship between X and Y. In equation (5), 𝑑𝑖 represents the difference between 
observations 𝑥𝑖 and 𝑦𝑖 from the rankings of arrays x and y (Alm, Britton, 2008).   
 
Using the command corr in MATLAB, which utilizes Spearman’s method, the rank 
correlation coefficient is calculated for variables X and Y. This is done by applying 
Pearson’s linear correlation coefficient to the rankings of X and Y or, if no doublets 
exist, by equation (5) (Mathworks, 2020b). The rank correlation coefficient adopts a 
value between −1 to 1 (Alm, Britton, 2008). A correlation of −1 or 1 represents the 
maximum degree of negative or positive linear relationship between the ranks of X and 
Y.  
 
It is also possible to test the null hypothesis 𝐻0, i.e. whether X and Y are uncorrelated. 
For large 𝑛, a rule of thumb is to approximate the rank correlation coefficient as 
normally distributed and p-values can thereby be calculated (Alm, Britton, 2008). The 
p-value ranges from 0 to 1, where values close to 0 indicate a non-zero correlation. 
Through the command corr it is possible to calculate a p-value which rejects the null 
hypothesis if it is smaller than 0.05, i.e. smaller than the significance level for a 
confidence interval of 95 percent (Mathworks, 2020b). The hypothesis depends on the 
level of confidence, which is selected by the modeler. 
 
It should be noted that there are limitations in only studying the correlation coefficients 
of Pearson’s or Spearman’s rank to understand the relationship between two random 
variables. Schober et.al (2018) explains that a common misconception is that values of 
correlation coefficients close to 0 entails that no relation exists between the variables. In 
fact, the correlation describes linear or monotonic association but do not regard other 
types of relationships. For instance, non-linear relationships can easily be overlooked by 
these methods. It is therefore important to also adapt other methods to fully understand 
the behavior of the variables and their impact on each other. One way is to plot the 
variables as functions of time and observe the visual relationships in the graphs. It is 
also useful to utilize a scatter plot to analyze the dependency between the variables. In 
this graph the variables are plotted as functions of each other and the relationship can 
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thereby be visualized. This approach does not consider any time delay between the 
variables but can show tendencies of non-linear relationships (Alm, Britton, 2008).  
 
Another way to understand the relationship between two variables, while 
simultaneously regarding potential time delays, is to create and compare prediction 
models. For example, if information about one variable X improves predictions of 
another variable Y, compared to predictions based only on knowledge about Y, a 
correlation between the variables may exist.   
 
A well-established method of deducing the degree of correlation between two time-
series’ for different time lags (positive delay) and leads (negative delay) is the cross 
correlation. The correlation is specified with a number between −1 and 1 to symbolize 
either negative or positive correlation between time-series’ 𝑥 and 𝑦. The correlation is 
calculated using different lags or leads d, shifting the series some defined number of 
steps in positive or negative direction respectively (Bourke, 1996). This is presented 
mathematically as 
 
𝑟(𝑑) = ∑ [(𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝑑−𝜇𝑦)]𝑛

𝑖=1

√∑ (𝑥𝑖−𝜇𝑥)2𝑛
𝑖=1 ∗√∑ (𝑦𝑖−𝑑−𝜇𝑦)2𝑛

𝑖=1

,     (6) 

 
where 𝜇𝑥 and 𝜇𝑦 is the mean of 𝑥 and 𝑦. The lag/lead generating the highest correlation 
coefficient can be considered the most likely time delay between the two time-series’. 
However, this is mainly true when the dependency is linear (Mathworks, 2020c). It is 
also possible to estimate the time delay between two time-series’ by constructing 
models of the input and the output and observe for which time delay 𝑛𝑘 they are most 
similar. The command delayest in MATLAB does this by creating ARX-models of 
the input and output data and compare them for different time delays 𝑛𝑘 (Mathworks, 
2020d). 
 
A good way to assess whether a model can be adapted better to the real system is to 
observe the cross-correlation between the inputs and the residuals, i.e. the prediction 
errors. For predictive models, the prediction error 𝜀 can be expressed as the residuals 
between measurements 𝑦 and predictions �̂� (Svensson, 2018), given as 
 
𝜀(𝑡) = 𝑦(𝑡) − �̂�(𝑡).     (7) 
 
If the correlation is small, the model is likely well-adapted to the data (Ljung, Glad, 
2003).  
 
In any time-series analysis it is common to not only investigate how one time-series 
correlates with another but also how the time-series correlates with itself, i.e. 
autocorrelates (ESH, 2020). This can be expressed as 
 
𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝑘) = ∑ (𝑥𝑖−𝜇𝑥)(𝑥𝑖+𝑘−𝜇𝑥)𝑛

𝑖=1
∑ (𝑥𝑖−𝜇𝑥)2𝑛

𝑖=1
,     (8) 

 
which is a special case of equation (6). It makes intuitively sense for most time-series’ 
that the value of a data point 𝑥𝑖 is correlated to previous data points 𝑥𝑖−𝑘 as well as 
future data points 𝑥𝑖+𝑘, where 𝑘 corresponds to the lead or lag. A lag of 0 means that a 
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data point is compared to itself, yielding an autocorrelation of 1. In general, it is 
important to be aware of autocorrelation when performing a correlation analysis, this to 
avoid picking up nonsense correlations between data points because of trends randomly 
matching (Vilela, Danuser, 2013). When validating or comparing prediction models, the 
autocorrelation of the prediction errors can be studied. This shows whether the residuals 
are independent of each other and whether noise has been successfully regarded in the 
design of the model (Ljung, Glad, 2003).  
 

2.2.2 Transient analysis 

In order to better understand a system, one must identify the relevant magnitudes and 
variables describing the behavior of the system, and more importantly how these 
interact and affect each other. A general approach is to conduct a transient analysis. 
This is done by varying the system input u as a step and register the corresponding 
behavior of the other measurable variables, i.e. as a step response (Ljung, Glad, 2003),  

𝑢(𝑘) = {1, 𝑘 ≥ 0
0, 𝑘 < 0.     (9) 

With this simple experiment, system information can be deduced from the results, for 
example: [1] How other variables are affected by the input signal, [2] What time 
constants the system possesses, [3] The character of the step response and the level of 
static amplification (Ljung, Glad, 2003). 

It is also possible to gain understanding of a system through its impulse response. The 
impulse response for a dynamic time discrete system is the system output when the 
input is on the form of a unit pulse (Carlsson, Samuelsson, 2017). For the input 𝑢, this 
can be written as 

𝑢(𝑘) =  {1, 𝑘 = 0
0, 𝑘 ≠ 0.     (10) 

From the impulse response, information can be obtained such as: [1] The time delay, [2] 
How fast the system is and [3] If the system is unstable (Carlsson, Samuelsson, 2017).  

Sometimes it is difficult to perform a transient analysis on the real system. It is however 
possible to estimate a step- or an impulse response based on a model of the system. 
From this, good estimations of system behaviors can be achieved depending on the 
quality of the model. These can, for instance, be used when validating or comparing 
different models.  

2.2.3 Frequency- and spectral analysis 

Another important tool to assess the behavior of a linear system graphically is the Bode-
diagram, which is a visualization of the frequency function 𝐺(𝑖𝜔) of some transfer 
function 𝐺. It consists of two separate plots related to different frequencies 𝜔, one 
showing the amplitude |𝐺(𝑖𝜔)| and the other the argument arg (𝐺(𝑖𝜔)) (Carlsson, 
Samuelsson, 2017).  
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The amplitude curve serves several purposes, for example to deduce the number of 
poles in the system from counting the number of resonance peaks. In general, one 
resonance peak entails two poles, two resonance peaks entails three poles and so on.  
Also, if the resonance peak occurs at higher frequencies then the step response will also 
tend to fluctuate at a higher frequency and vice versa. The height of the resonance peak 
determines how fluctuating the step response will be (Carlsson, Samuelsson, 2017).  

From the argument curve the phase shift can be read, for every 90 degree shift a general 
rule of thumb is that there should be one more pole than zeros (Carlsson, Samuelsson, 
2017).  

Even though the frequency analysis is a sufficient analysis tool it can also be necessary 
to perform a spectral analysis. A spectrum, or a spectral density, 𝜙𝑣 describes the 
frequency content of a signal 𝑣(𝑘) (Ljung, Glad, 2003). It is defined as the square 
absolute value of the Fourier transform of the signal. The spectrum has the unit energy 
per frequency and the integral of the spectrum between two frequencies 𝜔1 and 𝜔2 
express the energy in this frequency interval (Ljung, Glad, 2003). The spectrum can be 
estimated for some given time-series of sampled inputs and outputs. To do this, for 
example on the input 𝑢, the time-discrete Fourier-series (TDF) is used (Carlsson, 
Samuelsson, 2017). Mathematically it is formulated as 

𝑈𝑇𝐷𝐹(𝑖𝜔) = ∑ 𝑢(𝑘)𝑒−𝑖𝜔𝑘𝑛
𝑘=1 .    (11) 

The spectrum �̂�𝑈,𝑇𝐷𝐹(𝜔) is then approximated and this estimation is called a 
periodogram, given as  

�̂�𝑢,𝑇𝐷𝐹(𝜔) = 1
𝑛

|𝑈𝑇𝐷𝐹(𝑖𝜔)|2,    (12) 

which can be graphically visualized (Ljung, Glad, 2003). Here 𝑛 is the number of 
samples of the input 𝑢. From the spectral analysis, it is possible to derive valuable 
information. For example, an approximation of the frequency function �̂�(𝑖𝜔) can be 
derived from the TDF-series of the input and output (Carlsson, Samuelsson, 2017), by 
solving 

�̂�(𝑖𝜔) =𝑌𝑇𝐷𝐹(𝑖𝜔)
𝑈𝑇𝐷𝐹(𝑖𝜔)

.      (13)  

This frequency function can be useful when constructing a model. One way to utilize it 
is to compare the frequency function from a created model with the function �̂�(𝑖𝜔) 
derived from spectral analysis of the given time-series. If the spectral analysis is 
performed correctly and the frequency functions behaves similarly, the model is likely 
to have adapted correct system characteristics (Ljung, Glad, 2003). The command spa 
in MATLAB estimates the spectrum and standard deviations from time-series data. This 
estimation can be complemented by the command bodeplot to visualize the frequency 
function (Mathworks, 2020e). It is however important to regard some of the limitations 
with this type of signal analysis. Spectral analysis assumes that the system is in fact 
linear and does not work if the real system operates with feedback during data 
collection, i.e. spectral analysis assumes that the input 𝑢 and the disturbance 𝑣 are 
uncorrelated (Ljung, Glad, 2003).  
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The theoretical background for finding system characteristics is indeed important but 
the process of modeling also spans beyond the mathematics. Modeling is also a process 
of intuition and common sense.  

2.3 Black-box modeling in detail   

2.3.1 Empirical modeling 

Creating a detailed physical model (white or grey) of a thermal system in a building is 
both time-consuming and requires extensive information about the building. This 
information can be hard to obtain, especially if the building is old and has undergone 
several restorations. To gain understanding of materials and building characteristics 
through destructive methods can also be challenging since many older buildings are 
protected (Kramer et al., 2012). Therefore, a simplified model of the building is often 
used to approximate the real system. 

A way of designing a simplified model is to identify the parameter values through 
empirical modeling (Balan et al., 2011). This concept describes a modeling approach 
where the parameters are determined by matching the model output to real measurement 
data. This matching uses an optimization algorithm to minimize the objective function, 
e.g. the root-mean-squared-error between model outputs and the collected validation 
data. It is possible to use both linear parametric models and non-linear models for 
empirical modeling. In contrast, when applying white- or grey-box modeling, the 
method is to go forward from model characteristics to data instead of vice versa 
(Kramer et al., 2012).  

The process of constructing a linear parametric model via empirical modeling can be 
explained in three main steps, similar to the general three-phase method approach 
presented earlier in (Figure 1). Firstly, measurements of the real system are made, i.e. 
inputs and outputs of the real system are collected. Secondly, a model structure is 
chosen and its parameters fitted to the data using an optimization algorithm. Lastly, 
model validation is performed with data which was not used in the parameter fitting 
(Mustafaraj et al., 2010). 

2.3.2 Linear black-box models 

There are a significant number of linear black-box models for a modeler to consider, all 
which vary in complexity and purpose. A general model structure can be found within 
the realm of linear models which utilizes polynomial structures with or without added 
noise (Ljung, Glad, 2003). This structure is formulated as 

𝑦(𝑡) = 𝐺(𝑞, 𝜃) 𝑢(𝑡) + 𝐻(𝑞, 𝜃) 𝑒(𝑡).    (14)  

The output y is generated via a transfer function G specifying the dynamics of input u 
affecting output y and another transfer function H describing the effect of noise 𝑒 on y. 
𝑒 is assumed to be white noise and non-white noise are being modeled using the term 
𝐻(𝑞, 𝜃) 𝑒(𝑡). The transfer functions provide the polynomial structure of the models 
(Ljung, Glad, 2003). 𝐺 and 𝐻 is expressed as 
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𝐺(𝑞, 𝜃) = 𝐵(𝑞)
𝐹(𝑞)

= 𝑏1𝑞−𝑛𝑘+𝑏2𝑞−𝑛𝑘−1+⋯+𝑏𝑛𝑏𝑞−𝑛𝑘−𝑛𝑏+1

1+ 𝑓1𝑞−1+⋯+𝑓𝑛𝑓𝑞−𝑛𝑓    (15) 

and 

𝐻(𝑞, 𝜃) =  𝐶(𝑞)
𝐷(𝑞)

=  1+𝑐1𝑞−1+⋯+𝑐𝑛𝑐𝑞−𝑛𝑐

1+𝑑1𝑞−1+⋯+𝑑𝑛𝑑𝑞−𝑛𝑑.    (16) 

Here, 𝜃 represents the parameter values of [𝑏1 … 𝑎𝑛𝑏  𝑓1 … 𝑓𝑛𝑓  𝑐1 … 𝑐𝑐𝑓  𝑑1 … 𝑑𝑛𝑑 ]𝑇 and 
𝑛𝑘 the time delay between input 𝑢 and output 𝑦.  

There are essentially six different linear models worth considering in this family of 
linear models: the ARX-model, the AR-model, the ARMAX-model, the ARMA-model, the 
Box-Jenkins-model and the OE-model (Ljung, Glad, 2003).  

One of the simplest linear model structures for input and output time-series’ is the 
autoregressive exogenous (ARX) model,   

𝐴(𝑞) 𝑦(𝑡) = 𝐵(𝑞) 𝑢(𝑡) + 𝑒(𝑡).      (17) 

A common practice is to let D and F coincide as demonstrated in equation (18) and to 
set C = 1 in the general model structure, thereby introducing polynomial A on the left-
hand side in the ARX structure (Ljung, Glad, 2003), forming 

𝐷(𝑞) = 𝐹(𝑞) = 𝐴(𝑞) = 1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎 𝑞−𝑛𝑎.   (18) 

The predictor of the ARX-model takes into consideration previous inputs as well as 
previous outputs to estimate values of the output (Svensson, 2018), formulated as 

�̂�(𝑡; 𝜃|𝑡 − 1) = (1 − 𝐴(𝑞))𝑦(𝑡) + 𝐵(𝑞)𝑢(𝑡).   (19) 

𝜃 represents the parameter values of [𝑎1 … 𝑎𝑛𝑎  𝑏1 … 𝑏𝑛𝑏]𝑇. 

By allowing 𝐵(𝑞) to be zero in the ARX-structure, i.e. excluding the input signal, the 
model takes on the form of an autoregressive (AR) model. The AR-model is a common 
structure used for representing a stochastic time series (Carlsson, Samuelsson, 2017). In 
comparison to the general model, no input exists and there is no modeling of the noise 
e. The AR-model can be written as 

𝐴(𝑞)𝑦(𝑡) = 𝑒(𝑡).      (20) 

The AR-predictor, given as 

�̂�(𝑡; 𝜃|𝑡 − 1) =(1 − 𝐴(𝑞))𝑦(𝑡),     (21) 

is only dependent on previous values of the time series itself (Carlsson, Samuelsson, 
2017). 𝜃 represents the parameter values of [𝑎1. . . 𝑎𝑛𝑎]𝑇.  

A slightly more advanced model compared to ARX is the exogenous autoregressive 
moving average (ARMAX) model which allows for modeling of the noise (Ljung, 
Glad, 2003). This model can be formulated as  
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𝐴(𝑞)𝑦(𝑡) = 𝐵(𝑞) 𝑢(𝑡) + 𝐶(𝑞) 𝑒(𝑡).    (22) 

The predictor of ARMAX, expressed as  

�̂�(𝑡; 𝜃|𝑡 − 1) = (1 − 𝐴(𝑞)
𝐶(𝑞)

) 𝑦(𝑡) + 𝐵(𝑞)
𝐶(𝑞)

𝑢(𝑡),   (23) 

use both inputs and outputs to predict future output values (Svensson, 2018). 𝜃 
represents the parameter values of [𝑎1 … 𝑎𝑛𝑎 𝑏1 … 𝑛𝑛𝑏 𝑐𝑎 … 𝑐𝑛𝑐]𝑇.  

By allowing 𝐵(𝑞) to be zero in the ARMAX-structure, only considering a single time 
series without input, the model takes on the form of an autoregressive moving average 
(ARMA) model. The ARMA-model is also an enlargement of the AR-model (Carlsson, 
Samuelsson, 2017), formulated as 

𝐴(𝑞)𝑦(𝑡) = 𝐶(𝑞)𝑒(𝑡).     (24) 

Similarly to the AR-model, the noise is considered an unmeasurable input to the model. 
By setting 𝐶 to one in the ARMA-structure, the AR-model is received. The ARMA-
predictor, expressed as 

�̂�(𝑡; 𝜃|𝑡 − 1) = (1 − (𝐴(𝑞)
𝐶(𝑞)

)) 𝑦(𝑡),    (25)  

 
regards previous outputs 𝑦 when determining the predictions (Carlsson, Samuelsson, 
2017). 𝜃 represents the parameter values of [𝑎1. . . 𝑎𝑛𝑎 𝑐1. . . 𝑐𝑛𝑐]𝑇.  

The most complete linear model structure is Box-Jenkins (BJ) and utilizes all available 
polynomials in the general model, see equation (14) (Ljung, Glad, 2003). The model is 
structured as  

𝑦(𝑡) = 𝐵(𝑞)
𝐹(𝑞)

 𝑢(𝑡) + 𝐶(𝑞)
𝐷(𝑞)

 𝑒(𝑡).    (26) 

The BJ-predictor, formulated as 

�̂�(𝑡; 𝜃|𝑡 − 1) = (1 − 𝐷(𝑞)
𝐶(𝑞)

) 𝑦(𝑡) + 𝐷(𝑞)𝐵(𝑞)
𝐶(𝑞)𝐹(𝑞)

𝑢(𝑡),   (27) 

use information about previous inputs and outputs to estimate the output (Svensson, 
2018). 𝜃 represents the parameter values of [𝑏1 … 𝑏𝑛𝑏 𝑐1 … 𝑐𝑛𝑐 𝑓1 … 𝑓𝑛𝑓 𝑑1 … 𝑑𝑛𝑑]𝑇.  

A final special case well worth to consider is the Output-Error (OE) model which 
excludes modeling of the noise (Ljung, Glad, 2003), given as 

𝑦(𝑡) =  𝐵(𝑞)
𝐹(𝑞)

 𝑢(𝑡) + 𝑒(𝑡).     (28) 

The OE predictor is formulated as  

�̂�(𝑡; 𝜃|𝑡 − 1) = 𝐺(𝑞, 𝜃)𝑢(𝑡) = 𝐵(𝑞)
𝐹(𝑞)

𝑢(𝑡),   (29) 
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i.e. the OE predictor only depends on the input 𝑢 (Ljung, Glad, 2003). 𝜃 represents the 
parameter values of [𝑏1 … 𝑏𝑛𝑏 𝑓1 … 𝑓𝑛𝑓]. The other predictors differ a bit from the OE-
predictor as they depend, completely or partly, on earlier values of the output 
(Svensson, 2018).   

As earlier mentioned predictive models are estimated as one-step predictors, tuned to 
predict indoor temperature at time 𝑡, using inputs and outputs up to 𝑡 − 1, but later to be 
validated by inputs up to 𝑡 − 1 and outputs up to 𝑡 − 𝑘 to predict the output at time 𝑡, it 
is well-worth to also consider estimating k-step predictors analytically. This can be done 
with linear regression by solving normal equations with the least squares method using 
a prediction horizon of k steps for both inputs and outputs (Svensson, 2018). This is 
possible for both AR- and ARX-models. In general, the normal equation is structured as  

�̂� = [∑ 𝜑(𝑡)𝜑(𝑡)𝑇𝑁
𝑘=1 ]−1 ∑ 𝜑(𝑡)𝑦(𝑡) = [𝜙𝑇𝜙]−1𝜙𝑇𝑁

𝑘=1 𝑌.  (30) 

Here, 𝜙 can be expressed as [𝜑(𝑛0 + 1) 𝜑(𝑛0 + 2) …  𝜑(𝑁)]𝑇 where 𝑛0 is selected as 
the maximum between 𝑛𝑎 and 𝑛𝑘 + 𝑛𝑏 + 1. In the estimation process, 𝑁 is the amount 
of data points used for estimation and 𝜑 corresponds to the measurement data of 
[−𝑦(𝑡 − 𝑛𝑘) − 𝑦(𝑡 − 𝑛𝑘 − 1) … − 𝑦(𝑡 − 𝑛𝑘 − 𝑛𝑎 + 1) 𝑢(𝑡 − 𝑛𝑘) 𝑢(𝑡 − 𝑛𝑘 −
1) … 𝑢(𝑡 − 𝑛𝑘 − 𝑛𝑏 + 1)]𝑇 for the ARX-model (Svensson, 2018). To estimate a k-step 
predictor, 𝑛𝑘 is selected to be the desirable prediction horizon k steps ahead, i.e. 15-
steps in this study. The solution of �̂� entails a minimization of the cost function V, given 
as 

𝑉(𝜃) = ∑ (𝑦(𝑘) − 𝜑(𝑘)𝑇𝜃)2𝑁
𝑘=1 ,    (31) 

which is the sum of squares. This corresponds to finding the model parameters �̂� which 
best fit the data 𝜑(𝑡) and 𝑦(𝑡) (Carlsson, Lindholm, 2019). The resulting predicted 
outputs on the estimation data can be computed as 

�̂�(𝑡; 𝜃|𝑡 − 1) = 𝜑(𝑡)𝑇𝜃.     (32) 

If the aim is to receive outputs from the predictor on validation data, this can be done by 
constructing 𝜙 from the validation data and then compute the predictions as in (32) 
(Svensson, 2018). The predictor uses values of the inputs and outputs up to 𝑡 − 𝑘 to 
predict outputs at time instance t. The purpose of applying this additional method is 
simply to assess the one-step predictors estimated through the MATLAB System 
Identification Toolbox (SITB) and to evaluate whether valuable information exists in 
knowing the household electricity consumption 15 minutes before each prediction 
instance t.  

To summarize, the estimated predictors are validated in two different ways:  

1) Tuned one-step predictors uses inputs up to 𝑡 − 1 and outputs up to 𝑡 − 15 to 
predict the output at time 𝑡.  

2) Tuned 15-step predictors uses inputs and outputs up to 𝑡 − 15 to predict the 
output at time 𝑡. 

Linear models have some advantages compared to non-linear models. Mustafaraj et al. 
(2010) highlights the simplicity of the models. Often linear models have a low number 
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of estimated parameters and are likely to be compatible with physical models of the 
studied system. In contrast, a non-linear model like a neural network cannot be related 
to a physical model. It is also easier to use linear models in control schemes. However, 
linear models are not always sufficient when modeling reality as many real-world 
processes tend to be non-linear. Therefore, non-linear models must often be considered.  

2.3.3 Non-linear black-box models  

Non-linear black-box models are, as the name suggests, used to describe non-linear 
dynamics of a system. One such model structure is the neural network (Sjöberg et al., 
1995). It consists of multiple layers of connected nodes, where the connections are 
called weights. In general, a neural network will be structured around one input layer, 
one or more hidden layers and one output layer (Schmidhuber, 2014). See (Figure 3) for 
an example of a neural network with five input nodes, two hidden layers with two and 
five nodes respectively, and five output nodes.  

 

Figure 3. Neural Network (Yiu, 2019). 

Like any model, the neural network can be used for predictions of the output given 
some input. Each input 𝑢𝑖 connects to each node in the first hidden layer and is given a 
weight 𝑤𝑖𝑗 , the product sum of these plus a bias are then passed into an activation 
function 𝑓 associated with the hidden layer (Schmidhuber, 2014). The first hidden node 
output is expressed as  

𝑓(𝑢1 𝑤11 + 𝑢2 𝑤12 + ⋯ + 𝑢𝑘 ∗ 𝑤1𝑘 + 𝑏𝑖𝑎𝑠).     (33) 

The output values of the first hidden layer’s nodes are passed to each node in the next 
layer (with a new weight) until the final output is reached, which represents the 
prediction. A common choice of activation function is the Sigmoid function 
(Schmidhuber, 2014). The choices of activation function, initial weights and the 
dimensions of hidden layers are made by the modeler.  

For the purpose of this work, a static neural network model will not be sufficient to 
describe the relation between electricity and temperature. This because a static neural 
network will try to fit each instance of electricity to the corresponding instance of 



23 

 

indoor temperature at each time step, thereby not considering the dynamics of the 
system. The indoor temperature does not only depend on the household electricity 
consumption at time 𝑡, but also on earlier values of this variable as well as earlier values 
of the indoor temperature. Therefore, the MATLAB model framework nlarx is 
utilized which is simply a non-linear ARX-structure that combines the linear ARX-
model with a non-linear neural network, yielding a flexible model for prediction 
(Mathworks, 2020f). The NLARX-model works similarly to equation (32), but instead 
of �̂� being estimated by 𝜑(𝑡)𝑇𝜃, 𝜑(𝑡)𝑇 is inserted into some non-linear function f 
yielding �̂� = 𝑓(𝜑(𝑡)𝑇;  𝜃), in this case a neural network. If 𝑛𝑏 = 0, a non-linear AR-
model is created (NLAR). 

NLARX- and NLAR-models requires a neural network structure as an input. While it is 
possible to construct a neural network manually, we instead opted for MATLAB’s pre-
defined sigmoidnet which only requires the parameter number of units to be 
defined. This represents the number of nonlinearity terms in the sigmoid expansion 
(Mathworks, 2020g).  

Neural networks is one of the most used model structure’s when the goal is to capture 
non-linear dynamics. However, an alternative approach has been developed by Mattsson 
et al. (2018). In their study, their modeling framework LAVA outperformed the neural 
network in terms of fit to data and therefore this model structure will also be considered 
in this work. 

LAVA is a system modeling framework developed to learn non-linear models with 
multiple inputs and outputs by Mattsson et al. (2018). LAVA is itself supported by 
complex modeling theory but it is not in the scope of this work to dive into the 
mathematical details of it.  

LAVA assumes a model structure with a nominal part Θ𝜑(𝑡), a latent part Ζ𝛾(𝑡) and a 
white noise process 𝑣(𝑡) forming the model presented as  

𝑦(𝑡) =  Θ𝜑(𝑡) +  Ζ𝛾(𝑡) + 𝑣(𝑡).     (34) 

The idea is then to estimate the parameter matrices Θ and Ζ to form the final model. The 
parameters are linear but the model is in fact input-output non-linear, i.e. the relation 
between the input and the output is non-linear. Here, 𝛾(𝑡) is as a non-linear function of 
𝜑(𝑡). If Ζ = 0, the prediction errors are solely generated by white noise, allowing the 
nominal part to capture the system dynamics by itself (Mattsson et al., 2018).  

In contrast to the neural network models, the LAVA models are estimated as 15-step 
predictors. This means that for the non-linear models in this study, the NLARX- and 
NLAR-models represents tuned one-step predictors while LAVA is tuned 15-step 
predictors. When predicting the output at time 𝑡, the NLARX-models uses inputs up to 
𝑡 − 1 and outputs up to 𝑡 − 15, whereas the input-output LAVA-predictors use both 
inputs and outputs up to 𝑡 − 15.  

The purpose of modeling both linear models and non-linear models, as well as tuning 
one-step predictors and 15-step predictors, is to assess which structure works best for 
prediction given the studied thermal systems. This will be determined by the process of 
model validation.  
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2.3.4 Objective functions and model validation 

To validate whether a model can be used to describe a real system it is important to 
analyze the performance of the model. This is often done by cross-validation which is a 
method to evaluate the prediction errors. The main issue with cross-validation is that not 
all data is used as estimation data, some has to be earmarked as validation data (Ljung, 
Glad, 2003). This means that the model will be unable to utilize all available data when 
estimated. However, from a positive viewpoint, the validation data allows for reliable 
model testing.  
 
The results of a one-step prediction can often be good even for low-performance models 
and it is therefore recommended to analyze the prediction errors further, e.g. by the 
autocorrelation of the residuals, or to use a greater prediction horizon, like the 15 
minutes used in this study. For a model structure with noise, the autocorrelation of the 
residuals should show that the residuals are independent. This independency is true if 
the autocorrelation is close to zero. It is also ideal that the residuals should be 
independent of the inputs, otherwise some system dynamics has not been modeled 
properly (Ljung, Glad, 2003). Therefore should the cross-correlation between the 
residuals and the inputs be close to zero.  
 
When constructing a model it is crucial to measure its accuracy, partly upon 
construction but also post construction. This is done with objective functions, which 
outputs the error of the prediction, similarly to equation (7). For example, if one wishes 
to optimize a neural network, the approach would be to optimize the model parameters 
so that the objective function output error is minimized (Kenton, 2019). The objective 
function used during the estimation process helps to estimate the parameters of the 
model so that the best fit to estimation data is received with respect to the objective 
function error (Hernándes-Molinar et al., 2016). If instead one wishes to test the 
performance of the estimated model, the approach would be to compare the model 
output to validation target outputs, also with an objective function.  
 
A general objective function is the sum of squares (SE) of the residuals between the 
prediction response data 𝑦�̂� and the validation data 𝑦𝑖. It is formulated as 
 
𝑆𝐸 =  ∑ (𝑦𝑖 − 𝑦�̂�)2.𝑛

𝑖=1       (35) 
 
Here, n is the number of data samples (Kenton, 2019). In this study, the SE-fit is used 
during the correlation analysis to evaluate how well the one-step predictors mimics the 
validation data, before selecting the linear model structures. The sum of squares is also 
used as an objective function to estimate the parameters of the tuned 15-step predictors, 
see 2.3.2.  
 
Another common objective function is the Mean squared error (MSE) which can be 
described as an extension of the SE now divided with the number of data points 𝑛, 
formulated as 
 
𝑀𝑆𝐸 = ∑ (𝑦𝑖−𝑦�̂�)2

𝑛
𝑛
𝑖=1 .     (36) 
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MSE simply compares the predicted value 𝑦�̂� to the target value 𝑦𝑖, sums the squares of 
the error and finally averages the error to the number of observations, generating a mean 
squared error. However, MSE has been criticized for not always being a reliable error 
measuring tool. LeCun et al. (1990) showed in a study of neural networks that a factor 2 
decrease in the number of network parameters yielded an increase in estimation data 
MSE by a factor 10 while simultaneously reducing the MSE on the validation data. 
Thus, implying MSE is not always a suitable tool for performance measures. 
 
Another objective function is the Normalized root mean square error (NRMSE) 
function, which in comparison to MSE outputs the normalized root of MSE. It can be 
expressed as   

𝑁𝑅𝑀𝑆𝐸 =
√∑ (𝑦𝑖−𝑦�̂�)2

𝑛
𝑛
𝑖=1

�̅�
,     (37) 

where �̅� is the mean of the measured output 𝑦. The NRMSE is used to validate the 
constructed models in this work. To evaluate how well a model predicts validation data 
the goodness of fit (GOF) can be studied by withdrawing the NRMSE from 1 and 
multiply it by 100 to receive a percentage value. This is formulated as 

𝐹𝐼𝑇𝐺𝑂𝐹 = 100 ∗ (1 − 𝑁𝑅𝑀𝑆𝐸).     (38) 

The GOF between the predictor output and validation data is calculated through the 
command compare in MATLAB (or the command goodnessOfFit )1 (Mathworks, 
2018). 

Moreover, when validating a model, it is important to consider its stability and its order 
(Ljung, Glad, 2003). The stability of the model can be analyzed in several ways. For a 
linear time-invariant discrete system, one approach is to observe the poles of the system. 
If they are strictly placed within the unit circle, the system is input-output stable. 
Another way of analyzing the stability is to observe its impulse response. If the output 
does not converge to a stationary value, the system is not stable (Carlsson, Samuelsson, 
2017). This could be expressed in terms of the weight function ℎ(𝑘) of the system and 
the criteria  

∑ |ℎ(𝑛)| < ∞∞
𝑛=0 .     (39) 

Regarding orders of models there are drawbacks in using too high orders. This can be 
explained by the concept of overfitting, where the parameters of the model adapts to 
noise characteristics from the estimation data. To analyze if the order of the model can 
be reduced, the positions of poles and zeros should be investigated. If some zeros or 
poles are overlapping, or are located close to each other, it may be suitable to reduce the 
order (Ljung, Glad, 2003). Another method is to study the parameters of the model. If 
some of the parameters are estimated close to zero, they may be redundant. 

 
1 For the MATLAB version R2018b the command goodnessOfFit calculates the fit 
in a manner identical to compare, when using cost function NRMSE (Mathworks, 
2018). For later versions, such as MATLAB R2020a, this do not hold.  
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While the details of black-box modeling are certainly important, some attention should 
also be dedicated to understanding the specific characteristics of the system to be 
depicted. The next section gives a detailed description of how thermal systems has been 
modelled in earlier works.  

2.4 Modeling a thermal system  

Modelling the behavior of the indoor temperature in an apartment is challenging, as it is 
a time-varying system affected by several factors (Huang et al., 2012). A changing 
outdoor temperature, the number of persons in the apartment, wind conditions and solar 
insolation are some examples. The usage of household electricity and heat flow between 
adjacent climate zones in the apartment also affects the indoor temperature. Several 
studies have tried to model these types of systems. For example, Huang et al. (2012) has 
presented a model for predicting the temperature between diverse thermal zones inside 
Terminal one of the Adelaide airport using a black-box modeling approach with neural 
networks. By measuring both controllable and uncontrollable variables and applying 
empirical modeling to the data set, two days of accurate predictions were achieved.  

Another researcher, Mustafaraj (2010), compared linear parametric models for 
predicting the indoor temperature in an office using different valuation criteria. GOF, 
coefficient of determination, mean absolute error and MSE were analyzed between the 
output of the model and the real data and the results showed that the Box-Jenkins-model 
performed better than the ARMAX- and ARX-models. This result depends first and 
foremost on the Box-Jenkins noise handling, which proved more accurate than the other 
models.  

2.4.1 Electricity consumption and indoor temperature 

A significant amount of previous work has been dedicated to estimating heat output of 
common objects present in an apartment. Zavattoni et al. (2014) has listed the wasted 
thermal energy of some of the most common household electrical appliances during 
duty cycles. Electrical ovens were estimated to generated approximately 245 Wh of 
thermal energy for each cycle. Washing machines contributed to 550 Wh and 
dishwashers to 230 Wh thermal energy during one of the cycles (Zavattoni et al., 2014). 
In a similar work, Suszanowicz (2017) determined average values for the heat emission 
coefficient of different light sources. A halogen light bulb had an average value of 0.82 
W/W and a led bulb 0.08 W/W.  
 
When electrical appliances are used, the indoor temperature will be affected. This must 
however not only depend on the actual heat emissions from the electrical components. 
An increase of household electricity could also indicate that people are present inside 
the building which can be seen as an additional thermal energy source. Akiful et al. 
explains this: “So human body [sic] has an interior core which acts like a heat 
generation source where the heat generation depends on the rate of metabolic activities” 
(2017, p.1).  
 
When a human sleeps, the body generates about 75 W of thermal energy and 1000 W 
for more demanding aerobic activities (Akiful et al., 2017). There is a possibility that 
the usage of electricity can indicate that people are present and that they are not in rest. 
During the night for example, the household electricity consumption goes down as 
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electrical appliances are not used in the same scale. During these times, the power 
consumption first and foremost consists of cycling appliances, e.g. fridge and freezers, 
or electrical components that are on standby while people are at rest (Firth et al., 2008). 
Also, the usage of hot water tends to decrease during the hours when people normally 
sleep or are away from home (Svensson, 1973). Usage of hot water, through for 
example showers, will affect the indoor temperature and it is possible that this could be 
detected by observing the trends of household electricity consumption.  

2.4.2 Thermal zones 

Heat, ventilation and air-conditioning (HVAC) are strongly related to the energy 
consumption of a building (Afroz et al., 2018). In this work, the focus is on modeling 
the temperature dynamics (the thermal systems) of the rooms in the studied apartment, 
all of which are highly affected by the HVAC system. The aim is not to understand the 
dynamics of the thermal system, but to construct a model able to predict future 
temperature changes. Therefore, the relation between the HVAC and the thermal system 
is not analyzed deeply but an understanding of usual assumptions made about the 
HVAC system helps delimit the range of studied variables of the thermal system during 
the tests. Afroz et al. (2018) assume upon modeling a HVAC zone: [1] normal 
temperature distribution for each zone, [2] that the effect of opposing walls on the zone 
temperature is equal, [3] that the floor does not affect the zone temperature and [4] that 
there are no pressure losses across a zone or in the mixed regions (which could lead to 
increased airflows between them). 

For larger buildings, e.g. offices or industrial buildings, the thermal system is often 
divided into multiple thermal zones (Huang et al., 2012). Each zone is considered a 
subsystem and is controlled by an individual air handling unit. Huang et al. (2012) 
highlights the fact that a global model of the thermal system cannot predict the outcome 
of every thermal zone and that individual models therefore has to be used. However, a 
relation between the thermal zones does exist through heat transfers between adjacent 
zones, which should be considered in the model. Also, for smaller buildings, the usage 
of multiple thermal zones is commonly adapted. For instance, Voll et al. (2016) defines 
each room as a thermal zone upon construction a simulation model of a nearly-zero 
energy building. The reference building in that study was connected to district heating 
and used radiators as its energy source, similarly to our apartment of study.  

Souza and Alsaadani (2012) also investigates the impact of different zoning strategies 
through thermal simulations of an office area. A five-zone model and a single-zone 
model were simulated and then compared to a target model. The target model was 
divided into several zones and simultaneously regarded the specific heat generating 
activities for each room, making it the most accurate. Results showed that the five-zone 
model estimated the annual heating demand of the office area well, but more 
importantly that an accurate target model can be constructed based on multiple zones 
regarding each room’s characteristic.  

Fielsch et.al. (2017) shows that the usage of Model Predictive Control can improve 
energy consumption and human comfort also in small-scale heating systems, compared 
to the more conventional usage of Model Predictive Control in office buildings. When 
constructing the model of the building, every room was considered one thermal node 
which is then connected to the adjacent rooms, the outdoor temperature and the ground 
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temperature. Thus, when constructing a model of a thermal system of a building, 
choosing each room to represent a thermal zone is a well-established approach. 

2.4.3 Sampling time and thermal time constant 

For the dynamic variable of indoor temperature, a change in heating or cooling will not 
lead to a direct variable change, which can be explained by the building’s thermal time 
constant. This constant describes the thermal inertia of the building, i.e. how long it 
takes for the indoor temperature to change to the outdoor temperature when the heating- 
or cooling system is turned off (Karlsson, 2012). Large buildings often have time 
constants that exceeds 100 hours (Hietaharju et al., 2018). Therefore, when collecting 
measurement data for indoor temperature, the sample time is often set to hours or days. 
Hietaharju et al. (2018) uses a sample time of one hour to collect data for indoor 
temperature, outdoor temperature and heating power, aiming to construct a predictive 
model of the indoor temperature via grey-box modeling. This sample scale is however 
not generalizable for all studies in this area. Mustafaraj et al. (2010) instead uses a 
sample time of five minutes to study the potential of linear parametric models to predict 
indoor temperature and humidity.  

Comparing the variable household electricity consumption with the indoor temperature, 
the electricity is of a more fast-changing kind. As soon as electrical appliances are 
turned on or off, this variable will change instantly. Some of the electrical activities, 
only performed during limited times, can potentially indicate a change in human activity 
and/or heat generation from electrical components, and potentially (with a time delay) a 
changing indoor temperature. It is therefore important to choose a sampling time that is 
not too big. Chujai et al. (2013) uses a sample time of one minute to measure the 
electricity consumption of a household to find a model to predict this consumption. This 
sample time is adapted in our study.  
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3. Method 
This section aims to clarify how the study was designed and executed. Firstly, the 
necessary equipment and software are described. Then the process of data collection 
and the validation strategy is dealt with, as well as a layout description of the apartment. 
After this, a detailed description of the modeling process follows.  

3.1 Equipment 

In order to collect data from the apartment certain measuring tools were necessary. 
Indoor temperature and electricity consumption are the primary data points assessed. 
Therefore, two different measuring tools were utilized, Tinytag Ultra 2 (Figure 4) and 
Logger 2020 (Figure 5). A total of 8 Tinytags were placed inside the apartment, 
measuring indoor temperature, surface temperature from radiators and relative 
humidity. Logger 2020 registers the electricity consumption online, giving close to 
instant access to the electricity consumption at any time.  

 

 

 

 

 

  
 

Figure 4. Tinytag (Intab, 2019).  Figure 5. Logger 2020 (Energibutiken, 2019). 
 

3.2 Software 

MATLAB is the primary software of this project. Given its rich library of tools for 
empirical modeling and technical calculations, it was a suitable software to work with. 
For example, the System Identification Toolbox (SITB) and the neural network 
construction library Deep Learning Toolbox both provide tools which serve to simplify 
the modeling process. We have chosen to execute the data pre-processing with Python. 
Also, we had have the opportunity to use already existing code sequences that simplifies 
the construction of LAVA-models, brought from assistant professor Per Mattsson at 
Uppsala university.  
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3.3 Experimental design and data collection 

3.3.1 Overview of the experimental design 

In order to construct an accurate model of the thermal system it is important that the 
experiments and measurements of the system are carried out carefully. To evaluate the 
potential of predicting indoor temperature in an apartment with knowledge of household 
electricity consumption, an understanding of the relation is clearly of essence. Beyond 
this, to understand the attributes of the heating system, e.g. its inertia or its sensibility 
towards disturbances, measurements had to be made so that disturbance signals can be 
described by their typical characteristics (Ljung, Glad, 2003). This was of importance to 
build an understanding of the behavior of the indoor temperature.  

In every room of interest, i.e. kitchen, bedroom, bathroom, living room and middle 
room, an internal temperature sensor was placed. This sensor measured the indoor 
temperature and it was positioned with a minimum of one meter from the floor and 
outer wall to prevent it from being affected by the surface temperature of these areas 
(Karlsson, 2019). The sensors placed in the kitchen, bathroom and bedroom also 
measured the relative humidity. In the kitchen, bedroom and living room, external 
temperature sensors were attached to the radiators, measuring the surface temperature. 
Every sensor used a sample time of one minute.  

3.3.2 Room specifics 

As the disposition of the apartment significantly impacts the measurements from the 
different rooms, an overview of the apartment will now be given. For reference, see 
Figure 6. 
 

 
 

Figure 6. Apartment overview and the location of internal sensors (Is) and external 
sensors (Es). 
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The kitchen faces south and is equipped with standard kitchen appliances. It has an 
oven, an induction stove, a fridge (F), a freezer (F) and a kitchen fan above the stove. 
Except from this, a coffee maker and several light sources are installed. Attached to the 
radiator, an external Tinytag sensor (Es) was placed measuring the radiator surface 
temperature (Figure 7). This radiator is placed below a window facing south. An 
internal Tinytag sensor (Is) was placed on the kitchen sink (Figure 8) at the east interior 
wall measuring indoor temperature and the relative humidity.  

The middle room connects to all other rooms, it is an entrance lounge. The switchboard 
(El) is placed to the right of the entrance and a Logger 2020 was attached to this. Above 
the entrance, a router is located and activated. The middle room has two light sources. 
At the interior wall, in connection to the bathroom, a smaller radiator is located, but it 
was not measured as it was non-functioning. By the wall between the doorways of the 
living room and the dinner room an internal Tinytag was placed measuring the indoor 
temperature (Figure 9).  

The bedroom faces south and links directly to the middle room. The room is adjacent to 
the kitchen and the bathroom, with interior walls separating them. The bedroom is 
equipped with a TV, two bed lights and a main light source at the center of the room. 
Adjoint to this room, at the south outer wall, double doors opens to a balcony. At the 
direction towards the middle room, an internal Tinytag was placed measuring the indoor 
temperature (Figure 10). In the southeast corner of the room, at the interior wall towards 
the kitchen, a radiator is located. On this, an external Tinytag was attached (Figure 11).  

The bathroom is equipped with a washing machine (WM) and a tumble dryer (TD). 
Except from this, the bathroom has a toilet, a shower and a sink. By the door, an internal 
Tinytag was placed measuring the temperature and the relative humidity of the room 
(Figure 12). 

The living room faces north and has a big window in this direction. The main electrical 
appliances are a TV, a PlayStation, a sound system and a light source in the middle of 
the room. Adjacent is the middle room and the dinner room. Beneath the window at the 
outer wall facing north, a radiator operates. An external Tinytag was attached to this 
(Figure 13) and by the northwest interior wall an internal Tinytag was placed measuring 
the indoor temperature of the room (Figure 14).  

The dinner room is located next to the living room and is facing north with a large 
window. The main electrical consumer is a central light source. Below a window, a 
radiator operates but it is not measured. This room is considered the least important for 
this study and is therefore of lower priority. Mainly because of its lack of electrical 
appliances and human activities. 
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     Figure 7. Es: Kitchen           Figure 8. Is: Kitchen            Figure 9. Is: Middle room 

 

 

 

 

 

 

 

 

 

 

Figure 10. Is: Bedroom              Figure 11. Es: Bedroom           Figure 12. Is: Bathroom 

 

 

 

 

 

 

 

 

 

                Figure 13. Es: Livingroom                          Figure 14. Is: Livingroom  
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3.3.3 Evaluation process  

The primary validation method used was focused on answering whether benefits exist in 
knowing the household electricity consumption when predicting future indoor 
temperatures. To gain understanding of this, different types of models were constructed 
and compared for every room. Firstly, for each room and model type (linear and non-
linear), input-output models were modelled. These models handled the household 
electricity consumption as an input signal and used information about it, as well as 
information about previous indoor temperatures, to estimate future values of the latter 
(Figure 15). Secondly, no-input predictive models were constructed. These models only 
consider information about previous indoor temperatures to estimate future values of the 
temperature (Figure 16). The comparison between the different predictive models was 
based on their ability to mimic the validation data with respect to the NRMSE, i.e. GOF.  

 
 
 

 

 

This evaluation method was used for all tested models. At first, linear models were 
constructed as one-step predictors for every room and then evaluated and compared to 
the predictive performance of tuned 15-step linear predictors. Secondly, non-linear 
NLARX- and NLAR-models were constructed for every room and they were compared 
to tuned 15-step LAVA-predictors.  

On validation, the tuned one-step predictors uses more input data than the tuned 15-step 
predictors while predicting the output at time 𝑡, i.e. input data up to 𝑡 − 1 are used in 
comparison to the tuned 15-step predictors which uses inputs up until 𝑡 − 15.  

All models were evaluated on a prediction horizon of 15 minutes, using more or less 
data points from household electricity. However, only the tuned 15-step linear 
predictors and the tuned 15-step LAVA-predictors were tuned to estimate the indoor 
temperature 15-steps in advance. The idea behind this is to determine the significance of 
the household electricity consumption. If tuned one-step predictors, which uses more 
input data, performs better predictions on a horizon of 15 steps than tuned 15-step 
predictors, the advantage is likely to exist in the input signal itself. In that case, up to 
one minute pre prediction, the household electricity consumption brings valuable 
information to predict the indoor temperature. Otherwise, if the input is redundant, it is 
reasonable to believe that tuned 15-step predictors would be better at predicting the 
indoor temperature at the very prediction horizon it is tuned for.  

Figure 16. Predictor that only 
considers the indoor temperature 𝑦 
when estimating future indoor 
temperatures �̂�. 

 

Figure 15. Predictor that both 
considers the indoor temperature 𝑦 
and the household electricity 
consumption 𝑢 when estimating 
future indoor temperatures �̂�. 
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To evaluate the benefits of tuning predictors on the prediction horizon of interest, no-
input tuned one-step predictors are compared to their corresponding no-input tuned 15-
step predictors in terms of their GOF. 

3.3.4 Data collection 

The measuring stage of the project was initiated with a three-day pilot study. Between 
the 11th and 14th of December, three days’ worth of data was collected, primarily 
focusing on indoor temperature and electricity consumption. During this period, 
extreme tests were performed. For one hour multiple electrical devices were turned on, 
and then switched off for three hours. This procedure was repeated for multiple cycles 
during day-time. The reasoning behind this method was that if electrical appliances has 
a clear impact on the indoor temperature it should be visible from these tests. The three 
hours of “rest” made it possible for the apartment to return towards a steady-state in 
terms of indoor temperature. The purpose of this shorter study was to deduce whether 
an actual correlation exists between indoor temperature and electricity consumption. It 
also serves the purpose of assessing the equipment, making sure it is working correctly. 
Finally, simpler models were constructed to provide some information on how well a 
model can fit to the data.  

In a similar manner to the pilot study, a longer measuring period was executed between 
the 10th and 24th of February, collecting two weeks’ worth of data. This period was 
chosen as it is generally cold in Sweden in February, meaning that the radiators are 
operating on full effect periodically. At this stage, all different data points were 
collected, i.e. indoor temperature, outdoor temperature, radiator heat, electricity 
consumption and relative humidity. Instead of executing extreme tests on the apartment, 
two persons lived in it and used it as a normal household. The purpose of this study was 
to investigate the prediction performance of different model types, representing the 
thermal systems of the rooms in the apartment, and through that evaluate if knowledge 
about household electricity consumption could improve the model performance. 

3.4 Modeling of the apartment 

The modeling of the apartment’s thermal systems is the core of this study and it was 
executed in three instances of modeling. A correlation analysis on the three-day data 
was the first step. For this, a prediction horizon of 15 minutes was deemed sufficient, 
meaning that it is considered a small enough time-span to compare the predictive 
performance of tuned one-step predictors with tuned 15-step predictors. It is also 
considered a large enough time span to evaluate the importance of using more 
information about the household electricity consumption, i.e. up to 𝑡 − 1 for the tuned 
one-step predictors. The second step was the modeling of both linear- and non-linear 
models from two weeks of data, again using a prediction horizon of 15 minutes, to 
evaluate which model structures best represents each room of the apartment. The third 
step was a sensitivity analysis which was made for the purpose of testing the impact of 
different input signals (electricity consumption, radiator temperature and relative 
humidity) on the indoor temperature.  
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3.4.1 Correlation analysis approach 

The modeling process was initiated with a correlation analysis to deduce if a 
relationship exists between the variables of interest, i.e. household electricity 
consumption and indoor temperature. This was done for all the rooms, generating an 
overview of the differences between the thermal zones of the apartment. The correlation 
analysis was executed in three main steps, with focus on studying the visual 
relationship, the mathematical correlation and finally the benefits of knowing the 
household electricity consumption to predict the indoor temperature. Lastly, 
comparisons between the 15-step predictions from constructed ARX- and AR-models 
(tuned one-step predictors) and tuned 15-step ARX-and AR-predictors of the same 
polynomial order were made.  

Firstly, a simple graph of the three-day data was plotted, visualizing the relationship 
between temperature and electricity. From this, a visual correlation was analyzed. A 
scatter plot of the temperature as a function of electricity was also made, with 𝐶° on the 
y-axis and 𝑘𝑊on the x-axis.  

Secondly, the correlation was tested mathematically. We used two methods for this task, 
Spearman’s correlation method and Pearson’s correlation method, both of which 
compares the correlation between two arrays of values. Through Spearman’s method, p-
values to test the null hypothesis were also calculated. However, these methods are not 
optimal to find non-linear correlations and impacts of time delays, meaning alternative 
methods were necessary. Therefore, we also investigated how much additional 
information the household electricity data brought in terms of its ability to help a model 
predict the indoor temperature. If a simple AR-model, only modelled to predict indoor 
temperature based on previous indoor temperatures, performs equally well or better than 
an ARX-model with information of both indoor temperature and electricity, then the 
household electricity consumption can be considered redundant as a model parameter. 
To evaluate this, both AR- and ARX-models were constructed.  

Thirdly, the time delay 𝑛𝑘 between indoor temperature and household electricity 
consumption were estimated for each room. The ARX-models used to estimate the time 
delay had a A-and B-polynomial of the fourth order, this was decided to be sufficient, 
minimizing the number of parameters and avoiding parameters near zero. SITB was 
used to find the ARX-model with the estimated time delay 𝑛𝑘 which best predicted the 
data one step into the future, i.e. had the best SE-fit of the one-step predictions. It was 
found trough observations that higher orders of the A-and B-polynomial tended to result 
in small parameters with none, or small, improvements in performance. Therefore, only 
polynomials up to the fourth order were investigated. Lastly, the ARX-model was 
compared with an AR-model with respect to their predictive performance 15-steps into 
the future. The order of the A-polynomial of the AR-model was chosen to be the same 
as the A-polynomial of the ARX-model for the corresponding room. The models were 
tuned on the first half of the collected data (estimation data) and validated on the second 
half of the data (validation data).  

Lastly, 15-step predictors were constructed from the estimation data of each room. The 
previously estimated time delays and orders of the constructed ARX- and AR-models 
were used to decide the structure of the 15-step predictors. Also, the same estimation 
data was used to tune both types of models. The prediction performance of the 
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validation data was then calculated as GOF and compared to the performances of the 
ARX- and AR-models of the same room.  

3.4.2 Two-week modeling approach 

The aim of the two-week data modeling was to compare the predictive performance of 
input-output models and no-input models, as well as tuned one-step predictors and 
tuned 15-step predictors, for both linear and non-linear models of the rooms in the 
apartment (Figure 17). Unlike the correlation analysis, the process of selecting a 
representative model was extensive and included deeper analysis, primarily regarding 
the linear models. For these models, focus was not only fixed on finding the best 
predictive models in terms of GOF. Consideration was also taken to other model 
characteristics, e.g. stability, placements of poles and zeros and the behavior of the 
residuals.  

 

Figure 17. Model types investigated during the two-week data modeling. 

Firstly, linear models were constructed and compared by their 15-step prediction 
performance to AR- and ARMA models. Also, 15-step ARX-and AR-predictors were 
compared to these models and to each other in terms of GOF. Secondly, NLARX-
models were also constructed and compared in terms of their 15-step prediction 
performance to NLAR-models, and the previously constructed linear models. After this, 
15-step LAVA-predictors were constructed and compared with the previous models 
regarding their GOF. The models were tuned on the first half of the two-week data 
(estimation data) and validated on the second half (validation data).  

3.4.3 Two-week linear modeling 

The process of finding the most suitable linear models was executed in the same way 
for every room. To begin with, the time delay between the household electricity 
consumption and the indoor temperature was obtained through ARX-estimations of the 
inputs and outputs. To ensure that a good polynomial order was used, all orders for the 
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A-and B polynomial were tested up to the fourth order and the most frequently attained 
time delay was selected. After obtaining the time delay, the best models with respect to 
GOF of the 15-step predictions were generated. This was done for the linear models 
ARX, ARMAX, BJ and OE and the estimated models were then evaluated. The order 
limit was chosen as a result of the observations received during the correlation analysis, 
which indicated that higher polynomial orders tended to result in small values for the 
estimated parameters without yielding any significant improvements in model 
performance. Every model was then analyzed by their residual characteristics, 
placement of poles and zeros, step- and frequency response and estimated parameters 
using a checklist. A satisfying behavior for a model in any of these areas was awarded 
with a check (√) and an unsatisfying behavior with a cross (X).   

The residuals were analyzed in terms of the autocorrelation between the prediction 
errors, and the cross-correlation between the input and the residuals. A confidence 
interval of 99 percent was used to evaluate if the correlations could be interpreted as 
white noise only, which is preferable. The poles and zeros of the system was studied 
primarily in terms of stability for the model, i.e. if poles were placed inside the unit 
circle. Their placement was also analyzed in relation to each other, so that no poles 
risked being cancelled by other poles or zeros.  

The step responses were examined for every model and compared to the behavior of the 
other models, to clarify deviations in for example convergence. This was also true for 
the frequency responses, which also compared the behavior of the various models with 
the estimated frequency response derived from spectral analysis. These frequency 
responses were visualized in Bode-diagrams. For every model, the estimated parameters 
were examined by their significance for the model in question. Thus, estimated 
parameters smaller than 0.001 resulted in order reduction of the corresponding 
polynomial. This did, first and foremost, concern the B-polynomials. However, the 
minimum B-polynomial order was set to one for the input-output models. 

When the linear input-output models were analyzed, the most suitable models for every 
room were selected and compared to the best performing AR- and ARMA-models with 
respect to GOF. Here, AR- and ARMA-models up to the fourth order were tested.  

Lastly, the tuned one-step predictors were also compared to tuned 15-step predictors of 
ARX- and AR-structures with the same orders on the A-polynomial (and B for ARX) as 
the previous best performing input-output model.  

3.4.4 Two-week non-linear modeling 

For the neural network models, the aim was to try to find better 15-step prediction 
performances compared to the linear models while also investigating the benefits of 
using information about household electricity consumption to predict indoor 
temperatures. The focus was not to find the absolute best performing models, but simply 
to see if the prediction performances could improve using neural networks. Therefore, 
the same estimation- and validation data used to construct and evaluate the linear 
models were used to train and evaluate the neural network.  

Firstly, NLARX-models where constructed for every room with similar 𝑛𝑎, 𝑛𝑏 and 𝑛𝑘 
as the selected linear model of the corresponding room. For a specific room, different 
layer structures were tested and the neural network was trained on the estimation data 
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using a sigmoid network nonlinearity estimator. The number of units tested ranged from 
1 to 20 and the GOF was calculated, using information about inputs up to 𝑡 − 1 and 
outputs up to 𝑡 − 15 to predict the output at time 𝑡. The best performing NLARX-model 
for every room was then compared with a NLAR-model of that specific room. The 
structures of the NLAR-models, i.e. the value of 𝑛𝑎, were selected to be the same as for 
the corresponding best performing linear no-input model regarding GOF. The number 
of units tested for the NLAR-models ranged from 1 to 20.  

The LAVA-models were the final model structures tested in this work and they were 
tuned in as 15-step predictors. The purpose of this was to investigate whether any non-
linear dynamics were lost when 15-step predictors were tuned in on the estimation data 
and only used inputs up to 𝑡 − 15 to predict the output at time 𝑡. Also, comparisons 
between input-output LAVA-models and no-input LAVA-models were made. 

The LAVA-models were constructed based on the best linear AR- and ARX-model 
structures earlier found for each room. The data was also divided into estimation data 
and validation data in the same manner as for the previously tested types of models. 
Then, a value for the resolution of the Laplace basis M and a value of number of 
iterations per sample in cyclic minimization L was chosen. We opted for three 
variations on [M, L] which was [4, 5], [3, 5] and [4, 6] resulting in three results for each 
room and each model (AR and ARX). After constructing the models, the best one’s 
were selected based on the GOF and they were then compared to the performance of the 
previously constructed models.  

3.4.5 Sensitivity analysis 

For the kitchen, data has been collected for both the relative humidity and the radiator 
temperature during the two-week period. Intuitively, the radiator temperature should 
help predict the indoor temperature as its surface temperature directly affects the indoor 
temperature. This means that the heat of one radiator through thermal radiation affects 
the indoor temperature in the surrounding area. This is not true for the household 
electricity consumption as it was measured for the whole apartment, meaning that its 
impact on indoor temperature is spread throughout the rooms. Apart from this, the 
household electricity consumption has to be converted to heat before affecting the 
indoor temperature in the apartment, e.g. by heat losses in electrical appliances or by 
heat generating human activities. 

Hot water usage and human activities in a room may affect the humidity as well as the 
indoor temperature. To study the difference in prediction performance when using 
household electricity consumption, relative humidity and radiator temperature as input 
signals, a sensitivity analysis was performed.  

OE-models were constructed with one input of each kind. Polynomial orders up to the 
fourth order were tested and the best performing structures with regard to GOF were 
selected. The same procedure was executed with ARX-models. Their predictive 
performance was compared to each other and the OE-models. At last, a multiple input-
single output (MISO) ARX-model were constructed which used all inputs to predict 
indoor temperature. The structure of this model corresponded to the single input ARX-
models previously constructed and its predictive performance was studied in relation to 
the other models.  
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As the models with the input relative humidity proved to achieve the worst GOF, a 
MISO ARX-model with household electricity consumption and radiator temperature as 
inputs was also constructed. 
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4. Data 
A crucial part of this project is the collection and pre-processing of data. This section 
aims to clarify the data types being used and how the pre-processing takes place. 

4.1 Data description and pre-processing 

The data collected is divided into six different variables, date, time, indoor temperature, 
radiator temperature, relative humidity and electricity. While time and date only 
contribute with information in terms of indexing, the other variables are measurements 
of the systems. Essentially, two datasets are utilized, one set for the pilot study (three-
day data) and one set for the empirical modeling phase (two-week data). The data has 
the following types and forms (Table 1).  

Table 1. Data for each measured variable, their format type and form. 

Variable Type Form 

date  String YY-MM-DD 

time String HH-MM-SS 

indoor temperature Float xx.yy 

radiator temperature Float xx.yy 

relative humidity  Float xx.yy 

electricity power Float xx.yy 

 

Tinytags were used to collect indoor temperature data. The Tinytag-software 
automatically constructs a downloadable .txt-file containing indoor temperature and 
relative humidity, indexed by date and time. Five rooms had internal temperature 
sensors, meaning five different files were made and subsequently five pre-processing 
iterations were conducted. As the data was collected in one continuous time interval, no 
appending of data files was necessary. However, the beginning and the end of the files 
had a smaller number of outliers, these outliers were removed in all files. Finally, trends 
and means were subtracted. 

The electricity power data is collected with the Logger 2020 which utilizes an online 
software to save electricity power data, indexed by date and time. From each room a 
different number of usable data points were collected. The final file format can be seen 
in Figure 17.   
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Figure 17. Part of three-day data. 

The pre-processing of the two-week data is the same as for the three-day data with two 
exceptions. The first difference being that the data was not collected in one continuous 
time interval but two, meaning two files had to be appended for each room. This created 
some issues at the points of attachment which created temporary peaks in the data, this 
was resolved by simply removing data points to create a smooth interpolation. The 
second difference was that the data for the kitchen and bedroom (both rooms oriented to 
the south) contained outliers which created unnatural data peaks, probably due to 
sunlight hitting the sensors. These peak values were cut to not exceed a fixed 
temperature limit. These limits were selected by observing how the temperature had 
behaved before the peaks. After this, the data was ready to be modelled.  

 

 

 

 



42 

 

5. Results 
This section is dedicated to the collected results. Firstly, the results from the correlation 
analysis are described. Secondly, the results from the two-week study follows. Finally, 
the sensitivity analysis is presented.  

5.1 Correlation analysis 

5.1.1 Kitchen 

From the three-day tests, a visual correlation can be seen between the household 
electricity consumption and the indoor temperature in the kitchen (Figure 18). Each 
local peak of electricity usage corresponds to a delayed local peak of the indoor 
temperature. The indoor temperature possesses more thermal inertia compared to the 
electrical consumption, as the changes of the first signal are slower and softer than the 
changes in the latter. The smaller periodical electricity peaks found during the times 
when the electricity consumption is low corresponds to cycling appliances such as the 
fridge and freezer.   

 

Figure 18. The indoor temperature and the household electricity consumption in the 
kitchen during three-day tests. 

Calculations of Pearson’s correlation coefficients and Spearman’s rank correlation 
coefficients show no clear indications of linear or order relationship association (Table 
2). However, the null hypothesis can be rejected within the confidence interval of 95 
percent, meaning that we cannot with certainty conclude that there is no correlation. 
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Table 2. For kitchen calculated values of Pearson’s correlation coefficient 
p, Spearman’s rank correlation coefficient 𝜌 and its p-value. 

p 0.0156 

𝜌 0.1169 

p-value 1.5794e-09 

 

The scatter plot of the indoor temperature and the household electricity consumption 
shows no specific tendencies of correlation (Figure 19). This scatter plot analysis was 
conducted for each room but all show the same pattern, therefore these results are 
excluded further.  

 

Figure 19. Scatter plot of the indoor temperature in the kitchen as a function of the 
household electricity power consumption during three-day tests. 

By estimating the time delay between the household electricity consumption and the 
indoor temperature, a time delay of 15 minutes was found. The ARX-model with best 
SE-fit was a model with an A- and B-polynomial of order 2 and 1. The model has a 
GOF of 80.51 percent (Table 3). 

The constructed AR-model has an A-polynomial of order 2. Its 15-step predictions 
performed worse than the ARX-model with a GOF of 78.64 percent (Table 3). 
Regarding the constructed 15-step predictors, the ARX-predictor performed slightly 
better than the AR-predictor. The tuned 15-step predictors performed worse than the 
tuned one-step AR-and ARX-models (Table 3).  
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Table 3. For the kitchen, performance of the tuned 15-step AR-and ARX-
predictors and the tuned one-step AR- and ARX-models. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 80.51% 

𝐹𝐼𝑇𝐺𝑂𝐹  (AR) 78.64% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 77.58% 

𝐹𝐼𝑇𝐺𝑂𝐹  (15-step AR) 76.35% 

 

5.1.2 Bathroom 

The bathroom results only shows weak tendencies of correlation (Figure 20). Small 
local peaks of the indoor temperature seem to occur slightly after the peaks of electricity 
consumption but it can be argued inconclusive. Longer rest periods in household 
electricity consumption seems to result in periods of less oscillating character for the 
indoor temperature, i.e. between minute 700 and 1200 and between minute 2000 and 
2500. However, the visual relationship cannot be determined with certainty.  

 

Figure 20. The indoor temperature and the household electricity consumption in the 
bathroom during three-day tests. 

Pearson’s correlation coefficient and Spearman’s rank correlation coefficient do not 
indicate any strong linear correlation or order association (Table 4). In fact, the 
coefficients have opposite signs which can indicate that the correlation is weak or zero. 
However, the null hypothesis can be rejected, thereby a correlation cannot be rejected. 
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Table 4. For bathroom calculated values of Pearson’s correlation 
coefficient p, Spearman’s rank correlation coefficient 𝜌 and its p-value. 

p -0.0158 

𝜌 0.0809 

p-value 2.8624e-05 

 

The time delay was estimated to 2 minutes. The best ARX-model performed a GOF of 
69.61 percent (Table 5). The A-polynomial has an order of 4 and the B-polynomial an 
order of 2. 

The AR-model performed a GOF of 66.99 percent making it slightly worse than the 
corresponding ARX-model. It has an A-polynomial of order 4. The performance of the 
tuned 15-step predictors was worse than for the ARX- and AR-models (Table 5). The 
ARX-predictor performed better than the AR-predictor and the tuned one-step AR-
model.  

Table 5. For the bathroom, performance of the tuned 15-step AR- and 
ARX-predictors and the tuned one-step AR-and ARX-models. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 69.61% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 66.99% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 67.10% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 64.18% 

 

5.1.3 Bedroom 

The temperature in the bedroom consistently rose during the measuring period (Figure 
21). This room may have required a longer period from that of occupying the apartment 
until reaching a steady state indoor temperature. For the bedroom, no visual correlation 
is found between the household electricity consumption and the indoor temperature. 
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Figure 21. The indoor temperature and the household electricity consumption in the 
bedroom during three-day tests. 

Pearson’s correlation coefficient and Spearman’s rank correlation coefficient show 
similar results. The null hypothesis can be rejected and therefore a correlation cannot be 
rejected (Table 6).  

Table 6. For bedroom, calculated values of Pearson’s correlation 
coefficient p, Spearman’s rank correlation coefficient 𝜌 and its p-value. 

p -0.1513 

𝜌 -0.1212 

p-value 3.8117e-10 

 

The time delay was estimated to 14 minutes. The selected ARX-model performs a GOF 
of 78.21 percent (Table 7). The A-polynomial and B-polynomial has an order of 4. 

The AR-model of order 4 yielded a GOF of 75.94 percent (Table 7). The bedroom is the 
room with the most similar performance between the AR- and the ARX-model. The 
tuned 15-step predictors performed worse than the corresponding constructed ARX- and 
AR-models (Table 7). The 15-step ARX-predictor performed better than the AR-
predictor and the tuned one-step AR-model regarding GOF.  
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Table 7. For the bedroom, performance of the tuned 15-step AR-and ARX-
predictors and the tuned one-step AR-and ARX-models. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 78.21% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 75.94% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 76.87% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 74.00% 

 

5.1.4 Livingroom 

A visual correlation between the household electricity consumption and the indoor 
temperature of the living room can be observed (Figure 22). As the electrical power 
consumption increases so does the indoor temperature, with a time delay.  

 

Figure 22. The indoor temperature and the household electricity consumption in the 
living room during three-day tests. 

Pearson’s correlation coefficient and Spearman’s rank correlation coefficient were both 
positive (Table 8). The p-value differs from zero, i.e. the null hypothesis can be 
rejected.  
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Table 8. For living room calculated values of Pearson’s correlation 
coefficient p, Spearman’s rank correlation coefficient 𝜌 and its p-value. 

p 0.0542 

𝜌 0.2049 

p-value 1.6059e-26 

 

The best ARX-model with regards to the SE-fit was a model of order 2 for the A- and 
B-polynomial. This achieved a GOF of 66.52 percent (Table 9). The estimated time 
delay is 9 minutes.  

The AR-model of order 2 performed about 4 percentage units worse than the ARX-
model. The GOF of the AR-model was 62.27 percent (Table 9). For the living room, the 
tuned 15-step predictors performed worse than the corresponding constructed ARX- and 
AR-models (Table 9). Still, the tuned 15-step ARX predictor performed a better GOF 
than the tuned one-step AR-model. As for the other rooms, the 15-step ARX-predictor 
performs better than the AR-predictor. 

Table 9. For the living room, performance of the tuned 15-step AR-and 
ARX-predictors and the tuned one-step AR-and ARX-models. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 66.52% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 62.27% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 62.75% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 56.84% 

 

5.1.5 Middle room 

The middle room data consists of about 1000 measurements less than the other rooms. 
This was due to a configuration failure for the first session of the three-day tests. At first 
sight, no obvious visual correlation seems to exist (Figure 23). Still, the number of 
peaks for the indoor temperature seems to correspond to the number of peaks for the 
electricity consumption. Also, during the longer period of rest for the electricity 
consumption, i.e. between minute 750 and 1300, the indoor temperature seems to 
slowly decrease. However, none of these observations can be considered conclusive.  
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Figure 23. The indoor temperature and the household electricity consumption in the 
middle room during three-day tests. 

Pearson’s correlation coefficient and Spearman’s rank correlation coefficient took on 
positive values (Table 10). The correlation coefficients has relatively large absolute 
values, compared to the rest of the rooms. The p-value lies within the significance level 
and therefore the null hypothesis can be rejected.  

Table 10. For middle room calculated values of Pearson’s correlation 
coefficient p, Spearman’s rank correlation coefficient 𝜌 and its p-value. 

p 0.2378 

𝜌 0.3973 

p-value 2.4141e-60 

 

The best ARX-model with respect to the SE-fit has an order of 4 of the A- and B-
polynomial. The time delay was estimated to 0 and the ARX-model achieved a GOF of 
46.73 percent (Table 11).  

The AR-model of order 4 also performs poorly. The GOF is only 41.24 percent, which 
is the worst result of all the rooms (Table 11). The lack of measurement data can the 
reason for this bad performance. The tuned 15-step predictors performed worse than the 
constructed ARX- and AR-models (Table 11).  
 

 
 



50 

 

Table 11. For the middle room, performance of the tuned 15-step AR-and 
ARX-predictors and the tuned one-step AR-and ARX-models. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 46.73% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 41.24% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 23.92% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 21.86% 

 

5.2 Summary- Correlation analysis 

For every room, the null hypothesis can be rejected. This means that a correlation 
cannot be disproven conclusively between the household electricity consumption and 
the indoor temperature. This does not mean that a strong correlation exists or even a 
positive one. Still, it means that a hypothesis of zero correlation is wrong within the 
significance level of 0.05 and that a relationship, direct or indirect, may be present. A 
visual correlation is observed for all rooms, except for the bedroom. It seems to be 
strongest for the kitchen, which is the room with the most heavy heat generating 
appliances.  

For every room, the 15-step predictions from tuned one-step linear models improves 
when they consider the household electricity consumption, i.e. the ARX-models. The 
same is true for the tuned 15-step predictors. However, for the tuned one-step 
predictors, the estimated parameters of the B-polynomial are small and only affects the 
outcome of the predictions to a limited extent, which coincides with the fact that the 
input-output models only perform slightly better than the corresponding no-input 
models. For every room, the tuned one-step predictors, which use information about 
electricity consumption up to 𝑡 − 1 to predict the indoor temperature at time 𝑡, 
outperforms the tuned 15-step predictors of the same structures.  

The correlation analysis justifies some pre-assumed characteristics. The correlation 
seems to be time delayed and non-linear, meaning that no instant temperature changes 
occur in parallel with the change in electricity consumption. The absolute Pearson’s and 
Spearman’s correlation coefficients are for every room low and the scatter plots shows 
no visual relationship. Still the performances of the ARX-predictors are throughout the 
experiments better than the AR-predictors, but the differences are marginal. The signals 
also show tendencies of a delayed visual correlation for most of the rooms, except for 
the bedroom.  

Regarding the performance of the models, it is important to have enough estimation 
data. Looking at the middle room models, the results diverge compared to the other 
rooms in terms of performance, likely because this room had about 1000 data points less 
to utilize in the estimation process than the other rooms.  

The purpose of the correlation analysis was to study whether a correlation exists 
between the household electricity consumption and the indoor temperature, the results 
show that this is likely the case but to a limited extent. Therefore, the modeling of the 
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two-week data builds on the assumption that a correlation cannot be rejected 
conclusively.  

5.3 Two-week data- Linear modeling 

5.3.1 Kitchen 

The best performing model to represent the kitchen system is an ARX-model with a time delay 
of 8 minutes and the order of 3 and 1 for the A- and B-polynomial. The model GOF was only 
0.01 percent worse than the best higher order model and performed equally good, or in some 
cases better, regarding the characteristics of the residuals, the poles and zeros and the step-and 
frequency responses. The ARX-model performed better than the best ARMAX-, BJ-and OE-
models (Table 12). 

Table 12. Checklist from the analyzation of the most suitable model of the kitchen. The 
best models with respect to GOF are shown together with the finally selected model 

ARX318. 

Model 𝐹𝐼𝑇𝐺𝑂𝐹  Residuals Poles/zeros Step and 
frequency 
response 

Model 
parameters 

ARX318 80.01% X √ √ √ 

ARMAX1228 79.25% X √ √ √ 

𝐵𝐽31218 79.99% X √ √ X 

OE248 10.19% X - - - 

 

The behavior of the residuals was unsatisfying for all tested ARX-models (Figure 24). 
The autocorrelation of the residuals shows that up until the lag of |20|, correlation seem 
to exist. This means that there are still dependencies between the residuals and noise is 
not successfully regarded by the model. However, the cross-correlation between the 
residuals and the household electricity consumption is likely white noise, which is 
preferable. 
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Figure 24. The autocorrelation of the residuals and the cross-correlation between the 
residuals and the household electricity consumption for the ARX-model of the kitchen. 

Comparing the ARX-model with the best performing AR-and ARMA models, the 
performance of the 15-step predictions are slightly better for the ARX-model. The best 
performing AR-model coincide with validation data up to a degree of 79,80 percent 
regarding GOF (Table 13). The corresponding ARMA-model performed similar 15-step 
predictions (79.37 percent). 

The tuned 15-step AR- and ARX predictors performed a worse GOF than the 
corresponding AR-and ARX models (Table 13).  

Table 13. For the kitchen, the GOF performance of the selected input-
output model, the best performing no-input model and the tuned 15-step 

ARX- and AR-predictors. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 80.01% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 79.80% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 78.24% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15 step AR) 77.79% 

 

5.3.2 Bathroom 

The best linear model to represent the bathroom is an ARX-model with 𝑛𝑎 = 4, 𝑛𝑏 = 1 
and 𝑛𝑘 = 1. It performed a GOF of 85.16 percent, which becomes better for higher 
order models but not significantly. The best model regarding GOF was a BJ-model but 
this model resulted in small parameters of the B-polynomial. 



53 

 

All models, except for the OE-model, performed well regarding GOF but performed 
worse regarding other characteristics (Table 14). For example, the autocorrelation of the 
residuals and the cross-correlation between the residuals and the input were not 
satisfying for neither model. 

Table 14. Checklist from the analyzation of the most suitable model of the bathroom. 
The best models with respect to GOF are shown together with the finally selected model 

ARX411. 

Model 𝐹𝐼𝑇𝐺𝑂𝐹 Residuals Poles/zeros Step and 
frequency 
response 

Model 
parameters 

ARX411 85.16% X √ √ √ 

ARMAX4321 85.05% X √ √ 𝑋 

𝐵𝐽32441 85.19% X √ √ X 

OE111 20.38% X - - - 

 

As the estimated parameters of the B-polynomial of the BJ-model were small, a reduced 
model was tried. The only B-polynomial order resulting in acceptable parameters was a 
BJ-model with 𝑛𝑏 = 1. However, this model resulted in a poorer performance of the 15-
step predictions than the ARX-model. This was also the case for a reduced ARMAX-
model, which performed similarly to the ARX-model for all criteria but the size of the 
parameters. The ARMAX-model of 𝑛𝑎 = 4, 𝑛𝑏 = 1, 𝑛𝑐 = 2 and 𝑛𝑘 = 1 also deviated 
from the rest of the models in its frequency response (Figure 25). The rest of the models 
behaved quite similarly for larger frequencies and followed the response estimated from 
the spectral analysis fairly well, but the reduced ARMAX-model did differ. Even 
though the behavior at low frequencies are more interesting for us, this divergent 
behavior did not exist for the original ARMAX-model and is not preferable. 
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Figure 25. For the bathroom, a bode-diagram of the linear models and the frequency 
response estimated through spectral analysis (spa). The reduced BJ-and ARMAX-

models are shown. 

Comparing the ARX-model to AR-and ARMA-models, their performance on the 15-
step predictions was slightly worse than for the ARX-model. The best performing AR-
model, with a A-polynomial of order 4, managed to achieve a GOF of 85.08 percent 
(Table 15). For the best ARMA-model, this value was 84.83 percent.  

Regarding the tuned 15-step predictors, their performances were worse than the 
performance of the ARX-and AR-models (Table 15). The 15-step ARX- and the AR-
predictor received almost the same GOF, with an advantage for the ARX-predictor on 
the second decimal.  

Table 15. For the bathroom, the GOF performance of the selected input-
output model, the best performing no-input model and the tuned 15-step 

ARX- and AR-predictors. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 85.16% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 85.08% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 84.09% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 84.04% 
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5.3.3 Bedroom 

The linear model best representing the bedroom is an ARX-model with 𝑛𝑎 = 3, 𝑛𝑏 = 1, 
and 𝑛𝑘 = 0. Its GOF was 78.03 percent, which was beaten by a BJ-model of higher 
order but the BJ-model was not satisfying on other criteria.  

The best linear models of each kind, with respect to GOF, had a similar performance of 
their 15-step predictions except for the OE-model. However, the behavior regarding the 
residuals, the location of the poles and zeros and the behavior of the step-and frequency 
responses did differ (Table 16). For example, the BJ-model had poles and zeros placed 
close to each other, its step-and frequency response was unsatisfying and the estimated 
parameters of the B-polynomial was smaller than 0.001 for all parameters except one.  

Table 16. Checklist from the analyzation of the most suitable model of the bedroom. The 
best models with respect to GOF are shown together with the final selected model 

ARX310. 

Model 𝐹𝐼𝑇𝐺𝑂𝐹 Residuals Poles/zeros Step and 
frequency 
response 

Model 
parameters 

ARX310 78.03% 𝑋 √ √ √ 

ARMAX1120 77.84% 𝑋 √ √ √ 

𝐵𝐽44140 78.10% X 𝑋 𝑋 X 

OE430 5.661% X - - - 

 

A reduced BJ-model was also tested and performed worse results than the ARX-model, 
therefore it was also rejected. The step response from the BJ-model became oscillating 
(Figure 26), which is not likely the real case for the indoor temperature when the 
household electricity consumption is turned on to a constant value from zero. A reason 
to this behavior could be that the poles of the model lies close to the borders of the unit 
circle. 
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Figure 26. The step-response for the BJ-model of the bedroom. 

The 15-step predictions of the best AR-and ARMA-models performed similar results as 
the ARX-model. In fact, the AR-model had a GOF of 78.04 percent which is slightly 
better than the corresponding ARX-model result (Table 17). This AR-model had the 
order of 3 of the A-polynomial. The 15-step predictions of the ARMA-model, with an 
order of 1 and 4 on the A-and C-polynomial, had a GOF of 77.97 percent.  

The GOF received from the 15-step predictors were slightly worse than for the 15-step 
predictions of the ARX-and AR-models (Table 17). However, the 15-step ARX-
predictor performed marginally better than the corresponding AR-predictor which is the 
other way around when comparing the performance of the AR-and the ARX-model. 

Table 17. For the bedroom, the GOF performance of the selected input-
output model, the best performing no-input model and the tuned 15-step 

ARX- and AR-predictors. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARX) 78.03% 

𝐹𝐼𝑇𝐺𝑂𝐹 (AR) 78.04% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 76.75% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 76.71% 
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5.3.4 Livingroom 

An ARMAX-model of 𝑛𝑎 = 3, 𝑛𝑏 = 1, 𝑛𝑐 = 1 and 𝑛𝑘 = 23 was selected to represent 
the system of the living room. In fact, this was the model that performed best with 
respect to the GOF. Lower orders of ARX-and BJ-models were tested but resulted in a 
worse GOF than the ARMAX-model. The residuals of all models had unsatisfying 
behaviors (Table 18).  

Table 18. Checklist from the analyzation of the most suitable model of the living room. 
The best models with respect to GOF are shown together with the final selected model 

ARMAX31123. 

Model 𝐹𝐼𝑇𝐺𝑂𝐹 Residuals Poles/zeros Step and 
frequency 
response 

Model 
parameters 

ARX4423 89.92% 𝑋 √ √ 𝑋 

ARMAX31123 91.54% 𝑋 √ √ √ 

𝐵𝐽314423 91.47% X X √ X 

OE3423 15.74% X - - - 

 

Comparing the ARMAX-structure with AR- and ARMA-models, the GOF was better 
for ARMAX (Table 19). The AR-model achieved a GOF of 89.61 percent and the 
ARMA-model achieved a GOF of 91.44 percent. The tuned 15-step predictors where 
slightly worse and performed a GOF of around 90 percent for both the ARX-and the 
AR-predictor (Table 19). However, the 15-step ARX-predictor generated marginally 
better results compared to the 15-step AR-predictor.  

Table 19. For the living room, the GOF performance of the selected input-
output model, the best performing no-input model and the tuned 15-step 

ARX- and AR-predictors. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARMAX) 91.54% 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARMA) 91.44% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 89.86% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 89.64% 
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5.3.5 Middle room 

The best model to represent the middle room was an ARMAX-model of 𝑛𝑎 = 4, 𝑛𝑏 =
1, 𝑛𝑐 = 2 and 𝑛𝑘 = 8.  An ARMAX-model of order 2 of the B-polynomial achieved a 
negligibly better GOF but this model resulted in small parameters of the B-polynomial 
and was therefore rejected. The selected ARMAX-model was the first model to behave 
satisfying on each analyzed area and was the first room to generate models with 
desirable residual characteristics (Table 20). However, the GOF was poor for each 
model.  

As for the rest of the rooms, the OE-model performed poorly both regarding GOF and 
regarding the residual characteristics. Therefore, this model was not further analyzed. 

Table 20. Checklist from the analyzation of the most suitable model of the middle room. 
The best models with respect to GOF are shown together with the final selected model 

ARMAX4128. 

Model 𝐹𝐼𝑇𝐺𝑂𝐹 Residuals Poles/zeros Step and 
frequency 
response 

Model 
parameters 

ARX428 67.64% 𝑋 √ √ 𝑋 

ARMAX4128 68.45% √ √ √ √ 

𝐵𝐽31228 68.47% √ √ √ 𝑋 

OE138 11.74% X - - - 

 

The best BJ-model regarding GOF resulted in better 15-step predictions than the 
selected ARMAX-model, this was also true for another reduced BJ-model. However, 
the best BJ-model had small B-polynomial parameters and the reduced BJ-model 
resulted in a somehow questionable behavior of its step response, see Figure 27 and 28. 
The value the output converges towards do change between different orders of the BJ-
model, from around 1 for the original model to 0.8 for the reduced one. This behavior 
does not apply for the ARMAX-model were the value is 0.6 for both the original and 
the reduced model. Due to this, and the more complex character of a BJ-model, the 
ARMAX-model was selected to represent the system of the middle room.  
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Figure 27. The step-response for the ARMAX-and BJ-models with best performance 
regarding GOF, i.e. the original models. 

 

Figure 28. The step-response for the reduced ARMAX-and BJ-models. 

The AR-and ARMA models performed a worse GOF than the ARMAX-model. The 
AR-model performed a GOF of 66.99 percent and the ARMA-model a GOF of 67.75 
percent. The tuned 15-step predictors generated similar GOF-values, where the ARX-
predictor performed best (Table 21).  
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Table 21. For the middle room, the GOF performance of the selected input-
output model, the best performing no-input model and the tuned 15-step 

ARX- and AR-predictors. 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARMAX) 68.45% 

𝐹𝐼𝑇𝐺𝑂𝐹 (ARMA) 67.75% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step ARX) 66.06% 

𝐹𝐼𝑇𝐺𝑂𝐹 (15-step AR) 65.02% 

 

5.4 Two-week data- Non-linear modeling 

5.4.1 NLARX-and NLAR-models 

For most of the rooms, the NLARX- and NLAR-models performed similarly to the best 
linear models when estimated and validated on the same sets of data (Table 22). For the 
kitchen and the bedroom, the best performing tuned one-step predictor was non-linear. 
For the rest of the rooms, the model with the best performance was linear. However, the 
difference in performance between the linear and non-linear models are small.  

For the bathroom, bedroom and the living room, the NLAR models performed slightly 
better than the NLARX models. The perks of knowing the previous and present 
household electricity consumption to predict future indoor temperatures is therefore 
questionable.  

When compared to the previous tuned linear 15-step predictors, all NLARX-and 
NLAR-models perform worse regarding GOF, except for the bedroom.  

 

 

 

 

 

 

 

 

 

 



61 

 

Table 22. For every room, the layer shape of the sigmoid network together with the 
structure and the GOF for the selected NLARX and NLAR models. 

Room Nr.Units 
(Sigmoidnet, 
NLARX) 

Structure 
(NLARX) 

[𝑛𝑎𝑛𝑏𝑛𝑘] 

𝐹𝐼𝑇𝐺𝑂𝐹  
(NLARX) 

Nr.Units 
(Sigmoidnet, 
NLAR) 

Structure 
(NLAR) 

[𝑛𝑎] 

𝐹𝐼𝑇𝐺𝑂𝐹 
(NLAR) 

Kitchen [7] [3 1 8] 82.59% [5] [3] 80.81% 

Bathroom [11] [4 1 1] 84.67% [3] [4] 84.96% 

Bedroom [3] [3 1 0] 78.73% [10] [3] 79.02% 

Living 
room 

[2] [3 1 23] 89.48% [4] [4] 89.59% 

Middle 
room 

[1] [4 1 8] 68.36% [17] [4] 67.56% 

 

5.4.2 15-step LAVA-predictors  

The tuned 15-step LAVA-predictors generates for all rooms generally less accurate 
predictions than the linear models and the neural network models (Table 23). The 
LAVA- ARX- and AR-structures generates results with similar GOF:s for each room. 
Small performance improvements are found for the ARX-models compared to the AR-
models regarding kitchen, living room and middle room but the differences are small. 
The bedroom and bathroom AR-models are better than their ARX counterparts. The 
electricity consumption seems to provide little additional information for the estimated 
LAVA-models.  
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Table 23. The structures of LAVA- AR- and ARX-models for every room and their 15-
step predicted response performance. 

Room [M, L] 
(ARX) 

Structure 
(ARX) 

[𝑛𝑎𝑛𝑏] 

𝐹𝐼𝑇𝐺𝑂𝐹  
(ARX) 

[M, L]  
(AR) 

Structure 
(AR) 

[𝑛𝑎] 

𝐹𝐼𝑇𝐺𝑂𝐹 
(AR) 

Kitchen [3, 5] [3 1] 76.80% [3, 5] [3] 76.39% 

Bathroom [3, 5] [4 1] 75.57% [3, 5] [4] 76.62% 

Bedroom [4, 6] [3 1] 76.27% [4, 6] [3] 76.29% 

Living 
room 

[3, 5] [3 1] 86.55% [3, 5] [3] 86.32% 

Middle 
room 

[3, 5] [4 1] 64.36% [3, 5] [4] 64.35% 

 

5.5 Sensitivity analysis 

When comparing the impact of household electricity consumption on the indoor 
temperature of the kitchen with the impact from relative humidity and radiator 
temperature, interesting results were found. The OE-models of the signals varied 
significantly in their ability to predict the indoor temperature. The constructed OE-
model with the radiator temperature as input achieved a GOF of 42.98 percent, which 
was the best received result. The corresponding GOF from the OE-model with input 
electricity achieved a 10.19 percent GOF and the OE-model with input relative 
humidity performed a GOF of 8.37 percent (Table 24).  

The single-input ARX-models performed similar GOF:s compared to each other (Table 
24). However, the ARX-model with household electricity as an input performed best. 
Second best performance was achieved by using radiator temperature as an input, 
closely followed by the ARX-model which used relative humidity. 

The MISO ARX-model modelled by all three signals achieved a GOF of 80.28 percent, 
which is slightly better than for the original ARX-model of the kitchen which only 
regarded the household electricity consumption as an input. A MISO ARX-model with 
the inputs household electricity and radiator temperature performs equally well (Table 
24).  
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Table 24. GOF:s  from OE, ARX-and MISO ARX-models with inputs household 
electricity (el), relative humidity (hum) and radiator temperature (rad). 

Model type Inputs 𝐹𝐼𝑇𝐺𝑂𝐹 

OE el 10.19% 

OE hum 8.37% 

OE rad 42.98% 

ARX el 80.02% 

ARX hum 79.90% 

ARX rad 79.98% 

ARX (MISO) el, hum, rad 80.29% 

ARX (MISO) el, rad 80.29% 

 

5.6 Summary- Two-week study 

The results of this study shows that the tuned one-step predictors, which uses household 
electricity consumption up to 𝑡 − 1 to predict outputs of indoor temperature at time 𝑡, 
outperforms the tuned 15-step predictors for every room except the living room. For the 
living room, the tuned linear 15-step predictors perform a better GOF than the tuned 
one-step NLARX-and NLAR models. However, the best performing models of the 
living room are still tuned linear one-step predictors.   

For the kitchen and the bedroom, the best performing models are non-linear. This is not 
true for the rest of the rooms and may be explained by the characteristics of the rooms. 
For the bathroom, the difference between the best performing model and the worst is 
bigger than for the rest of the rooms, i.e. 9.59 percentage units. This difference is 
smallest for the bedroom where the best performing model achieves a GOF of 2.75 
percentage units better than the worst performing one. For the bedroom, the best 
performing model is a no-input model, in contrast to the best performing models for the 
rest of the rooms.  

The OE-models performs poor GOF results for all rooms, which is to be expected as 
they lack access to earlier temperature data points upon prediction. The household 
electricity consumption is, by itself, thereby a weak temperature prediction parameter. 

For each room, the overall performance of the models are similar with two exceptions. 
When comparing each ranking with the corresponding GOF for each room the models 
of the middle room stands out as having more trouble mimicking the validation data 
(Table 25). In contrast to this, the living room stands out by having a better performance 
than the rest of the rooms on every ranking. Commonly for all room is the marginal 
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difference between the performance of an input-output model of a specific kind and the 
corresponding no-input model of the same kind. The LAVA-models performs the worst 
GOF.  

Table 25. The best performing model types for each room, ranked by GOF in 
descending order. 

Ranking Kitchen 
 

[𝑭𝑰𝑻𝑮𝑶𝑭] 

Bathroom 
 

[𝑭𝑰𝑻𝑮𝑶𝑭] 

Bedroom 
 

[𝑭𝑰𝑻𝑮𝑶𝑭] 

Living room 

[𝑭𝑰𝑻𝑮𝑶𝑭] 

Middle room 

[𝑭𝑰𝑻𝑮𝑶𝑭] 

 

1 

NLARX 
 

[82.59%] 

ARX 

 
[85.16%] 

NLAR 
 

[79.02%] 

ARMAX 

 
[91.54%] 

ARMAX 

 
[68.45%] 

 

2 

NLAR 
 
 

[80.81%] 

AR 

 
[85.08%] 

NLARX 
 
 

[78.73%] 

ARMA 

 
[91.44%] 

NLARX 

 
[68.36%] 

 

3 

ARX 

 
[80.01%] 

NLAR 

 
[84.96%] 

AR 

 
[78.04%] 

15-step ARX 
 

[89.86%] 

ARMA 

 
[67.75%] 

 

4 

AR 

 
[79.80%] 

NLARX 

 
[84.67%] 

ARX 

 
[78.03%] 

15-step AR 

 
[89.64%] 

NLAR 

 
[67.56%] 

 
5 

15-step 
ARX 

[78.24%] 

15-step 
ARX 

[84.09%] 

15-step 
ARX 

 
[76.75%] 

NLAR 

 
[89.59%] 

15-step ARX 

 
[66.06%] 

 
6 

15-step AR 
 
 

[77.79%] 

15-step AR 
 
 

[84.04%] 

15-step AR 
 
 

[76.71%] 

NLARX 
 
 

[89.48%] 

15-step AR 
 
 

[65.02%] 

 
7 

15-step 
LAVA-ARX 

[76.80%] 

15-step 
LAVA-AR 

[76.62%] 

15-step 
LAVA-AR 

 
[76.29%] 

15-step 
LAVA-ARX 

[86.55%] 

15-step LAVA-
ARX 

[64.36%] 

 
8 

15-step 
LAVA-AR 

[76.39%] 

15-step 
LAVA-ARX 

[75.57%] 

15-step 
LAVA-ARX 

[76.27%] 

15-step 
LAVA AR 

 
[86.32%] 

15-step LAVA-
AR 

[64.35%] 
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In the sensitivity analysis, the best performing OE-model used radiator temperature as 
the input signal. This model was significantly better than the other OE-models. 
However, the best performing single input ARX-model used household electricity as 
input, even if all ARX-models performed similar results. The models with the relative 
humidity as input signal did, for both the OE- and ARX-models, perform a worse GOF 
than the others. This signal was also redundant for the predictive performance of the 
MISO ARX-models, were an equally good result regarding GOF was achieved without 
information about relative humidity. 
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6. Discussion 

6.1 Correlation analysis 

The mathematical correlation between household electricity consumption and indoor 
temperature is small. There are several potential reasons for this. One being that the 
electricity consumption simply has a low impact on indoor temperature. This is 
intuitively reasonable for rooms such as the bedroom as the electrical devices present 
yields a marginal heat output and the room is populated primarily during the night, 
when the electricity usage is low. Therefore, a correlation in the kitchen seemed more 
plausible given its multiple heat generating devices such as oven, stove and dishwasher. 
The mathematical results showed otherwise though, which may be due to the used 
mathematical methods, i.e. Pearson’s and Spearman’s methods, and their limitations. It 
is precarious to assign too much meaning to the mathematical correlations as the 
methods are constructed to find linear, non-time delayed variable relationships, which 
should not be expected to be found in the three-day data.  

Even though the mathematical correlations in the respective rooms were indeed small, 
visual correlations seemed to be present upon inspection of the variable behaviors for 
most rooms, except the bedroom. An initial hypothesis was that if electricity is used, 
this yields a heat output and may also imply that people are present in the apartment. As 
the indoor temperature seemed to rise during heavy use of electricity for most rooms, it 
is not too farfetched to conclude that the activities within the apartment (use of 
electricity, presence of humans, physical activity etc.) do impact the indoor temperature. 
Disturbances such as outdoor temperature, solar insolation, wind and humidity can of 
course distort the results but some pattern between electricity consumption and indoor 
temperature was present.  

Another important correlation test was the performance comparison between AR- and 
ARX-models. A significant improvement in the ARX-models would imply that the 
electricity data provides useful information. Indeed, the ARX-models outperformed 
their AR counterparts, both regarding the tuned one-step predictors and the tuned 15-
step predictors. It should however be pointed out that the gain was typically marginal. 
Moreover, the tuned one-step predictors performed better than the corresponding tuned 
15-step predictors with the same polynomial structure, which may indicate that useful 
information exists in the household electricity consumption 15 minutes before 
prediction instance t.  

From the results, we acknowledge a correlation between household electricity 
consumption and indoor temperature. However, the magnitude and the characteristics of 
the correlation differs between the rooms. A proof of this is the different time delays 
estimated for each room. Also, the difference between the input-output models and their 
corresponding no-input models were small, meaning that good results were achieved 
without using household electricity consumption.  

The visual correlation was strongest for the kitchen, of which room the best performing 
model was constructed, i.e. the tuned one-step ARX-model. This model outperformed 
its AR-counterpart with about 2 percentage units, indicating that valuable information 
exists in using the electricity consumption, even if the difference is marginal.  
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For the living room, the difference in performance between the input-output models and 
the no-input models were greater than for the rest of the rooms, which attributes some 
benefits to knowing the household electricity consumption. However, the visual 
correlation was weaker compared to the kitchen. An explanation to this can be the 
behavior of the indoor temperature. For the kitchen, the temperature was of a more 
oscillating character compared to the living room. This can be explained by the fact that 
the kitchen has a lot of heat generating appliances affecting the indoor temperature 
during times when household electricity is used in the apartment. For the living room, it 
is reasonable to assume that household electricity consumption affects the indoor 
temperature marginally, due to the lack of heat generating electrical appliances in it. An 
increase of indoor temperature is rather caused by people present, outdoor temperature, 
radiator heat and heat leakage from other rooms.  

The bathroom has, similarly to the kitchen, heavy heat generating machinery. The 
electrical components which yields a heat contribution is the dryer and the washing 
machine. Their respective heat output is however dependent on their energy 
effectiveness. A newer machine will likely yield less energy waste than an old one, this 
can explain the marginal effect of electricity on indoor temperature in the bathroom as 
both machines are fairly modern. The human presence in the bathroom can possibly be 
higher when household electricity is used but it is reasonable to assume that these visits 
are time limited and does not affect the indoor temperature significantly, resulting in a 
relatively constant temperature. The same assumption may hold for the warm water 
usage in the bathroom.  

The bedroom showed no visual correlation in comparison to the other rooms. This may 
indicate that the household electricity consumption is redundant for predictions in this 
room, which could be reasonable. There are not many electrical components in the 
bedroom generating heat and it is likely that people are present when electrical usage is 
low, i.e. during the night. Still, when people are home and awake and uses electricity, 
the temperature may rise periodically by heat transfers from other rooms and sporadic 
human presence. 

The middle room had the least reliable measurement data. Partly as a result of the 
configuration failure making the amount of data less than for the other rooms but also 
due to the sensor likely being defective, which was discovered after the two-week 
measurements. Even if so, a visual correlation seem to exist between electricity 
consumption and indoor temperature, and again the input-output models outperform the 
no-input models.  

6.2 Two-week study   

This study has shown that good performing models representing the thermal systems of 
the rooms of an apartment can be constructed to predict 15 minutes ahead from two 
weeks of minute-wise samples of indoor temperature and household electricity 
consumption. The indoor temperature itself is sufficient to achieve good results but by 
including household electricity consumption as an input it is possible to improve the 
results depending on room and model type.  

For every room, there are small differences in performance between a specific type of 
input-output model and its corresponding no-input model. More or less equally good 
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predictions of the indoor temperature are obtained using only information about the 
indoor temperature. For the kitchen, the input-output models consistently outperformed 
the no-input models and the difference of the best NLARX-model and the NLAR-model 
was the most significant, in relation to the other rooms. The household electricity 
consumption seem to have a stronger relation to the indoor temperature in the kitchen 
than for the other rooms.  

The thermal systems studied can be considered non-linear given the complex dynamics 
observed. With this in mind, a reasonable assumption is that non-linear models captures 
the dynamics of the apartment better than linear models. Seemingly this was not true in 
this study, as the non-linear models rarely performed better. The linear models proved 
competitive and was often better in predicting the indoor temperature which is 
beneficial in terms of simplicity and compatibility with physical models. Only the best 
performing model of the kitchen, the NLARX-model, stands out a bit as it outperformed 
the best linear kitchen model GOF with 2.58 percentage units. Why the NLARX-model 
works best for the kitchen is not entirely easy to explain. One reason can be the number 
of electrical appliances. Compared to the other rooms, the kitchen contains a wide range 
of machinery generating different amounts of heat which can impact the indoor 
temperature. Also, some components vary in their heat generation over time depending 
on usage. A good example of this is the oven as, trivially, a lower oven temperature 
generates a lower heat contribution to the indoor temperature. This may give rise to 
non-linear patterns in the data as a specific level of household electricity consumption 
will not deterministically result in a linear influence on the indoor temperature.   

Another reason is that some kitchen appliances are used during limited times of the day, 
which also coincide with the presence of people. It is possible that the different 
combinations of electrical appliance operating, and human activity, together with other 
disturbances like solar insolation, makes it hard to approximate a relationship in linear 
terms. With this in mind, one can assume that the relationship between household 
electricity consumption and indoor temperature in the kitchen is of a non-linear 
character. However, it is also possible that better non-linear models could have been 
modelled for the other rooms if the data was used differently or if more data was 
collected. But on the other hand, the constructed models do overall perform well, 
meaning that the amount of data collected can be considered sufficient to generate both 
good linear- and non-linear models.  

For all rooms, the best performing models were tuned one-step predictors which upon 
validation uses inputs up to t−1 and outputs up to t−15, i.e. more input data than 15-
step predictors. While the difference in performance cannot be considered great (about 1 
percentage unit), it is possible that some useful information is contained in the 
electricity data. However, the best model for the bedroom was a no-input model which 
excludes the electricity. This can be due to correlation inconsistencies between indoor 
temperature and electricity consumption in the bedroom data. What can be deduced is 
that the household electricity consumption is not suitable for predicting the indoor 
temperature of the bedroom, which is reasonable considering the lack of electrical 
appliances and the daily patterns of human presence.  

The living room is the best modelled room in terms of GOF. The reasons can be many 
but one explanation is that both the estimation- and validation data contained similar 
patterns for the indoor temperature data, making the models fit well on validation. This 
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highlights the importance of informative data, as the middle room did not provide data 
to successfully model the “true” thermal dynamics. The living room is also one of the 
rooms with the least exposure to solar insolation, which was one of the major sources of 
measurement disturbance. In contrast, both the bedroom and kitchen are oriented south 
which added noise to the measurements a few hours each sunny day. This was observed 
in the data before pre-processing as temporary non-natural peaks seemed to rise 
instantly, probably because the sensors interpreted the solar insolation as a general rise 
of temperature in the rooms. As the living room and its sensor was not exposed to the 
sun, it was probably able to measure the indoor temperature more accurately.  

The performance of all models can partly be attributed to each room’s character in terms 
of exposure to disturbances and room size. The disturbances affecting the indoor 
temperature vary in number and tangibility between the rooms. For instance, the kitchen 
is primarily exposed to radiator heat, solar insolation, outdoor temperature and heat 
from both electrical appliances and humans. It is also a small room, potentially making 
it more sensitive to disturbances than bigger rooms. The living room is in contrast 
significantly bigger with the main sources of disturbance being radiator heat, outdoor 
temperature and the presence of humans. One can argue that the size of the kitchen and 
some of its disturbances contributes to more noisy temperature data, compared to the 
living room. This can explain why the living room temperature remains less noisy 
throughout the measuring period (Figure 29). The indoor temperature of the living room 
may therefore consist of more predictable fluctuations, yielding better GOF on each 
ranking compared to the other rooms (Table 25). Also, each linear model performed 
better than the corresponding non-linear model for this room. It is reasonable to assume 
that the indoor temperature follows a more linear pattern compared to the other rooms.  

 

Figure 29. Comparison between the two-week measured indoor temperature of the 
kitchen and the living room. 

The models constructed for the middle room generated predictions with the worst GOF. 
On every ranking the models lacked the rest of the rooms (Table 25). This may be 
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explained by the size and the exposure to disturbances. The middle room is small and is 
also branched to the rest of the rooms, enabling heat transfers to and from these 
locations. Therefore, the middle room may be more sensitive and depend heavier on 
disturbances than the other rooms. However, the middle room neither contain any 
considerable heat generating appliances and it is not likely that people spend time in it 
for longer periods as it works more as a hallway to the rest of the rooms. The modeling 
thus resulted in more challenges than the other rooms, indicating that the indoor 
temperature is hard to predict. The indoor temperature data of the middle room is even 
more noisy than the kitchen data (Figure 30). 

 

Figure 30. Comparison between the two-week measured indoor temperature of the 
kitchen and the middle room between minute 500 and 1000.  

A possible explanation to the behavior of the indoor temperature of the middle room is a 
defective Tinytag sensor, resulting in noisy measurements. It is hard to believe that the 
temperature would have behaved as the measurement data shows as indoor temperature 
should not fluctuate this fast. All rooms used the same sample time and the sensors were 
placed on locations similar for all rooms. Therefore, the results of the middle room are 
likely not accurate. 

Overall, the tuned 15-step predictors performed a worse GOF than the equivalent tuned 
one-step predictors. However, it is not possible to deduce that this difference depends 
on the usage of the input signal. The idea was that if input-output tuned one-step 
predictors, using inputs up to 𝑡 − 1, performs better than input-output tuned 15-step 
predictors using inputs up to 𝑡 − 15 to predict outputs at time 𝑡, then important 
information exists in the input data the last 15 minutes before prediction. In relation to 
this, it is easy to overestimate the benefits of using the household electricity 
consumption when evaluating the results. For instance, regarding the linear input-output 
models of the kitchen, the tuned one-step ARX-model outperformed the tuned 15-step 
ARX-predictor with 1.77 percentage units. From this, it would be easy to assume that 
more information about the input signal results in a better prediction performance. 
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However, the corresponding linear no-input models of the kitchen has a bigger 
difference in prediction performance than the input-output models. The tuned one-step 
AR-model outperforms the tuned 15-step AR-predictor with 2.01 percentage units, a 
quite similar and even larger difference than for the input-output models. For the other 
rooms, the differences between no-input and input-output models are also similar. This 
means that the difference in performance between tuned one-step and tuned 15-step 
predictors do not necessarily depend on the usage of the household electricity 
consumption. Instead, one explanation can be the selected structures of the tuned 15-
step predictors. They were selected to be the same as for the best performing tuned one-
step predictors. In other words, the structures of the tuned 15-step predictors were not 
optimized.  

The purpose of this study was not to find the best models but instead to evaluate the 
benefits of using the household electricity consumption. If the household electricity 
consumption had brought more valuable information for predicting the indoor 
temperature than the results of this study indicates, then a bigger difference would have 
been observed between the performances of the input-output- and no-input models. 
Also, if valuable information had existed in the last 15 minutes before prediction, the 
difference in performance between input-output models (tuned one-step predictors 
compared to tuned 15-step predictors) would have been smaller than the corresponding 
difference between the no-input models. 

For every room, the non-linear tuned 15-step LAVA-predictors performed worse than 
the other models. The reason for this is the same as for why the tuned one-step 
predictors generally outperformed the tuned 15-step predictors, which is the selected 
structures of the models. For the LAVA-models, the structures were chosen to have the 
same order as their linear equivalents and better results would have been achieved by 
optimizing the polynomial orders of the LAVA-models. It was found that, by changing 
the polynomial orders for the model of the living room, the performance increased about 
1 percentage unit per A-polynomial order increase. By using 𝑛𝑎 = 7 for the LAVA-AR 
model, a GOF of 90.50 percent was achieved, making it the third best performing model 
of this room, but at the cost of complexity. The linear tuned one-step predictors were 
only tested on orders up to four, as higher orders were deemed redundant from the 
correlation analysis.  

Finally, the sensitivity analysis on the kitchen brought interesting results to the study. It 
was not surprising that the input of the OE-model performing the best GOF was the 
radiator temperature. This is reasonable as the radiator surface temperature directly 
affects the indoor temperature in the kitchen, with some time delay. The radiators also 
operates as the main heating source in the apartment which entails that their surface 
temperatures are correlated with the indoor temperature. Therefore, it is somewhat 
surprising that the ARX-model that performed the best results in regard to GOF (by a 
small margin), used household electricity as input. This gives some merit to the 
hypothesis that the household electricity consumption, along with the trends following 
it, is correlated with the indoor temperature and can help predict it, at least for the 
kitchen. 
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7. Conclusion 
The results of this study show that for the rooms of the apartment, the benefits of 
knowing the household electricity consumption when predicting indoor temperature are 
marginal, but nevertheless existing for all rooms except the bedroom. For the kitchen, 
the knowledge about household electricity consumption seems more valuable than for 
the other rooms, even if it does not result in any significantly better predictions 
compared to the no-input models. Regarding the bedroom, the electricity consumption 
reduces the prediction performance.  

The correlation between household electricity consumption and indoor temperature is 
strongest for the kitchen. A weaker correlation exists for the living room and the 
bathroom and no significant correlation can be found in the bedroom. The data of the 
middle room were remarkably noisy and therefore it is hard to evaluate the correlation 
for this room.  

Non-linear models yields no considerable improvements in prediction performance 
compared to the corresponding linear models. As the linear models are less complex 
and more compatible with physical models, they are considered favorable for this 
modeling purpose. However, it is possible to construct better performing non-linear 
models by optimizing their structures or by using other methods and data.  

Tuned one-step-predictors performs better than tuned 15-step-predictors, when 
validated on a prediction horizon of 15 minutes. However, the difference does likely not 
depend on the additional information received from the input signal during validation, 
but instead the selected structures of the models. The information about the household 
electricity consumption 15 minutes before prediction can be considered superfluous.  
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8. Future studies 
The results of this study are not generalizable. The location of the apartment, the 
measuring period, the housing conditions and the building characteristics all bias the 
results. However, some aspects of the relationship between household electricity 
consumption and indoor temperature may, in future studies, show to be common for 
Swedish apartments. For instance, it is likely that the correlation is strongest for the 
kitchen, both for smaller and larger apartments. It would therefore be interesting to 
observe this relationship for apartments with only one or two rooms. For these 
apartments, it is common that the kitchen and the living room coincide to one living 
space. It is possible that the relationship is stronger for these apartments, as all electrical 
appliances are located in a limited space. When constructing empirical models of these 
thermal systems, one can deduce where heat is generated when the appliances are being 
used, in contrast to larger apartments where heat can be generated from electrical 
appliances in multiple rooms. Also, the size of the apartments entails that when 
electrical appliances are used, the only room people can occupy is the bathroom or the 
living space. This likely makes it easier to construct good models as the household 
electricity consumption can affect the indoor temperature more than for larger 
apartments.  

In the central parts of Stockholm, about 60 percent of the apartments are one- or two-
room apartments of older building types (SCB, 2016). In this study, the best input-
output model of the kitchen did perform 1.78 percentage units better than its 
corresponding no-input model. If one can assume that this holds, or that this difference 
even increases for smaller apartments, there may exist a potential in regarding this 
relationship when shaping strategies for reducing energy demands and improving 
energy efficiency. We therefore recommend further studies, similar to ours, to be 
carried out on smaller apartments.  

Today, smart radiator thermostats exists on the market. Some of these technologies 
considers inputs and disturbances such as indoor temperature, weather, the relative 
indoor humidity and the residents relative locations (tracking them by mobile phones) to 
control the indoor temperature towards a dynamic target temperature, which changes 
depending on the level of occupancy (TADO, 2020). An additional parameter to include 
in these techniques may be the household electricity consumption, possibly 
implementing a more proactive approach to the control, suitable for smaller apartments 
or kitchens.  

In this study, we have showed how to construct well-performing predictors without an 
expensive budget. They were able to predict the indoor temperature 15 minutes in 
advance with satisfying results from one week of estimation data. We also showed that 
the household electricity consumption, as an input signal to an ARX-model of the 
kitchen, resulted in better prediction performance than the relative humidity and that it 
is possible to receive even better performances by also including the radiator 
temperatures. In line with these results, further studies are recommended to evaluate if 
the correlation between household electricity consumption and indoor temperature, can 
be used in radiator control.  

As this study was carried out on an apartment in an older building, it would be 
interesting to also perform similar measurements on newer low-energy buildings. These 
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buildings have a greater thermal inertia than older ones, meaning the relation between 
household electricity consumption and indoor temperature may look different. As heat 
is preserved better in these new buildings it is most likely that the usage of electrical 
appliances and the presence of people will affect the indoor temperature in another 
proportion compared to older buildings. It is reasonable to assume that the same amount 
of heat generated from electrical appliances in an older and less energy efficient 
apartment would result in heavier impacts on the indoor temperature in newer 
apartments with less heat leakage. As more energy is needed to heat up older 
apartments, the heat generated from electrical appliances and people present correspond 
to a smaller portion of the total energy affecting the indoor temperature. Of course, 
some of the appliances in new buildings are more energy efficient and therefore yields 
less heat. Also, many of these buildings do already have smart systems for controlling 
the indoor climate, similar to the technologies described earlier. Still, it is possible that 
low-energy buildings are the most sensitive ones regarding the impact of household 
electricity consumption on indoor temperature and that a potential for energy savings 
exists.  
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Appendix A- Three-day data codes  

A.1. Correlation analysis 
% Correlation analysis kitchen.  
clear all 
close all 
  
%Kitchen: 
kitchen = importdata('kitchen11to13NEW.txt'); 
temp_kitchen = kitchen(1:end, 1); 
kW_kitchen = kitchen(1:end, 2); 
  
%Plot: 
time=[1:length(temp_kitchen)]; 
plot(time,temp_kitchen) 
grid on; 
hold on;  
plot(time,kW_kitchen) 
figure;  
  
%Scatterplot:  
scatter(kW_kitchen, temp_kitchen) 
figure; 
  
%Correlation coefficients (Pearson¥s).  
[correlation_coefficients,p] = corrcoef(kW_kitchen',temp_kitchen'); 
  
%Correlation coefficients (Spearman¥s).  
[SRHO,Pval] = corr(kW_kitchen,temp_kitchen,'Type','Spearman'); 
  
%Iddata:  
kitchen_data = iddata(temp_kitchen, kW_kitchen, 60); 
%Removing means: 
kitchen_data =detrend(kitchen_data,0); 
%Detrending:  
kitchen_data = detrend(kitchen_data,1); 
%Estimation data:  
kitchen_data_est = kitchen_data([1:round(length(time)/2)]); 
%Validation data:  
kitchen_data_val = kitchen_data([(round(length(time)/2))+1:length(time)]); 
  
%Estimating impulse response:  
[impulse_response,Corr,sign_level] = cra(kitchen_data,2000,4,1); 
figure; 
  
%Estimating time delay:  
time_delay=delayest(kitchen_data, 4, 4)  
  
%Estimating Bode-diagram:  
bodeplot(spa(kitchen_data)); 
figure; 
  
%Spectrumplot:  
spectrumplot(spa(kitchen_data)); 
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%Prediction comparison: 
  
%AR:  
arOpt = arOptions;  
ar2=ar(kitchen_data_est.y,2,'Ts', 60, arOpt); 
compare(kitchen_data_val.y,ar2, 15); 
figure; 
  
%ARX:  
arxOpt = arxOptions;                                                                       
arx2115 = arx([kitchen_data_est.y, kitchen_data_est.u],[2 1 15],'Ts', 60, 
arxOpt); 
compare([kitchen_data_val.y, kitchen_data_val.u],arx2115,15); 
  
%AR tuned 15-step predictor: 
Y_est = kitchen_data_est.y(17:end); 
y_est = kitchen_data_est.y;  
Y_val = kitchen_data_val.y(17:end);  
y_val = kitchen_data_val.y; 
u_est = kitchen_data_est.u; 
u_val = kitchen_data_val.u; 
  
Phi_est = [-y_est(2:end-15) -y_est(1:end-16)]; 
theta_hat_ar = Phi_est\Y_est;  
y_hat_est = Phi_est*theta_hat_ar;  
  
%Validation data:  
Phi_val = [-y_val(2:end-15) -y_val(1:end-16)]; 
y_hat_val = Phi_val*theta_hat_ar;  
  
%NRMSE-based goodness of fit:  
GOF_est_ar = goodnessOfFit(Y_est,y_hat_est,'NRMSE') 
GOF_val_ar = goodnessOfFit(Y_val,y_hat_val,'NRMSE') 
  
%ARX tuned 15-step predictor: 
Phi_est_arx = [-y_est(2:end-15) -y_est(1:end-16) u_est(1:end-16)]; 
Phi_val_arx = [-y_val(2:end-15) -y_val(1:end-16) u_val(1:end-16)]; 
  
theta_hat_arx = Phi_est_arx\Y_est;  
y_hat_est_arx = Phi_est_arx*theta_hat_arx;  
  
%Validation data.  
y_hat_val_arx = Phi_val_arx*theta_hat_arx;  
  
%NRMSE-based goodness of fit:  
GOF_est_arx = goodnessOfFit(Y_est,y_hat_est_arx,'NRMSE') 
GOF_val_arx = goodnessOfFit(Y_val,y_hat_val_arx,'NRMSE') 
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Appendix B- Two-week data codes 

B.1. Best linear tuned one-step models with respect to GOF 
function[model] = find_model(file, model_type) 
 
%Data:  

[temperature, humidity, electricity, radiator_temp]= split_data(file); 
time = [1:length(temperature)]; 
data_length = length(time); 
     
room_data = iddata(temperature, electricity, 60);    
 room_data = detrend(room_data,0); 
 room_data = detrend(room_data,1); 
 room_data_est = room_data([1:floor(data_length/2)]); 
 room_data_val = room_data([ceil(data_length/2):data_length]); 
  
 counter = 1;  
 delays = zeros(16,1);  
 max_na = 4; 
 max_nb = 4; 
     
 for na = 1:max_na 
   for nb = 1:max_nb 
     time_delay=delayest(room_data, na, nb); 
     delays(counter, 1) = time_delay; 
     counter = counter+1;  
   end 
 end  
     
 %Most frequent time delay: 
 most_freq_time_delay = mode(delays); 
     
  if model_type == "arx" 
 %Evaluate the arx-structures with fixed time delay: 
    arx_structures = struc(1:4, 1:4, most_freq_time_delay); 
    best_fit = 0; 
    best_model_index = 0; 
     for i = 1:length(arx_structures) 
          arx_model = arx(room_data_est, arx_structures(i,:)); 
          [y,fit,x0] = compare(room_data_val, arx_model, 15); 
          fit1 = goodnessOfFit(y.y,room_data_val.y, 'NRMSE')*100; 
          if fit1 > best_fit 
              best_fit = fit1; 
              best_model_index = i; 
          end    
     end 
       opt = arxOptions; 

model = arx(room_data_est, arx_structures(best_model_index,:)                                  
,'Ts', 60, opt);    

           compare(room_data_val, model, 15) 
 end 
     
 if model_type == "armax" 
 %Evaluate the armax-structures with fixed time delay: 
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   armax_structures = struc(1:4, 1:3, 1:2, most_freq_time_delay); 
   best_fit = 0; 
   best_model_index = 0; 
   for i = 1:length(armax_structures) 

armax_model = armax(room_data_est,    armax_structures(i,:)); 
           [y,fit,x0] = compare(room_data_val, armax_model); 
           [y,fit,x0] = compare(room_data_val, armax_model, 15); 
           fit1 = goodnessOfFit(y.y,room_data_val.y, 'NRMSE')*100; 
           if fit1 > best_fit 
                 best_fit = fit1; 
                 best_model_index = i; 
           end 
             
   end 

model = armax(room_data_est, 
armax_structures(best_model_index,:), 'Ts', 60); 

           compare(room_data_val, model, 15) 
end 
     
  if model_type == "bj" 
  %Evaluate the bj-structures with fixed time delay: 

bj_structures = struc(1:4, 1:4, 1:4, 1:4, most_freq_time_delay); 
           best_fit = 0; 
           best_model_index = 0; 
        for i = 1:length(bj_structures) 
             bj_model = bj(room_data_est, bj_structures(i,:)); 
             [y,fit,x0] = compare(room_data_val, bj_model, 15); 
             fit1 = goodnessOfFit(y.y,room_data_val.y, 'NRMSE')*100; 
             if fit1 > best_fit 
                 best_fit = fit1; 
                 best_model_index = i; 
            end 
        end 

model = bj(room_data_est, bj_structures(best_model_index,:), 
'Ts', 60); 

           compare(room_data_val, model, 15) 
         
  end 
     
  if model_type == "oe" 
  %Evaluate the oe-structures with fixed time delay: 
        oe_structures = struc(1:4, 1:4, most_freq_time_delay); 
        best_fit = 0; 
        best_model_index = 0; 
        for i = 1:length(oe_structures) 
             oe_model = oe(room_data_est, oe_structures(i,:)); 
             [y,fit,x0] = compare(room_data_val, oe_model, 15); 
             fit1 = goodnessOfFit(y.y,room_data_val.y, 'NRMSE')*100; 
             if fit1 > best_fit 
                 best_fit = fit1; 
                 best_model_index = i; 
             end 
             
        end 

model = oe(room_data_est, oe_structures(best_model_index,:), 
'Ts', 60); 

           compare(room_data_val, model, 15) 
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    end 
     
    if model_type == "ar" 
        %Evaluate the ar-structures with fixed time delay: 
        best_fit = 0; 
        best_model_index = 0; 
        for i = 1:4 
             ar_model = ar(room_data_est.y, i); 
             [y,fit,x0] = compare(room_data_val.y, ar_model, 15); 
             fit1 = goodnessOfFit(y,room_data_val.y, 'NRMSE')*100; 
             if fit1 > best_fit 
                 best_fit = fit1; 
                 best_model_index = i; 
             end 
             
        end 
           model = ar(room_data_est.y, best_model_index, 'Ts', 60); 
           compare(room_data_val.y, model, 15) 
         
    end 
     
    if model_type == "arma" 
        %Evaluate the arma-structures with fixed time delay: 
        arma_structures = struc(1:4, 1:4); 
        best_fit = 0; 
        best_model_index = 0; 
        for i = 1:length(arma_structures) 

 arma_model = armax(room_data_est.y, arma_structures(i,:)); 
            [y,fit,x0] = compare(room_data_val.y, arma_model, 15); 
            fit1 = goodnessOfFit(y,room_data_val.y, 'NRMSE')*100; 
             if fit1 > best_fit 
                 best_fit = fit1; 
                 best_model_index = i; 
            end 
             
        end 

model = armax(room_data_est.y,        
arma_structures(best_model_index,:), 'Ts', 60); 

           compare(room_data_val.y, model, 15) 
         
       end 
     
    end 
 

B.2. Linear tuned one-step- and 15-step predictors 
%Kitchen 2-week:  
[temperature, humidity, electricity, radiator_temp]= 
split_data('KitchenDone.txt'); 
time = [1:length(temperature)]; 
data_length = length(time); 
     
room_data = iddata(temperature, electricity, 60);   
room_data = detrend(room_data,0);     
room_data = detrend(room_data,1); 
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room_data_est = room_data([1:floor(data_length/2)]); 
room_data_val = room_data([ceil(data_length/2):data_length]); 
     
% Best models: 
arx318 = arx([room_data_est.y, room_data_est.u],[3 1 8], 'Ts', 60);  
compare([room_data_val.y, room_data_val.u],arx318,15); 
figure;  
armax1228 = armax([room_data_est.y, room_data_est.u],[1 2 2 8], 'Ts',  60);  
compare([room_data_val.y, room_data_val.u],armax1228,15); 
figure;  
bj31218 = bj([room_data_est.y, room_data_est.u],[3 1 2 1 8], 'Ts', 60);  
compare([room_data_val.y, room_data_val.u],bj31218,15); 
figure;  
oe248= oe([room_data_est.y, room_data_est.u],[2 4 8], 'Ts', 60);  
compare([room_data_val.y, room_data_val.u],oe248,15); 
figure;  
ar3= ar(room_data_est.y,3, 'Ts', 60);  
compare(room_data_val.y,ar3,15); 
figure; 
arma14 = armax(room_data_est.y,[1 4], 'Ts', 60);  
compare(room_data_val.y, arma14, 15);  
  
%Evaluation:   
resid(room_data_val,arx318); 
figure; 
resid(room_data_val, armax1228);  
figure; 
resid(room_data_val, bj31218);  
figure; 
resid(room_data_val, oe248);  
figure;  
  
iopzplot(arx318); 
[poles,zeros] = pzmap(arx318) 
figure; 
iopzplot(armax1228); 
[poles,zeros] = pzmap(armax1228) 
figure; 
iopzplot(bj31218); 
[poles,zeros] = pzmap(bj31218) 
figure;  
iopzplot(oe248);  
[poles,zeros] = pzmap(oe248) 
figure;  
  
step(impulseest(spa(room_data)),'r', arx318,'b', armax1228, 'g', bj31218, 
'm', oe248, 'y') 
figure;  
  
bodeplot(spa(room_data),'r', arx318,'b', armax1228, 'g', bj31218, 'm', oe248, 
'y');  
  
%AR 15-step predictor: 
Y_est = room_data_est.y(18:end); 
y_est = room_data_est.y;  
Y_val = room_data_val.y(18:end);  
y_val = room_data_val.y; 
u_est = room_data_est.u; 
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u_val = room_data_val.u; 
  
Phi_est = [-y_est(3:end-15) -y_est(2:end-16) -y_est(1:end-17)]; 
theta_hat_ar = Phi_est\Y_est;  
y_hat_est = Phi_est*theta_hat_ar;  
  
%Validation data:  
Phi_val = [-y_val(3:end-15) -y_val(2:end-16) -y_val(1:end-17)]; 
y_hat_val = Phi_val*theta_hat_ar;  
  
% GOF:  
GOF_est_ar = goodnessOfFit(Y_est,y_hat_est,'NRMSE') 
GOF_val_ar = goodnessOfFit(Y_val,y_hat_val,'NRMSE') 
  
%ARX 15-step predictors: 
Phi_est_arx = [-y_est(3:end-15) -y_est(2:end-16) -y_est(1:end-17) 
u_est(1:end-17)]; 
Phi_val_arx = [-y_val(3:end-15) -y_val(2:end-16) -y_val(1:end-17) 
u_val(1:end-17)]; 
  
theta_hat_arx = Phi_est_arx\Y_est;  
y_hat_est_arx = Phi_est_arx*theta_hat_arx;  
  
%Validation data:  
y_hat_val_arx = Phi_val_arx*theta_hat_arx;  
  
% GOF:  
GOF_est_arx = goodnessOfFit(Y_est,y_hat_est_arx,'NRMSE') 
GOF_val_arx = goodnessOfFit(Y_val,y_hat_val_arx,'NRMSE') 
  

B.3. NLAR-and NLARX-models 
file = "KitchenDone.txt"; 
[temperature, humidity, electricity, radiator_temp]= split_data2(file); 
  
time = [1:length(temperature)]; 
data_length = length(time); 
 
%Treat data:  
room_data = iddata(temperature, electricity, 60);  
room_data = detrend(room_data,0); 
room_data = detrend(room_data,1); 
room_data_est = room_data([1:floor(data_length/2)]); 
room_data_val = room_data([ceil(data_length/2):data_length]); 
 
%Opt:  
opt = nlarxOptions; 
opt.Focus = 'prediction'; 
 
arx=[3 4 1]; 
training_data = room_data_est; 
  
GOF_fit = [];  
counter = 1; 
for i = 1:20 
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NN_est = nlarx(training_data, arx,sigmoidnet('numberOfUnits',i),     
opt); 

    [y, FIT, x0]=compare(room_data_val, NN_est, 15); 
    GOF_fit(counter)=FIT;  
    counter= counter + 1;  
end 
 
%Best model structure: 
best_FIT=max(GOF_fit) 
index = find(GOF_fit==best_FIT) 
 

B.4. LAVA AR-predictors 

%Read data points with split_data function:  
[temperature, humidity, electricity, radiator] = 
split_data('KitchenDone.txt'); 
 
%Divide data into estimation- and validation data: 
data_length = length(electricity); 
temperature_est = temperature([1:floor(data_length/2)]); 
temperature_val = temperature([ceil(data_length/2):data_length]); 
electricity_est = electricity([1:floor(data_length/2)]); 
electricity_val = electricity([ceil(data_length/2):data_length]); 
 
%Pre-process data, removing means and autocorrelation:  
Y_id = detrend(detrend(temperature_est', 0), 1); 
U_id = detrend(detrend(electricity_est', 0), 1); 
Y_val = detrend(detrend(temperature_val', 0), 1); 
U_val = detrend(detrend(electricity_val', 0), 1);  
 
N = size(Y_id, 2); 
 
% Model parameters: 
na = 3; 
nb = 0; 
M = 3; %Resolution of Laplace basis. 
L_vec = 1.1*[ repmat(max(abs(Y_id')),1,na) repmat(max(abs(U_id')),1,nb)]; 
%Boundaries in Laplace basis 
 
%Construct AR-Predictor for prediction:  
Phi_est = [-Y_id(3:end-15); -Y_id(2:end-16); -Y_id(1:end-17)]; 
Gamma = create_gamma_laplace(Phi_est', M, L_vec); 
 
% Run identification: 
% We remove the first max(na,nb) elements from Y_id, due to unknown initial 
conditions. 
 
L = 5; %Number of iteration per sample in cyclic minimization 
[Theta_hat, Z_hat, D, Sigma, Theta_tilde] = func_onlinesol(Y_id(:, 
max(na,nb)+15:end), Phi_est, Gamma, L); %Gamma ska kanske ha transponat!  
 
%Predictor 15 steps ahead, AR: 
y_hat_est_ar = Phi_est'*Theta_hat'+(Z_hat*Gamma)';  
 
Phi_val = [-Y_val(3:end-15); -Y_val(2:end-16); -Y_val(1:end-17)]; 
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Gamma_val = create_gamma_laplace(Phi_val', M, L_vec); 
 

y_hat_val_ar = Phi_val'*Theta_hat'+(Z_hat*Gamma_val)';  
 
%Calculate goodness of fit with NRMSE:  
Y_est_stripped = Y_id(18:end); 
Y_val_stripped = Y_val(18:end);  
 
nrmse_est_ar = goodnessOfFit(Y_est_stripped',y_hat_est_ar,'NRMSE'); 
nrmse_val_ar = goodnessOfFit(Y_val_stripped', y_hat_val_ar,'NRMSE'); 
 
%Get fit percentage:  
fit_val_ar = (1-nrmse_val_ar)*100; 
fit_est_ar = (1-nrmse_est_ar)*100; 
 
%Plot predictions: 
figure 
hold on 
plot(y_hat_val_ar) 
plot(Y_val_stripped) 
legend('Y predictions', 'True Y') 
 

B.5. LAVA ARX-predictors 

%Read data points with split_data function:  
[temperature, humidity, electricity, radiator] = 
split_data('KitchenDone.txt'); 
 
%Divide data into estimation- and validation data: 
data_length = length(electricity); 
temperature_est = temperature([1:floor(data_length/2)]); 
temperature_val = temperature([ceil(data_length/2):data_length]); 
electricity_est = electricity([1:floor(data_length/2)]); 
electricity_val = electricity([ceil(data_length/2):data_length]); 
 
%Pre-process data, removing means and autocorrelation:  
Y_id = detrend(detrend(temperature_est', 0), 1); 
U_id = detrend(detrend(electricity_est', 0), 1); 
Y_val = detrend(detrend(temperature_val', 0), 1); 
U_val = detrend(detrend(electricity_val', 0), 1);  
 
N = size(Y_id, 2); 
 
% Model parameters: 
na = 3; 
nb = 1; 
M = 3; %Resolution of Laplace basis. 
L_vec = 1.1*[ repmat(max(abs(Y_id')),1,na) repmat(max(abs(U_id')),1,nb)]; 
%Boundaries in Laplace basis 
 

%Construct ARX-Predictor for prediction:  
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Phi_est = [-Y_id(3:end-15); -Y_id(2:end-16); -Y_id(1:end-17); U_id(1:end-
17)]; 
Gamma = create_gamma_laplace(Phi_est', M, L_vec); 
 
% Run identification: 
% We remove the first max(na,nb) elements from Y_id, due to unknown initial 
conditions. 
L = 5; %Number of iteration per sample in cyclic minimization 
[Theta_hat, Z_hat, D, Sigma, Theta_tilde] = func_onlinesol(Y_id(:, 
max(na,nb)+15:end), Phi_est, Gamma, L); %Gamma ska kanske ha transponat!  
 
%Predictor 15 steps ahead, ARX: 
y_hat_est_arx = Phi_est'*Theta_hat'+(Z_hat*Gamma)';  
 
Phi_val = [-Y_val(3:end-15); -Y_val(2:end-16); -Y_val(1:end-17); U_val(1:end-
17)]; 
Gamma_val = create_gamma_laplace(Phi_val', M, L_vec); 
 
y_hat_val_arx = Phi_val'*Theta_hat'+(Z_hat*Gamma_val)';  
 
%Calcluate goodness of fit with NRMSE: 
Y_est_stripped = Y_id(18:end); 
Y_val_stripped = Y_val(18:end);  
 
nrmse_est_arx = goodnessOfFit(Y_est_stripped',y_hat_est_arx,'NRMSE'); 
nrmse_val_arx = goodnessOfFit(Y_val_stripped', y_hat_val_arx,'NRMSE'); 
 
%Get fit percentage: 
fit_val_arx = (1-nrmse_val_arx)*100; 
fit_est_arx = (1-nrmse_est_arx)*100; 
 
%Plot predictions:  
figure 
hold on 
plot(y_hat_val_arx) 
plot(Y_val_stripped) 
legend('Y predictions', 'True Y') 
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Appendix C- Sensitivity analysis codes  

C.1. Kitchen analysis  
[temperature, humidity, electricity, radiator_temp]= 
split_data('KitchenDone.txt'); 
time = [1:length(temperature)]; 
data_length = length(time); 
         
%Humidity:   
room_data_hum = iddata(temperature, humidity, 60);     
room_data_hum = detrend(room_data_hum,0);     
room_data_hum = detrend(room_data_hum,1);    
room_data_hum_est = room_data_hum([1:floor(data_length/2)]); 
room_data_hum_val = room_data_hum([ceil(data_length/2):data_length]); 
  
%Electricity:  
room_data_el = iddata(temperature, electricity, 60);     
room_data_el = detrend(room_data_el,0);     
room_data_el = detrend(room_data_el,1);     
room_data_el_est = room_data_el([1:floor(data_length/2)]); 
room_data_el_val = room_data_el([ceil(data_length/2):data_length]); 
     
%Radiator temperature:  
room_data_rad = iddata(temperature, radiator_temp, 60);     
room_data_rad = detrend(room_data_rad,0);     
room_data_rad = detrend(room_data_rad,1);     
room_data_rad_est = room_data_rad([1:floor(data_length/2)]); 
room_data_rad_val = room_data_rad([ceil(data_length/2):data_length]); 
     
%Do high levels of humidity coincide with high levels of electricity usage?  
     
plot(time, humidity) 
hold on;  
plot(time, electricity)  
figure;  
plot(time, radiator_temp) 
     
%Correlation coefficients (Pearson¥s).  
[correlation_coefficients,p] = corrcoef(humidity,electricity); 
     
%Correlation coefficients (Spearman¥s).  
[SRHO,Pval] = corr(humidity,electricity,'Type','Spearman');  
  
%Best OE-models for kitchen with regard to goodness of fit:      
oe_el= oe([room_data_el_est.y, room_data_el_est.u],[2 4 8], 'Ts', 60);  
compare([room_data_el_val.y, room_data_el_val.u],oe_el,15); 
figure; 
     
oe_hum= oe([room_data_hum_est.y, room_data_hum_est.u],[3 4 0], 'Ts', 60);  
compare([room_data_hum_val.y, room_data_hum_val.u],oe_hum,15); 
figure; 
     
oe_rad= oe([room_data_rad_est.y, room_data_rad_est.u],[4 4 0], 'Ts', 60);  
compare([room_data_rad_val.y, room_data_rad_val.u],oe_rad,15); 
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figure;  
    
%Best ARX-models with reagrd to goodness of fit: 
arx_el = arx([room_data_el_est.y, room_data_el_est.u], [3 4 8], 'Ts', 60); 
compare([room_data_el_val.y, room_data_el_val.u], arx_el,15);  
figure; 
    
arx_hum = arx([room_data_hum_est.y, room_data_hum_est.u], [3 3 0], 'Ts', 60); 
compare([room_data_hum_val.y, room_data_hum_val.u], arx_hum,15);  
figure; 
   
arx_rad = arx([room_data_rad_est.y, room_data_rad_est.u], [3 2 0], 'Ts', 60); 
compare([room_data_rad_val.y, room_data_rad_val.u], arx_rad,15);  
figure; 
     
%Multiple input ARX (electricity, humidity, radiator temp.):  
arx_misu_all=arx([room_data_el_est.y, room_data_el_est.u room_data_hum_est.u 
room_data_rad_est.u],[3 4 3 2 8 0 0], 'Ts', 60);  
compare([room_data_el_val.y, room_data_el_val.u room_data_hum_val.u 
room_data_rad_val.u ], arx_misu_all,15);  
figure; 
    
%Multiple input ARX (electricity, radiator temp.):  
arx_misu_el_rad=arx([room_data_el_est.y, room_data_el_est.u 
room_data_rad_est.u],[3 4 2 8 0], 'Ts', 60);  
compare([room_data_el_val.y, room_data_el_val.u room_data_rad_val.u ], 
arx_misu_el_rad,15);  
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